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Abstract

Diffusion models have recently shown remarkable progress, demonstrating state-of-1

the-art image generation qualities. Like the other high-fidelity generative models,2

diffusion models require a large amount of data and computing time for stable3

training, which hinders the application of diffusion models for limited data settings.4

To overcome this issue, one can employ a pre-trained diffusion model built on a5

large-scale dataset and fine-tune it on a target dataset. Unfortunately, as we show6

empirically, this easily results in overfitting. In this paper, we propose an efficient7

fine-tuning algorithm for diffusion models that can efficiently and robustly train8

on limited data settings. We first show that fine-tuning only the small subset of9

the pre-trained parameters can efficiently learn the target dataset with much less10

overfitting. Then we further introduce a lightweight adapter module that can be11

attached to the pre-trained model with minimal overhead and show that fine-tuning12

with our adapter module significantly improves the image generation quality. We13

demonstrate the effectiveness of our method on various real-world image datasets.14

1 Introduction15

Diffusion models [35, 13] have become a mainstream approach in image synthesis, quickly taking16

over the crown of Generative Adversarial Networks (GANs) [10] in the literature. Compared to17

Variational Autoencoder (VAE) variants [20, 41, 5] or autoregressive models [42, 8] which are trained18

to maximize likelihoods instead of directly optimizing image quality, diffusion models can be trained19

to generate more realistic images with less number of parameters [13, 26]. Similar to the other20

generative models, diffusion models require tons of data and training times to produce diverse images21

of high quality. Even a simple diffusion model would require several GPU days to train on CIFAR-1022

or ImageNet benchmark. This computational cost acts as a bottleneck, limiting the scalability of23

diffusion models to applications where data are scarce. To resolve this issue common in high-fidelity24

generative models, several approaches have been proposed. We offer a detailed review of recent25

works in Appendix B. However, for diffusion models, except for fine-tuning methods for conditional26

generation [34, 9], there has been little work on fine-tuning pre-trained unconditional diffusion models27

for target domain with limited data.28

In this paper, we propose a novel fine-tuning algorithm for unconditional diffusion models under29

limited data settings. This is a challenging task because it is prone to overfitting due to small data30

and any regularization technique depending on conditional inputs is not available unlike conditional31

settings [31]. A nav̈e fine-tuning method of updating all weights easily results in overfitting, so32

as done in existing transfer learning studies [44, 40, 24], a thorough study on which weights to33

freeze and tune is required. Through empirical analysis, we first identify that the attention modules34

common in the diffusion models are crucial for quick adaptation to the target domain, and fine-tuning35

only the attention modules could significantly alleviate the overfitting. This is somewhat surprising36

considering that the attention modules take only a small fraction (about 10%) of parameters in the37

entire network for the diffusion model. Inspired by the adapter approach for language models [15],38
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we further design a novel adapter module that can be attached to the pre-trained model and fine-tuned39

with negligible additional parameters. Unlike the adapter module commonly applied for language40

models, due to the nature of the diffusion models, our adapter module is time-aware, and we find41

this time awareness is crucial for successful fine-tuning. Especially, we find that the adapter module42

plays an important role under a large domain gap between source pre-training and target fine-tuning43

data. Combining the idea of fine-tuning only the attention modules in the pre-trained model and44

the fine-tuning with the adapter module, we present Adapter-Augmented Attention Fine-tuning45

(A3FT) which efficiently learns on target tasks with limited data, converging faster with much less46

overfitting than existing fine-tuning. We empirically demonstrate the effectiveness of our method on47

real-world image synthesis tasks.48

2 Methods49
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Figure 1: ImageNet pre-trained diffusion model fine-tuned with (left) 1000 CelebA images and
(right) 400 Pokemon images. cFID is computed between the whole training dataset and 10K/5K
samples from CelebA/Pokemon dataset, respectively. While naïve fine-tuning exhibit overfitting
behavior, our methods, attention-block fine-tuning and A3FT, successfully mitigate overfitting. A3FT
further achieves the best cFID.

