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Abstract

Pretrained language models (PLMs) have demonstrated remarkable performance1

in various natural language processing tasks: Unidirectional PLMs (e.g., GPT) are2

well known for their superior text generation capabilities; bidirectional PLMs (e.g.,3

BERT) have been the prominent choice for natural language understanding (NLU)4

tasks. While both types of models have achieved promising few-shot learning5

performance, their potential for zero-shot learning has been underexplored. In this6

paper, we present a simple approach that uses both types of PLMs for fully zero-shot7

learning of NLU tasks without requiring any task-specific data: A unidirectional8

PLM generates class-conditioned texts guided by prompts, which are used as9

the training data for fine-tuning a bidirectional PLM. With quality training data10

selected based on the generation probability and regularization techniques (label11

smoothing and temporal ensembling) applied to the fine-tuning stage for better12

generalization and stability, our approach demonstrates strong performance across13

seven classification tasks of the GLUE benchmark (e.g., 72.3/73.8 on MNLI-m/mm14

and 92.8 on SST-2), significantly outperforming zero-shot prompting methods and15

achieving even comparable results to strong few-shot approaches using 32 training16

samples per class1.17

1 Introduction18

Pretrained language models (PLMs) [5, 8, 11, 19, 33, 37] have achieved human-level performance19

on natural language understanding (NLU) tasks [62, 63] when fine-tuned on a large amount of20

task-specific training data. However, such a supervised fine-tuning paradigm is drastically different21

from how humans perform these tasks: We barely need to see many task-specific training samples22

to perform well. Recently, many studies have revealed the intriguing few-shot learning potential of23

PLMs: By converting task descriptions to natural language prompts and injecting them into PLMs,24

prompt-based approaches [5, 13, 51, 52, 55] leverage task-specific information for better training25

data efficiency and have achieved remarkable few-shot results.26

When prompt-based methods are applied to the zero-shot setting, however, the PLMs’ predictions27

are much less accurate. For example, GPT-3’s zero-shot performance is much degraded relative to28

its few-shot performance [5], especially on challenging tasks like natural language inference (NLI).29

Without any task-specific samples, it is indeed challenging for PLMs to effectively interpret the30

prompts that come in different formats and are unseen in the pretraining data. To familiarize PLMs31

with various prompts for zero-shot generalization to unseen tasks, a recent study proposes instruction32

tuning [66], which fine-tunes PLMs on a large collection of different tasks described by instructions.33

Despite its strong performance, its success is grounded in the large number of cross-task annotated34

datasets (e.g., train on many non-NLI tasks and transfer to NLI tasks) and the gigantic model size35

(e.g., hundreds of billions of parameters), posing great challenges for training and using them.36

1Code is shared in the supplementary material.
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In this work, we study zero-shot learning of PLMs on NLU tasks without any task-specific or cross-37

task data. Motivated by the strong text generation power of recent PLMs [5, 23, 29, 48], we propose38

SuperGen, a Supervision Generation approach, wherein training data are created via a unidirectional39

PLM (i.e., the generator) which generates class-conditioned texts guided by label-descriptive prompts.40

A bidirectional PLM (i.e., the classifier) is then fine-tuned on the generated texts to perform the41

corresponding task. Both PLMs can be of moderate size to fit in typical research hardware (e.g., a42

GPT-2-sized [47] generator and a RoBERTaLarge-sized [33] classifier). With supervision automatically43

created by the generator, SuperGen eliminates the need for task-specific annotations and provides44

the classifier PLM with a larger amount of training data than in few-shot scenarios. SuperGen is45

compatible with any PLM as the classifier and any fine-tuning method. We note that the generator46

creates synthetic samples in a zero-shot manner, and the classifier is fine-tuned on the synthetic data47

(the classifier is thus not zero-shot, but there are no task-specific data required in such a process).48

Across seven classification tasks of the GLUE benchmark [62], SuperGen significantly outperforms49

the prompt-based zero-shot method and even achieves an overall better result in both average50

performance and stability than strong few-shot approaches that use 32 annotated samples per class.51

We identify several key factors to the strong performance of SuperGen through ablation studies: (1)52

selecting quality training data based on their generated probability, and (2) using label smoothing and53

temporal ensembling to regularize fine-tuning on generated data.54

2 Related Work55

2.1 Few-Shot and Zero-Shot Learning with PLMs56

Instead of using a large amount of annotated training data for fine-tuning PLMs on downstream tasks,57

few-shot learning studies how to better leverage only a small amount of task-specific training data,58

a more realistic scenario in many applications. The most strict few-shot learning setting does not59

assume access to any unlabeled data or large validation sets for hyperparameter tuning [44], where60

prompt-based methods [5, 13, 32, 34, 51–53, 55, 59, 80] are prominently deployed to inject task61

descriptions into PLMs and make effective use of their language modeling capability for improved62

training data efficiency in low-data regimes. More broadly, semi-supervised learning additionally63

leverages unlabeled task-specific data, where data augmentation [7, 69], regularization [39] and64

bootstrapping [52] methods are commonly used.65

Zero-shot learning, on the other hand, is a much more challenging setting with absolutely no access66

to any task-specific data. When prompt-based methods are directly used to obtain predictions from67

PLMs without any training, their zero-shot performance can be much worse [5, 13]—difficult NLU68

tasks can be barely formulated as prompts that resemble the format of pretraining data, posing great69

challenges for PLMs to accurately interpret and leverage the prompts without given any training70

samples. The current mainstream of zero-shot learning is based on transfer learning: By converting71

a set of tasks with abundant annotations into instruction templates [38, 50, 66, 70], entailment72

pairs [75, 76] or question-answer formats [46, 82] and fine-tuning PLMs on them, the PLMs acquire73

the cross-task transfer ability [74] to execute unseen tasks when they are formulated in a similar74

format. Our work proposes a different approach from these studies: We use a unidirectional PLM to75

generate training data for fine-tuning another PLM on the target task. This not only removes the need76

for a large amount of cross-task annotations, but also eliminates the task difference in training and77

inference. Moreover, different from previous studies [1, 72] that rely on labeled data to fine-tune the78

generative PLM, we directly use prompts to guide data generation without fine-tuning.79

2.2 Controlled Text Generation with PLMs80

Controlled text generation [22] aims to steer the generated texts of language models towards desired81

contents, styles or domains. Through fine-tuning PLMs on attribute-specific data, high-level control82

(e.g., generating certain topics or sentiments [84]), fine-grained control (e.g., generating specific words83

or phrases [6]) or both [24] can be achieved. Adapting PLMs to generate texts of specific attributes can84

also be realized at inference time without any further training of the PLMs [10, 25, 26, 31, 43, 64, 71].85

Different text attributes can also be represented during pretraining time as control codes [23] which86

later can serve as explicit guidance for generating domain/attribute-specific texts.87

Along another line of controlling text generation, the idea of using prompts as guidance has emerged88

recently—Since natural language generation is largely based on contexts, providing certain prompts89

as the beginning of a sequence can effectively steer the subsequent texts to be generated. The prompts90

2



Label Smoothing

This film is terrible.