2.1 Naïve fine-tuning50

Naïvely fine-tuning entire parameters of a pre-trained model with limited target data would be a51

straightforward approach, but it is well-known that this is prone to overfitting [45, 25]. As we52

empirically validate this for diffusion models in Fig. 1, the naïve fine-tuning causes overfitting in53

the early stage of training. In Fig. 3, we further verify that the quality and diversity of the images54

generated from the overfitted models are seriously damaged, and the models tend to memorize few55

images in target training data.56

2.2 Attention block fine-tuning57

Most of the modern diffusion models employ U-Net [30] as a backbone architecture, which consists58

of a stack of residual and attention blocks intertwined with skip connections. At a high level, a U-Net59

is divided into an encoder and a decoder, where the encoder gradually downsamples images into60

multi-scale features, and the decoder upsamples them back to the original sizes. Instead of fine-tuning61

all the parameters, we fine-tune attention blocks while freezing residual blocks. As shown in Fig. 1,62

the attention block fine-tuning works surprisingly well, significantly outperforming naïve fine-tuning.63

Especially, attention block fine-tuning is not only more stabilized, but also achieves better image64

quality in terms of cFID score [28]. Attention block tuning is more memory-efficient since it only65

takes 10.3% of the total parameters.66
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2.3 Time-aware adapter67

While the attention block fine-tuning works well, as demonstrated by the adapter-based methods for68

language models [15, 16], it is often beneficial to attach additional modules to the pre-trained model69

for better adaptation to target data. Inspired by this, we develop a novel adapter module tailored for70

diffusion models. Importantly, our adapter is time-aware, since the networks being used for diffusion71

models should produce different outputs with respect to different time steps. As depicted in Fig. 2,72

the time-aware adapter is placed between the attention block and its successive linear layer so as73

to modulate the intermediate feature vector given the target data. Compared to the conventional74

adapters, our adapter additionally takes time embedding vector tembed ∈ Rdt 1 as an input along with75

feature tensor zin ∈ Rcz×hz×wz , hence the name time-aware. A time-aware adapter is composed of76

three submodules; a time-fusion module, a cross-attention module, and a time-scaling module.77

Figure 2: Schematic for the time-aware adapter.
Time-aware adapter is designed to fit inside an
attention block. We introduce three adapter sub-
modules: a time-fusion module, a cross-attention
module, and a time-scaling module. Time-aware
adapters take up to 5.4M parameters (≈ 4.5% of
the pre-trained diffusion model).

Time-fusion module Time-fusion networks78

combines the time-embedding vector tembed and79

an input feature vector zin into another fea-80

ture vector through feed-forward layers, which81

is then layer-normalized [1]. Refer to Ap-82

pendix C.4 for details. The resulting feature83

vector zquery ∈ Rcz×hz×wz is fed into the cross-84

attention module as a query. That is,85

zquery = LN(FF(zin, tembed)), (1)86

where LN(·) denotes layer normalization and87

FF(·) denotes feed-forward layers. Time-fusion88

modules use approximately 123K parameters89

(≈ 0.1% of the pre-trained model).90

Cross-attention module Cross-attention mod-91

ule takes zquery as a query, and zin as both key92

and value vectors with the same dimension.93

We then apply channel-wise cross attention fol-94

lowed by layer normalization to produce an out-95

put tensor zout ∈ Rcz×hz×wz .96

zout = LN(CrossAttn(zquery, zin, zin)). (2)97

Cross-attention modules use approximately98

1.6M parameters (≈ 1.3% of the pre-trained99

model).100

Time-scaling module Motivated by Hong et al. [14], the time-scaling module computes the mixture101

factor αt ∈ [0, 1]cz×hz×wz that regulates the information generated by the time-aware adapter. Here,102

the mixture factor αt is also time-aware so that the effect of the adapter output can vary along time103

steps. The final output of the time-aware adapter is computed as104

hout = FF((1− αt)⊙ zin + αt ⊙ zout), (3)105

where ⊙ denotes the elementwise multiplication. Time-scaling modules use approximately 3.8M106

parameters (≈ 3.1% of the pre-trained model).107

2.4 Adapter-augmented attention fine-tuning108

Combining the attention block fine-tuning and time-aware adapter, we present Adapter-Augmented109

Attention Fine-tuning (A3FT) which fine-tunes attention blocks along with the time-aware adapter110

attached to the pre-trained model. We will demonstrate through experiments in Section 3, the time-111

aware adapter can seamlessly be trained with the attention blocks, leading to a significant performance112

gain across datasets.113

1For the time embedding vector, rather than introducing a new embedding network, we just reuse the time
embedding vector of the pre-trained model.
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3 Experiments114