Single-Sequence Tasks
(e.g. Sentiment Classification)

It is a waste of 
time and money.

The opening date of the 
station was estimated to be 
mid-2020. In other words,

Generator Gt
(Unidirectional PLM)
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G✓

Sequence-Pair Tasks
(e.g. Natural Language Inference)

The station was to 
open in 2020.
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Figure 1: Overview of SuperGen for zero-shot learning of NLU tasks. A unidirectional PLM is
used as the generator for creating training data guided by label-descriptive prompts. Quality training
samples are selected based on average log generation probability. A bidirectional PLM is fine-tuned
on the selected training set with label smoothing and temporal ensembling as regularization to perform
the classification task.

can be either in natural language [53] or as learnable parameters [30]. In this work, we also guide91

text generation via prompts, but for the novel purpose of creating training data for NLU tasks. There92

have been studies with similar purposes, such as generating similar/dissimilar sentences for training93

sentence embeddings [54] and using labeled samples as demonstrations to prompt gigantic PLMs [77]94

for creating novel training data. In this work, we explore generating training data without using any95

labeled samples for a wide range of different NLU tasks. The similar setting is also explored in a96

concurrent study [73]. Compared to annotated task-specific data, the generated texts may contain97

noise and have domain difference from the downstream task. We will introduce several important98

strategies for effective fine-tuning of PLMs on generated data.99

3 Method100

3.1 Preliminaries101

Problem Formulation. We consider solving a classification problem2 where we are only given the102

label space Y and a mappingM : Y → W that converts each label y ∈ Y into a label-descriptive103

prompt (i.e., a short phrase) wy ∈ W . We assume access to a unidirectional PLM Gθ as the generator104

and a bidirectional PLM Cϕ which will be fine-tuned as the classifier3. We also assume the pretraining105

corpus D (e.g., Wikipedia) is available.106

Text Generation with Unidirectional PLMs. A unidirectional PLM Gθ is pretrained to maximize
the generation probability of each token in a sequence x = [x1, x2, . . . , xn] conditioned on previous
tokens:

max
θ

n∏
i=1

pθ(xi|x<i), where pθ(xi|x<i) =
exp(e⊤i hi)∑|V |
j=1 exp(e

⊤
j hi)

.

Here, pθ(·) is usually parameterized using token embeddings e and contextualized embeddings h107

given by a Transformer [61] encoder.108

After pretraining, Gθ can be directly used to generate new texts by recursively sampling tokens from109

its output probability distribution. Typically, a temperature hyperparameter τ > 0 is introduced110

during sampling [20] to adjust the sharpness of the probability distribution:111

pθ(xi|x<i) =
exp(e⊤i hi/τ)∑|V |
j=1 exp(e

⊤
j hi/τ)

, (1)

2We do not consider regression tasks in this work due to the difficulty of generating texts conditioned on
a continuous label space. However, there exist approaches [14, 49] that solve regression tasks by training
on classification tasks. We leave the integration of SuperGen with these methods as future work for solving
regression tasks.

3We assume the classifier to be bidirectional PLMs since they generally work better than unidirectional
PLMs in NLU tasks; we can in principle use any PLM as the classifier.
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where τ → 0 approximates greedily picking the most probable next token; τ →∞ induces a uniform112

distribution. Additionally, sampled tokens can be confined to the top-k most probable ones to avoid113

low-quality tokens. In this work, we find such top-k sampling with temperature is sufficient to114

produce coherent and meaningful texts as training data for NLU tasks. Exploring more sophisticated115

sampling strategies [21] is left for future work.116

3.2 Training Data Generation117

Table 1: Prompts used to generate class-conditioned
texts for different GLUE tasks. SST-2 is a single-
sequence classification task and the rest are sequence-
pair classification tasks. Generation for CoLA does
not use prompts but by varying sampling tempera-
tures. xs denotes a sequence randomly sampled from
the pretraining corpus; xg denotes the sequence to be
generated by Gθ; . . . denotes skipping at least one
sequence. See Appendix B for more details.

Task Label Prompt

SST-2 positive Rating: 5.0 xg

negative Rating: 1.0 xg

MNLI
entailment xs. In other words, xg

neutral xs. Furthermore, xg

contradiction There is a rumor that xs.
However, the truth is: xg

QNLI entailment xs? xg

not entailment xs? . . .xg

RTE entailment xs. In other words, xg

not entailment xs. Furthermore, xg

MRPC equivalent xs. In other words, xg

not equivalent xs. Furthermore, xg

QQP equivalent xs? In other words, xg

not equivalent xs? Furthermore, xg

When given a label-descriptive prompt such118

as “Write a negative review:”, humans are119

able to produce texts pertaining to the cor-120

responding class. We aim to leverage the121

strong text generation power of a unidirec-122

tional PLM Gθ for the same purpose of cre-123

ating class-conditioned training data. We124

note that Gθ is directly used for generation125

without any parameter updates. The prompts126

used for different NLU tasks in GLUE are127

summarized in Table 1.128

Generating Single Sequences. For single-
sequence NLU tasks such as sentiment clas-
sification (e.g., SST-2), we simply use a
prompt wy corresponding to label y as the
beginning of the sequence and let Gθ gener-
ate the remaining sequence:

xg ← Gθ(wy),

where Gθ(wy) denotes using wy as the in-129

put to Gθ and recursively sampling tokens130

from the distribution in Eq. (1) until a full131

sequence is generated; xg denotes the gen-132

erated sequence (i.e., excluding the prompt),133

which will be paired with y to form one train-134

ing sample (xg, y).135

For syntactic tasks like linguistic acceptabil-136

ity classification (e.g., CoLA) which requires generating both linguistically acceptable and unaccept-137

able sequences, we start the sequence with random stop words and use varying sampling temperatures138

for generating different sequences. A smaller temperature (e.g., τ = 0.1 in Equation (1)) sharpens the139

sampling probability distribution towards the most probable tokens, thus the resulting sequence will140

more likely to be linguistically acceptable. Using a larger temperature (e.g., τ = 10 in Equation (1))141

flattens the sampling probability distribution to be more uniform, and the generated tokens will be142

nearly random, which can create linguistically incorrect sequences.143

Generating Sequence Pairs. Sequence-pair classification tasks require generating two sequences
of specific relationships (e.g., entailment, contradiction). We sample4 the first sequence xs from the
pretraining corpus D, concatenate the prompt wy with xs, and let Gθ generate the second sequence
xg:

xg ← Gθ ([x
s;wy]) , x

s ∼ D.
The sequence pair training sample will then be formed as (xs,xg, y).144

Rewarding and Penalizing Repetitions for Sequence Pair Generation. A common issue in text145

generation is degenerate repetition [21, 23, 47, 67] where generated texts can get stuck in repetition146

loops. To address this issue, one approach is to discourage repetition by reducing the logits of tokens147

that are already in the sequence before performing sampling [23]. In sequence pair generation,148

however, it is sometimes desirable to encourage the second sequence to repeat some words in the149

first sentence (e.g., for generating an entailment or a paraphrase). Therefore, we propose a simple150

4In principle, we can also generate the first sequence using Gθ , but we find sampling from D improves the
diversity of texts.

4



modification of Eq. (1) that rewards/penalizes repetition based on whether the token has appeared in151

xs/xg:152

pθ(xi|x<i) =
exp(e⊤i hi/ω)∑|V |
j=1 exp(e

⊤
j hi/ω)

, where ω =


τα xi ∈ xs ∧ xi /∈ xg

τβ xi ∈ xg

τ else
, (2)

and α > 0, β > 0 are hyperparameters. By setting α < 1 and β > 1, we can promote tokens in153

xs that have not appeared in xg to have a higher chance of being generated, and discourage the154

generation of repetitive tokens in xg to mitigate degenerate repetition. The parameters used for155

different tasks are listed in Appendix C Table 8.156

3.3 Effective Fine-Tuning on Generated Texts157

With the generated training data, one can fine-tune a bidirectional PLM Cϕ as the classifier to perform158

the NLU task. However, training Cϕ via standard supervised training on all generated texts is likely159

to yield suboptimal performance on downstream tasks because (1) the generated texts may contain160

noise as Gθ may not always produce texts pertaining to the desired class, especially for challenging161

sequence pair tasks with subtle semantic relationships; and (2) the generated texts can be considered162

as originated from the domain of Gθ’s pretraining data, with a potentially different distribution from163

the downstream task; straightforward application of supervised training will result in overfitting164

to the pretraining domain and diminishing generalization ability, a common challenge in transfer165

learning [60, 83]. To address these challenges, we next introduce several simple and important166

strategies for more effective and stable fine-tuning on generated texts.167

Selecting Quality Training Data. We aim to select generated texts xg that are most likely to
pertain to the desired label y (i.e., with the highest p(xg|y)). The true probability p(xg|y) is unknown
and we estimate it via the generation probability given by Gθ conditioned on the prompt wy:

p(xg|y) ≈ pθ(x
g|wy) =

n∏
i=1

pθ
(
xi

∣∣[wy;x
g
<i]

)
.

Since the above measure is biased towards shorter sequences, we instead use the geometric mean168

of the above conditional generation probability (or equivalently, the average log probability) of all169

tokens in xg as the ranking score, following [78]:170

r =
1

n

n∑
i=1

log pθ
(
xi

∣∣[wy;x
g
<i]

)
. (3)

To construct a training set consisting of N samples per class, we will generate more samples (e.g.,171

10N ), and select training data based on the score r in Eq. (3): For all tasks except CoLA, the172

top-N ones of each class are selected; for CoLA, the top-N ones are used as the training sample173

as linguistically acceptable sequences, and the bottom-N ones are as linguistically unacceptable174

sequences.175

Regularization for Better Generalization and Stability. Even with the above training data176

selection procedure, the resulting training set may still contain noise and there exists domain difference177

from the downstream tasks. We apply two regularization techniques, label smoothing [58] and178

temporal ensembling [27] for better fine-tuning stability and generalization.179

Given a training sample (xg, y), label smoothing trains the classifier Cϕ to minimize the standard180

cross-entropy loss between the label and the classifier’s prediction pϕ(x
g), except that the label is a181

weighted average of the one-hot vector and a uniform distribution over all labels:182

min
ϕ
−

|Y|∑
j=1

qj log(pϕ(x
g)j), (4)

where qj = 1(j = y)(1− ϵ) + ϵ/|Y| and ϵ is the smoothing weight. By forcing the classifier to be183

less confident on training data, label smoothing improves robustness to label noise [35] and prevents184

overfitting to the training set [40], thus improving generalization to different domains.185
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The motivation for temporal ensembling is that neural networks usually first pick up easy and general186

patterns in the data before learning more sophisticated and dataset-specific features [79], and thus the187

earlier states of the network offer better generalizability to different domains. We therefore record the188

predictions pϕ = pϕ(x
g) of Cϕ on each training sample (xg, y) at different training steps, and use189

the accumulated moving-average predictions z̄ to regularize the latest model training. This also helps190

suppress the fluctuation in model predictions due to data noise, offering better noise-robustness [41].191

We update ensembled predictions z̄ once every B batches:192

ẑ ← γẑ + (1− γ)pϕ, z̄ ← ẑ/(1− γt), (5)

where ẑ has a zero initialization; γ is the momentum parameter; t is the number of updates z̄ has193

received; the division (1− γt) is for bias correction [27]. We also use the ensembled prediction z̄ as194

a reliable signal to filter out noisy training samples: Only those samples on which z̄ strongly agrees195

with the label y (i.e., z̄y > δ where δ > 0 is a threshold parameter) will be used for training.196

We regularize model training by extending Eq. (4) to add a KL divergence regularization term from197

the model prediction to the ensembled prediction weighed by λ:198

min
ϕ
−

|Y|∑
j=1

qj log(pϕ(x
g)j)− λ

|Y|∑
j=1

z̄j log
pϕ(x

g)j
z̄j

. (6)

We follow [27] to slowly ramp-up λ during training.199

3.4 Overall Algorithm200

Algorithm 1: SuperGen for Zero-Shot Learning.
Input: Y : Label space; P : Label-descriptive prompts; Gθ:

Unidirectional PLM; Cϕ: Bidirectional PLM.
Parameter: N : Number of training samples per class to

generate; M(≫ N): Number of total
training samples to generate; T : Number of
training steps; B: Ensemble prediction
update interval; δ: Threshold parameter.