Our method is tested on two datasets: CelebA [23] and Pokemon (pokemon.com). See Appendix C115

for further experimental details. Table 1 summarizes our main results. We validate that naïve fine-116

tuning easily overfits to small-size training datasets yielding high cFID and KID. On the other hand,117

attention-block fine-tuning largely outperforms naïve fine-tuning on both datasets. Further, with the118

help of time-aware adapter, A3FT achieves the lowest cFID and KID score. In Fig. 3, we notice the119

distinct difference in sample quality. While naïvely fine-tuned model produces relatively simple120

images, attention-block fine-tuning and A3FT yield both diverse and high-quality images. We provide121

the sampled images on CelebA in Appendix D.122

Table 1: Sample quality evaluation on CelebA and Pokemon datasets. We report metrics computed
after fine-tuning for 500 and 1000 epochs on CelebA and Pokemon datasets, respectively. A3FT
surpasses naïve and attention-block fine-tuning in terms of cFID and KID.

Methods ImageNet → CelebA ImageNet → Pokemon

cFID KID cFID KID

Naïve fine-tuning 15.746 0.010 57.505 0.025
Attention-block fine-tuning 7.922 0.005 39.835 0.013

A3FT 6.843 0.004 38.398 0.012

Figure 3: Selected samples after fine-tuning 1000 epochs on Pokemon dataset: naïve fine-tuning
(left; cFID 57.505), attention-block fine-tuning (middle; cFID 39.835), A3FT (right; cFID 38.398).

4 Conclusion123

In this paper, we empirically showed that naïvely fine-tuning diffusion models incurs overfitting in124

the early stage of training. As a solution, we discovered that fine-tuning only attention blocks can be125

a simple yet solid fine-tuning technique. To enhance the fine-tuning performance, we introduced the126

time-aware adapter that integrates a time-embedding vector so as to fit diffusion models. We further127

proposed a novel fine-tuning method, Adapter-Augmented Attention Fine-tuning, which fine-tunes128

attention blocks in conjunction with the time-aware adapter. Experiments validated that our approach129

enables faster and more stable fine-tuning with limited data as well as retaining high-quality samples.130
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A Background250

We provide a brief summary of diffusion models. We follow the standard formulation and nota-251

tions [35, 37, 13].252

A diffusion model is a class of latent variable models with a Markov chain of latent variables253

describing the generative process. Given a data x0 ∼ pdata(x) := q(x), a forward process injects a254

series of Markovian Gaussian noises with a sequence of controlled variances {βt}Tt=1 over T steps,255

until the perturbed data xT is nearly isotropic Gaussian distributed:256

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) for t = 1, . . . , T − 1, q(xT |x0) ≈ N (xT ;0, I). (4)257

Reversing the forward process, a backward diffusion process will bring an isotropic Gaussian noise258

xT ∼ N (0, I) to a sample from the data distribution x0 ∼ q(x0). Since the backward process259

q(xt|xt−1) is intractable, we introduce an approximate backward process defined with the model260

pθ(xt|xt−1) parameterized by θ:261

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) for t = 1, . . . , T. (5)262

Then we can optimize the parameter θ by maximizing the variational lower-bound, or minimizing the263

negative of the variational lower bound.264

Lvlb := Eq(x0:T )

[
− log

pθ(x0:T )

q(x1:T |x0)

]
≥ Eq(x0) [− log pθ(x0)] . (6)265

By Bayes’ rule and Markov property, one can easily derive that266

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI) (7)267

µ̃t(xt,x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, β̃t :=

1− ᾱt−1

1− ᾱt
βt, ᾱt :=

t∏
i=1

(1− βi), (8)268

and the variational objective (6) boils down to269

Lvlb ≡ Et,x0

[
1

2||Σθ(xt, t)||2
||µ̃t(xt,x0)− µθ(xt, t)||2

]
, (9)270

where ≡ denotes the equality up to a constant. Employing reparameterization for Gaussians [20], Ho271

et al. [13] proposes to further simplify the objective as272

Lsimple ≡ Et,x0,ϵt

[
||ϵt − ϵθ(xt, t)||2

]
, (10)273

where we parameterize the noise ϵθ instead of the mean µθ and the scaling factors ∥Σθ(xt, t)∥2 are274

discarded to have uniform loss weights for all time steps.2275

While Ho et al. [13] demonstrated that using fixed variance schedules for the model distributions276

empirically working well, that is, setting Σθ(xt, t) = σ2
t I, Nichol and Dhariwal [26] later showed277

that one can improve upon fixed variance with the variances parameterized by weighting vector v,278