Output: C∗
ϕ: Classifier that classifies input texts into Y .

for y ∈ Y do
Ty ← {}
// Class y train set init.

for i ∈ [1, 2, . . . ,M ] do
xg ← Gθ(wy)
Ty ← Ty

⋃
{(xg, y)}

end
end
T ← {}
// Selected train set.
for y ∈ Y do

Sort Ty in descending order by Eq. (3)
T ← T

⋃
Ty[: N ]

end
ẑ ← 0
// Ensembled prediction init.
T ∗ ← T
// Filtered train set.
for i ∈ [1, 2, . . . , T ] do

Fine-tune Cϕ via Eq. (6) on a minibatch of T ∗

if i%B = 0 then
Update ẑ, z̄ via Eq. (5)
T ∗ ← {(xg, y)|z̄y > δ, (xg, y) ∈ T }

end
end
return C∗

ϕ = Cϕ

We summarize SuperGen for single-201

sequence NLU tasks in Algorithm 1. Solv-202

ing sequence-pair problems follows the203

same algorithm except the pretraining cor-204

pus D is needed for sampling the first se-205

quence xs.206

4 Experimental Setup207

Downstream Tasks and Metrics. We208

use all the tasks included in GLUE [62]209

except STS-B which is a regression task.210

Please refer to Appendix A for more de-211

tails about GLUE tasks. We follow the212

evaluation protocol of [13]: We use F1213

score as the metric for QQP and MRPC,214

Matthews correlation for CoLA, and accu-215

racy for the rest of the tasks. The original216

development sets of these tasks are used217

for testing. For all reported results, we in-218

clude the average and standard deviation219

over 5 different random seeds.220

Models. Unless specified otherwise, we221

use CTRL (1.63B parameters) [23] as the222

generator Gθ and COCO-LMLarge (367M223

parameters) [37] as the classifier Cϕ. We224

also show the results using similar-sized225

PLMs (GPT-2 [47]/RoBERTa [33]) as the226

generator/classifier in Appendix D.227

Fine-Tuning Settings and Hyperparam-228

eters. We note that SuperGen is compat-229

ible with any fine-tuning method; while us-230

ing more sophisticated methods may grant231

further performance improvement, we use the basic prompt-based fine-tuning with manual templates232
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Table 2: Results on seven GLUE classification tasks. We report average and standard deviation (as
subscripts) performance over 5 different random seeds. †: Results from LM-BFF [13].

Method MNLI-(m/mm) QQP QNLI SST-2 CoLA RTE MRPC AVG
(Acc.) (F1) (Acc.) (Acc.) (Matt.) (Acc.) (F1)

Zero-Shot Setting: No task-specific data (neither labeled nor unlabeled).

Prompting† 50.80.0/51.70.0 49.70.0 50.80.0 83.60.0 2.00.0 51.30.0 61.90.0 50.1
SuperGen 72.30.5/73.80.5 66.11.1 73.31.9 92.80.6 32.75.5 65.31.2 82.20.5 69.4

- data selection 63.71.5/64.21.6 62.32.2 63.93.2 91.32.0 30.58.8 62.41.5 81.60.2 65.1
- label smooth 70.70.8/72.10.7 65.10.9 71.42.5 91.00.9 9.51.0 64.81.1 83.00.7 65.2
- temporal ensemble 62.04.6/63.64.8 63.90.3 72.42.0 92.50.9 23.57.0 63.51.0 78.82.2 65.3

Few-Shot Setting: Use 32 labeled samples/class (half for training and half for development).

Fine-tuning† 45.86.4/47.86.8 60.74.3 60.26.5 81.43.8 33.914.3 54.43.9 76.62.5 59.1
Manual prompt† 68.32.3/70.51.9 65.55.3 64.54.2 92.70.9 9.37.3 69.13.6 74.55.3 63.6

+ demonstration† 70.71.3/72.01.2 69.81.8 69.21.9 92.60.5 18.78.8 68.72.3 77.82.0 66.9
Auto prompt† 68.32.5/70.12.6 67.03.0 68.37.4 92.31.0 14.014.1 73.92.2 76.22.3 65.8

+ demonstration† 70.03.6/72.03.1 67.75.8 68.55.4 93.00.6 21.815.9 71.15.3 78.13.4 67.3

Fully supervised† 89.8/89.5 81.7 93.3 95.0 62.6 80.9 91.4 84.9

Table 3: Results with different groups of prompts. CoLA does not use prompts for generation. The
number of prompt groups is equal to the number of the task labels.

Prompt Group MNLI-(m/mm) QQP QNLI SST-2 RTE MRPC

# 0 (Original) 72.30.5/73.80.5 66.11.1 73.31.9 92.80.6 65.31.2 82.20.5

# 1 70.71.4/72.41.2 65.51.4 71.91.7 92.20.9 64.41.6 81.90.4
# 2 70.80.6/72.10.8 65.61.1 72.22.2 92.40.8 64.71.8 81.80.8
# 3 70.91.4/72.21.4 - - - - -
Mixed 72.20.7/73.40.6 66.91.5 73.01.7 92.80.9 66.31.0 81.32.0

approach for simplicity and clarity. For all tasks, we use the same templates and label words as in233

[13]. Under the zero-shot learning setting, it is not possible to tune hyperparameters due to the lack234

of validation sets. Therefore, we keep all fine-tuning hyperparameters (e.g., learning rate, batch size,235

training epochs, number of generated training samples, label smoothing and temporal ensembling236

hyperparameters) same across all tasks. See Appendix C Table 9 for details.237

Compared Methods and Ablations. We include the results of zero-shot prompting, standard238

few-shot fine-tuning and the four few-shot prompt-based fine-tuning methods proposed in [13]. We239

also conduct ablation studies by removing the following three techniques from SuperGen one at a240

time: (1) not using Eq. (3) for training data selection but randomly selecting the same amount of241

training data (- data selection); (2) not using label smoothing (- label smooth) but using one-hot242

labels; and (3) not using temporal ensembling (i.e., using Eq. (4) instead of Eq. (6) as the training243

objective) (- temporal ensemble). Lastly, we report the fully supervised fine-tuning results trained on244

the entire training sets.245

5 Evaluation246

5.1 Main Results247

We present the results of SuperGen, its ablations and compared methods in Table 2. Overall, SuperGen248

significantly outperforms zero-shot prompting and achieves an overall better result than all few-shot249

methods. Notably, SuperGen results in much smaller variance over different random seeds than250

few-shot approaches on most tasks—with access to more training data, fine-tuning of PLMs becomes251

much more stable. The ablation results demonstrate that all three strategies (i.e., quality training252

data selection, label smoothing and temporal ensembling) play important roles in improving and253

stabilizing the final performance, especially on challenging tasks like MNLI.254
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5.2 Using Different Prompts255

One important factor of SuperGen is the choice of label-descriptive prompts as they directly influence256

the quality of generated training samples. To study the impact of different prompt choices on the257

final model performance, we create different groups of prompts other than the original ones. We258

replace the prompt for one label used in Table 1 with a synonymous one and keep other prompts259

unchanged when forming a different prompt group (Please refer to Appendix B Table 7 for details).260

We also experiment with mixing the generated data by different prompt groups (mixed). The results261

are shown in Table 3. Overall, the model performance under different prompts is quite close, except262

on RTE whose test set is very small, potentially resulting in the higher variance. In this work, we263

manually choose simple prompts that make intuitive sense, and we leave the automatic searching of264

optimal prompts as future work.265

5.3 Results with Different Amount of Generated Data266

0.1 0.2 0.4 1.0 2.0 4.0 10.0
# Generated Training Data Used (×1e3)

40

50

60

70
A

cc
.

(a) MNLI-m.

0.1 0.2 0.4 1.0 2.0 4.0 10.0
# Generated Training Data Used (×1e3)

80

85

90

A
cc

.

(b) SST-2.

Figure 2: Results with different amount of generated training
data used. Dots and error bars are the average performance and
the standard deviation over 5 seeds, respectively.

With training data automatically cre-267

ated by the generator, we can have268

a virtually infinite amount of train-269

ing samples. We show the results270

of using different amount of gener-271

ated data (after quality data selec-272

tion) for fine-tuning the classifier273

Cϕ in Fig. 2 on MNLI-m and SST-2.274

When the number of training data275

is small (e.g., 100), the fine-tuning276

variance is high, resulting in the sim-277

ilar instability issue with few-shot278

settings. With more generated data279

used, both average performance and280

training stability improve, yielding281

comparable results (with smaller variance) to fine-tuning using few-shot task-specific data. However,282

when too many generated data (e.g., 10, 000) are used, the classifier’s performance slightly drops,283

probably due to increased label noise—recall that the training data are selected based on the ranking284

score in Eq. (3), so using more data results in the inclusion of more lower-ranking texts in the training285

set and reduced data quality. One way to address this issue is to use a fixed selection ratio and increase286

the total number of generated texts to obtain a larger number of high-quality training data. However,287

this comes at a greater computation cost in the generation step. An important future direction is thus288

to develop better data selection strategies.289

5.4 Using Generators for Knowledge Distillation290

Table 4: Comparisons with using CTRL for
zero-shot prompting and for knowledge distil-
lation. †: The entire training set is used as
unlabeled data.

Method MNLI-(m/mm) SST-2
SuperGen 72.30.5/73.80.5 92.80.6

CTRL Prompting 38.50.0/39.20.0 72.50.0
Knowledge Distill† 40.80.5/41.50.6 73.60.8

Apart from using unidirectional PLMs Gθ for train-291

ing data generation, one could also directly apply292

them to unlabeled data formulated as prompts to ob-293

tain zero-shot predictions (i.e., prompting [5, 13]),294

which can then be used as soft labels to train the295

classifier Cϕ. In Table 4, we show (1) the zero-296

shot prediction accuracy of CTRL (the best out of297

three different prompts, details in Appendix F) and298

(2) the classifier performance trained from CTRL’s299

predictions on the entire unlabeled training set as300

soft labels (i.e., knowledge distillation). Similar301

to the observations in previous studies [5, 66, 81],302

the zero-shot predictions of unidirectional PLMs are quite inaccurate and directly using them as303

soft labels to train classifiers does not yield good results. We hypothesize that the advantages of304

using unidirectional PLMs for training data generation over using them for zero-shot predictions are305

twofold: (1) Better flexibility in prompt formats. When unidirectional PLMs are used for zero-shot306

predictions, the prompts have to be designed so that the label word is the last token in the sequence to307

be predicted, as unidirectional PLMs cannot attend to subsequent tokens. Such constraints may result308

in the prompt being dissimilar to the pretraining data distribution and worsen the prediction quality309

of the PLMs. On the contrary, using unidirectional PLMs for generation is not subject to any prompt310
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format constraints. (2) More direct uses of PLMs’ language modeling ability. Using unidirectional311

PLMs for training data generation directly leverages the PLMs’ output token probability. Applying312

PLMs for zero-shot prediction, however, requires an additional step to convert token predictions to313

label predictions (i.e., the verbalizer [52]), and such a mapping process usually necessitates manual314

curation and can hardly be optimal [13] especially without abundant task-specific data.315

5.5 Using SuperGen in Few-Shot Settings316

Table 5: Using SuperGen for few-shot learning. The few-
shot setup follows [13].

Method MNLI-(m/mm) QQP CoLA
Zero-Shot SuperGen 72.30.5/73.80.5 66.11.1 32.75.5

Few-Shot Manual Prompt 68.32.3/70.51.9 65.55.3 9.37.3
+ SuperGen 73.10.9/74.30.6 69.92.5 45.56.5

We present a simple extension of Super-317

Gen to few-shot settings and show that318

the generated data of SuperGen may fur-319

ther improve the few-shot performance.320

When few-shot samples are available, we321

first fine-tune the classifier on the few-322

shot training set (standard prompt-based323

fine-tuning without regularization), and324

then continue fine-tuning the classifier325

on the generated data by SuperGen as326

described in Section 3.3. This allows the classifier to effectively leverage the knowledge from327

the few-shot training set to filter out noisy samples in the generated data, as temporal ensembling328

regularizes the classifier to remember the predictions learned previously and only keeps samples on329

which the model predictions agree with the label. As shown in Table 5, such a simple approach that330

applies SuperGen to few-shot settings improves both zero-shot SuperGen and few-shot prompt-based331

fine-tuning. We note that few-shot samples are not used in the training data generation stage, and332

we expect the results to be even better if they are leveraged to generate training data closer to the333

task-specific distribution. Possible ways to use few-shot samples for generation include using them334

as demonstrations [5], for creating augmentations [28] and for tuning the generators. We leave the335

explorations of generating higher quality data by leveraging few-shot samples for future work.336

6 Discussions and Conclusions337

Ethical Considerations. While PLMs have demonstrated remarkable text generation and un-338

derstanding capability, they can come with potential risks or harms [2, 3, 5] such as generating339

misinformation [42] or amplifying harmful biases [45]. The focus of our work is on utilizing exist-340

ing PLMs to generate training data for NLU tasks instead of developing new PLMs or generation341

methods. Therefore, our method can be used in company with any bias reduction and correction342

techniques [15, 36] to mitigate the risks of PLMs.343

Limitations. One inherent limitation with zero-shot learning is the lack of access to task-specific344

samples for hyperparameter tuning, whereas the performance of neural networks is usually heavily345

dependent on the choice of hyperparameters even when the training algorithm and training set are346

fixed [44]. Also, without access to any labeled data, the generated training data quality may not be347

high enough to achieve good performance on challenging tasks, especially when the task distribution348

is significantly different from the pretraining data distribution (e.g., the “linguistically incorrect” label349

of CoLA requires generating sequences with grammar mistakes – a different distribution from the one350

used to train PLMs). A promising direction to address the above limitations is extending SuperGen to351

few-shot settings and leveraging a small amount of labeled data for generating better quality data and352

for hyperparameter tuning.353

Conclusions. We propose SuperGen, an automatic supervision generation approach for zero-shot354

learning of NLU tasks. By providing label-descriptive prompts as guidance to a unidirectional355

PLM, training data can be automatically created for fine-tuning a bidirectional PLM. Our framework356

differs from previous transfer-learning-based zero-shot methods in that SuperGen does not rely on357

cross-task annotations and eliminates the task difference in training and inference. We show that358

several strategies are important for effective and stable fine-tuning on generated data, including359

quality training data selection, label smoothing and temporal ensembling. SuperGen achieves strong360

performance on seven classification tasks of the GLUE benchmark, even yielding comparable or361

better results than sophisticated few-shot learning methods and offering better stability. There is large362

room for future work, including but not limited to: Extension to few-shot learning settings, exploring363

larger generator models, better fine-tuning techniques to leverage generated data and better strategies364

for selecting quality training data.365
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A GLUE Tasks609

We provide the details of the seven classification tasks included in the GLUE benchmark.610

MNLI: Multi-genre Natural Language Inference [68] aims to predict whether a given premise611

sentence entails, contradicts or neutral with respect to a given hypothesis sentence.612

QQP: Quora Question Pairs [56] aims to determine whether a pair of questions asked are semantically613

equivalent.614

QNLI: Question Natural Language Inference aims to predict whether a given sentence contains the615

answer to a given question sentence.616

SST-2: Stanford Sentiment Treebank [57] aims to determine if a movie review has positive or negative617

sentiment.618

CoLA: Corpus of Linguistic Acceptability [65] aims to determine whether a given sentence is619

linguistically acceptable or not.620

RTE: Recognizing Textual Entailment [4, 9, 16, 18] aims to predict whether a given premise sentence621

entails a given hypothesis sentence or not.622

MRPC: Microsoft Research Paraphrase Corpus [12] aims to predict whether two sentences are623

semantically equivalent or not.624

B Details of Prompts Used for Different Tasks625

Table 6: Extensions of Table 1 with more details of prompts used to generate class-conditioned texts
for different GLUE tasks. SST-2 and CoLA are single-sequence classification tasks and the rest
are sequence-pair classification tasks. Generation for CoLA does not use prompts but by varying
sampling temperatures. Text generation with CTRL [23] requires starting with control codes, and
we use the ones that correspond to the pretraining corpus where the first sequence is sampled: For
MNLI, RTE and MRPC, the first sequence is sampled from Wikipedia; for QNLI and QQP, the first
sequence is sampled from OpenWebText [17]. xs denotes a sequence randomly sampled from the
pretraining corpus; xg denotes the sequence to be generated by Gθ; . . . denotes skipping at least one
sequence. The prompts used for SST-2 are part of the CTRL [23] codes.

Task Task Type Control Code Label Prompt

SST-2 single-sequence Reviews positive Rating: 5.0 xg

negative Rating: 1.0 xg

CoLA single-sequence Links grammatical xg

not grammatical xg

MNLI sequence-pair Wikipedia
entailment xs. In other words, xg

neutral xs. Furthermore, xg

contradiction There is a rumor that xs. However, the truth is: xg

QNLI sequence-pair Links entailment xs? xg

not entailment xs? . . .xg

RTE sequence-pair Wikipedia entailment xs. In other words, xg

not entailment xs. Furthermore, xg

MRPC sequence-pair Wikipedia equivalent xs. In other words, xg

not equivalent xs. Furthermore, xg

QQP sequence-pair Links equivalent xs? In other words, xg

not equivalent xs? Furthermore, xg

We present more details about the prompts used for different tasks in Table 6 which is an extended626

version of Table 1.627

For SST-2, we fix the beginning of the generated sequence xg to be “The/this film/movie” to make628

sure the generated texts are related to movie reviews.629

For CoLA, we start the generated sequence xg with a random stop word.630
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Table 7: Different prompt groups used in the experiments of Section 5.2. We replace the original
prompt for each label with an alternative one and keep other prompts unchanged when forming a
different prompt group.

Task Label Original Alternative

SST-2 positive Rating: 5.0 xg Rating: 4.0 xg

negative Rating: 1.0 xg Rating: 2.0 xg

MNLI
entailment xs. In other words, xg xs. To put it another way, xg

neutral xs. Furthermore, xg xs. In addition, xg

contradiction There is a rumor that xs. However, the truth is: xg People believe that xs. However, the truth is: xg

QNLI entailment xs? xg Question: xs? Answer: xg

not entailment xs? . . .xg Question: xs? Answer: . . .xg

RTE entailment xs. In other words, xg xs. To put it another way, xg

not entailment xs. Furthermore, xg xs. In addition, xg

MRPC equivalent xs. In other words, xg xs. To put it another way, xg

not equivalent xs. Furthermore, xg xs. In addition, xg

QQP equivalent xs? In other words, xg xs? To put it another way, xg

not equivalent xs? Furthermore, xg xs? In addition, xg

For QNLI and QQP, the first sequence is always a question, and we require the sampled sequence631

xs to end with a question mark and begin with one of the following words: “how”, “what”, “why”,632

“who”, “which”, “where”, “when”, “whom”, “whose”.633

For QNLI, the generated sequence xg for the “entailment” label is the one that immediately follows634

the sampled sequence xs; the generated sequence xg for the “not entailment” label is randomly635

sampled from the paragraph following xg excluding the first sequence that immediately follows xg .636

We also show the different prompt groups used in the experiments of Section 5.2 in Table 7.637

C Hyperparameters and Reproducibility638

Table 8: Hyperparameters for generating training data of
different tasks. τ : Temperature during sampling (τ = 0
means using greedy sampling); α and β: Repetition reward-
ing/penalizing parameters; M : Number of total generated
texts per label. The top-k sampling (if τ > 0) uses k = 10.

Task Label τ α β M

SST-2 positive 0.2 - 1.2 25,000
negative - 1.2 25,000

CoLA grammatical [0.1, 10] - 1.2 10,000
not grammatical - 1.2 10,000

MNLI
entailment

0
0.8 1.1 25,000

neutral 1.3 1.3 25,000
contradiction 1.1 1.1 25,000

QNLI entailment 0 0.9 1.2 25,000
not entailment 0.9 1.2 25,000

RTE entailment 0 0.8 1.1 30,000
not entailment 1.1 1.1 30,000

MRPC equivalent 0 0.8 1.1 30,000
not equivalent 1.1 1.1 30,000

QQP equivalent 0 1.0 1.2 25,000
not equivalent 1.2 1.2 25,000

Hyperparameters for Generating639

Training Data. Table 8 lists the hy-640

perparameters used in the training641

data generation stage. For sequence-642

pair tasks, we use greedy sampling643

for better reproducibility. For labels644

that require generating entailment,645

paraphrase, or equivalent sequence646

pairs, we set α ≤ 1 to encourage647

word overlapping between the sec-648

ond sequence and the first sequence;649

otherwise, we set α = β > 1 to dis-650

courage word repetition.651

To construct a training set consisting652

of N samples per class, we will gen-653

erate M samples per class, and select654

training data based on the score r in655

Eq. (3): For all tasks except CoLA656

and the “neutral” label of MNLI, the657

top-N ones of each class are selected;658

for CoLA, the top-N ones are used659

as the training sample as linguisti-660

cally acceptable sequences, and the661

bottom-N ones are as linguistically662

unacceptable sequences; for the “neu-663

tral” label of MNLI, we find it better664

to randomly select N samples from665
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Table 9: Hyperparameters used for fine-tuning on different tasks (they are kept same for all tasks).
Fine-tuning-related hyperparameters (e.g., learning rate, batch size) follow the default values (when
the validation set is not available) in Appendix A of [13]; regularization-related hyperparameters
follow the default values in label smoothing and temporal ensembling. lr: Learning rate; bs: Batch
size; N |Y|: Total number of selected generated data (i.e., training set size); B: Ensemble prediction
update interval; T : Number of training steps; ϵ: Label smoothing parameter; γ: Temporal ensembling
momentum parameter; δ: Threshold for filtering out noisy data; λmax: Maximum weight (after
ramp-up) of temporal ensembling regularization.

lr bs N |Y| B T ϵ γ δ λmax

1e-5 16 6,000 100 1,125 0.15 0.8 0.8 10

Table 10: Results with different generator/classifier PLMs.

PLMs MNLI-(m/mm) SST-2
Gθ: CTRL, Cϕ: COCO-LM 72.30.5/73.80.5 92.80.6
Gθ: CTRL, Cϕ: RoBERTa 69.00.8/70.60.9 93.31.5

Gθ: GPT-2, Cϕ: COCO-LM 69.51.2/71.31.3 88.21.8
Gθ: GPT-2, Cϕ: RoBERTa 68.30.9/69.70.7 88.60.8

the total M samples instead of using the ranking score, probably because a neutral hypothesis with666

respect to the premise has a wide range of possibilities (i.e., any hypothesis that is not entailed by667

or contradicts with the premise will be neutral), and random selection improves the diversity in668

generated hypotheses of the neutral label.669

Hyperparameters for Fine-Tuning. Table 9 lists the hyperparameters used in the fine-tuning stage.670

We keep them same across all tasks except CoLA which uses δ = 0 because half of the training data671

for CoLA are intentionally made to be of low quality (i.e., as linguistically unacceptable sequences)672

and there is no need to filter them out. We follow [27] to slowly ramp-up λ in Equation (6) during the673

first 10 ensembles: λ(t) = λmax exp(−5(1− t/10)2) where t is the number of prediction ensembles674

performed.675

Computation Environment. All experiments are conducted on NVIDIA GeForce RTX 3090676

GPUs. SuperGen can be run on typical research hardware (e.g., with > 10GB GPU memory). The677

generator PLM Gθ does not need to be trained so a relatively large generator can be used (e.g., a678

1.63B-parameter CTRL model).679

D Using Different PLMs680

The final performance is also relevant to the choice of PLMs as the generator/classifier. Apart681

from the default PLM choice, we report the results of using GPT-2XLarge (1.54B parameters) [47]682

as the generator and RoBERTaLarge (356M parameters) [33] as the classifier in Table 10 with every-683

thing else unchanged. When using GPT-2, we change the prompt used for SST-2 to “The film is684

bad/terrible/awful.” for the negative label and “The film is good/great/excellent.” for the positive685

label, since the original prompts used for SST-2 in Table 1 are a part of the control codes of CTRL and686

cannot be effectively leveraged by GPT-2. Overall, both CTRL and GPT-2 are able to generate quality687

training data for good fine-tuned classifier performance; CTRL consistently yields better results688

than GPT-2 regardless of the choice of the classifier PLM, probably because CTRL is pretrained689

with control codes which provide explicit guidance for generating texts of certain domains and690

attributes. We also observe that the generated text quality is strongly correlated to the generator’s691

model size—using a smaller version of GPT-2 (e.g., with 117M parameters) results in significantly692

less coherent texts and can hardly serve as training data. An interesting future direction is to try larger693

generator PLMs (e.g., GPT-3) which may create training data of better quality.694
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Table 11: Example generated texts for SST-2, MNLI and QQP. Sampled sequences from pretraining
corpus (xs) are italicized; generated sequences (xg) are underlined; prompts (wy) are in bold.

Task Label Generated Text

SST-2 positive Rating: 5.0 The film is a great example of the kind of movie that you can watch over and over.
negative Rating: 1.0 The film was a total waste of time. I would not recommend this movie to anyone.

MNLI

entailment
The construction of the station began in 2016, when the opening date was estimated to mid-2020.
In other words, the station was to open in 2020.

neutral
The construction of the station began in 2016, when the opening date was estimated to mid-2020.
Furthermore, it is expected that a new bus terminal will be built at this station.

contradiction
There is a rumor that The construction of the station began in 2016, when the opening date was estimated to mid-2020.
However, the truth is: The construction started in 2017, and the official opening date was set for March 31, 2018.

QQP equivalent What are the most wear resistant steels? In other words, what are the most durable steels?
not equivalent What are the most wear resistant steels? Furthermore, what is the best way to clean them?

Table 12: Negative example generated texts for MNLI that do not pertain to the desired label. Sampled
sequences from pretraining corpus (xs) are italicized; generated sequences (xg) are underlined;
prompts (wy) are in bold. In example #1, the generated text corresponding to the “entailment”
label actually pertains to the “neutral” label. In example #2, the generated text corresponding to
the “contradiction” label actually pertains to the “neutral” label. In example #3, the generated text
corresponding to the “neutral” label actually pertains to the “contradition” label.

Example Label Generated Text

#1

entailment
Directed by Daniel J. Sullivan, the cast features Kelly AuCoin, Annie Parisse, Lee Tergesen and Alex Wolff.
In other words, the cast features a lot of people who are not in the original Broadway cast.

neutral
Directed by Daniel J. Sullivan, the cast features Kelly AuCoin, Annie Parisse, Lee Tergesen and Alex Wolff.
Furthermore, it was announced that a sequel to “The Last Airbender” will be released in 2019.

contradiction
There is a rumor that Directed by Daniel J. Sullivan, the cast features Kelly AuCoin, Annie Parisse, Lee Tergesen and Alex Wolff.
However, the truth is: The cast includes only two actors from the original Broadway production.

#2

entailment
As a result, minor problems begin to look serious and rare events begin to seem common.
In other words, a minor problem can begin to look serious and rare events seem common.

neutral
As a result, minor problems begin to look serious and rare events begin to seem common.
Furthermore, the number of people who are affected by these changes is increasing.

contradiction
There is a rumor that As a result, minor problems begin to look serious and rare events begin to seem common.
However, the truth is: The only thing that can cause such an effect is a major change in the weather.

#3

entailment
The character was announced on 20 September 2019, but casting wasn’t revealed until 10 December 2019.
In other words, the casting wasn’t revealed until 10 December 2019.

neutral
The character was announced on 20 September 2019, but casting wasn’t revealed until 10 December 2019.
Furthermore, it is unknown whether the role will be played by a male or female actor.

contradiction
There is a rumor that The character was announced on 20 September 2019, but casting wasn’t revealed until 10 December 2019.
However, the truth is: The character was announced on 19 October 2018.

E Case Studies695

We present concrete examples of generated texts guided by prompts of different labels in Table 11.696

The generated sequences are not only coherent, but also pertain to the corresponding labels. For697

easier tasks like SST-2, the generated texts almost always correctly reflect the desired sentiment698

polarity specified by the prompt. For more difficult tasks like MNLI, sometimes the generated texts699

are not of the correct label. Table 12 demonstrates more concrete examples where the generated texts700

may not correctly pertain to the label of the prompt. The existence of such label noise motivates our701

use of the regularization techniques in the fine-tuning stage.702

We believe that larger generator PLMs (e.g., GPT-3 [5]) can bring about better text generation quality703

and improve the accuracy in producing texts that pertain to the desired class. Furthermore, better704

filtering strategies can be developed in the future to select training data with the correct labels.705

F Knowledge Distillation Baseline Details706

We show the concrete prompts used for the knowledge distillation baseline in Tables 13 and 14707

on MNLI and SST-2, respectively. We use the best prompt (prompt # 1 in both tables) out of the708

three according to the zero-shot test set prediction accuracy for generating soft labels to train the709

classification model (i.e., knowledge distillation). The classifier is trained with Kullback–Leibler710
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Table 13: Different prompts used on MNLI for CTRL zero-shot prompting and knowledge distillation
baselines. x1 and x2 denote the first and second input sequence, respectively.

Prompt Template Label name

# 1
Sentence 1: x1 Sentence 2: x2 entailment: Yes
Does Sentence 1 entail Sentence 2? neutral: Maybe
The answer is: contradiction: No

# 2
Premise: x1 Hypothesis: x2 entailment: Yes
Does the premise entail the hypothesis? neutral: Maybe
Options: Yes. No. Maybe. The answer is: contradiction: No

# 3
Premise: x1 Hypothesis: x2 entailment: Entailment
What is the relation between the premise and the hypothesis? neutral: Neutral
Options: Entailment. Neutral. Contradiction. The answer is: contradiction: Contradiction

Table 14: Different prompts used on SST-2 for CTRL zero-shot prompting and knowledge distillation
baselines. x denotes the input sequence.

Prompt Template Label name

# 1 x This is positive: good; negative: bad

# 2 x It was positive: good; negative: bad

# 3 Review: x Sentiment: positive: Positive; negative: Negative

(KL) divergence as the objective to approximate the soft labels generated by CTRL on the entire711

training set.712
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