Σθ(xt, t) = exp(v log βt + (1− v) log β̃t). Since the simplified objective (10) dropping the scaling279

factors does not contain the variance terms, Nichol and Dhariwal [26] proposed to optimize a hybrid280

objective defined as281

Lhybrid = Lsimple + λLvlb, (11)282

for some λ > 0, together with cosine annealing variance scheduling which is specifically tailored for283

the low-resolution images (e.g., 64×64 or 32×32 images). We follow the training scheme and model284

architecture described in Nichol and Dhariwal [26] throughout our experiments.285

2Of note, not only straight-forward, the simple loss resembles the score matching loss in noise-conditioned
score networks [37]. Forward and reverse processes each can be mapped to noise conditional score matching
and Langevin dynamics. Such connection laid the groundwork for score-based continuous diffusion models [6,
38, 12]. The uniform weighting is reported to enhance image quality while sacrificing the log-likelihood values
of generated images [13].
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B Related works286

Generative models for image synthesis Generative models for image synthesis are largely cate-287

gorized into likelihood-based approaches [20, 41, 5, 42, 8] and GANs [10, 18, 3]. Diffusion models288

have recently gained popularity due to their ability to generate high-quality images [36, 13, 6]. Most289

modern generative models use deep neural networks requiring a large amount of training data, so290

they usually suffer from overfitting when trained with limited data.291

Image synthesis with limited data Multiple works have been proposed to improve the performance292

of image synthesis when the number of data is limited. For GAN-based methods, Karras et al.293

[17], Zhao et al. [47] propose data augmentation techniques to prevent discriminator overfitting.294

Liu et al. [22] propose a lightweight network architecture suitable for small datasets. Meanwhile,295

leveraging pre-trained models on larger data and fine-tuning them on smaller data sets is becoming as296

popular as in other fields. Mo et al. [24] show that freezing discriminators in GAN fine-tuning gives297

stable results. Ojha et al. [27] constrain the adapted model to share latent space with the source model.298

Zhao et al. [46] shows that the low-level filters of pre-trained GANs are helpful in learning limited299

training data even when they are perceptually distant from the target data. Sauer et al. [33], Kumari300

et al. [21] used pre-trained models as feature extractors for a discriminator and show the effectiveness301

of faster and more stable convergence. However, fine-tuning with limited data for unconditional302

diffusion models is still less explored yet.303

Fine-tuning for diffusion models Recently, a high-performance pre-trained diffusion model has304

been published [29, 32]. As of now, few pioneering works investigate fine-tuning diffusion models;305

Giannone et al. [9] proposing few-shot learning diffusion models that can quickly learn conditional306

generative model for a set of images, and Ruiz et al. [31] proposing a prompt-like approach for text-307

to-image diffusion models. Wang et al. [43] propose two-stage finetuning scheme for image-to-image308

translation. However, these works focus on conditional generation and fine-tune the pre-trained309

model without network modification. To the best of our knowledge, our method is the first one to310

study module-level effects for fine-tuning an unconditional diffusion model with limited data.311

Adapter-based method for transfer learning In a natural language processing task, Houlsby et al.312

[15] proposed a memory-efficient method for transformers that only updates adapter modules while313

freezing other weights during fine-tuning. The adapter-based method requires only a small number of314

additional parameters, so it is efficient when adapting to a variety of tasks. Karimi Mahabadi et al.315

[16] developed a more compact and faster adapter module based on matrix factorization and weight316

sharing. Chen et al. [4], Sung et al. [40] adopt the adapter method for the vision task and showed317

effectiveness on reducing memory and training time.318
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C Experimental Details319

C.1 Configurations320

Our algorithm is implemented in Python 3.9.5 and Pytorch 1.10.2. All experiments are performed on321

four NVIDIA Tesla V100s.322

C.2 Setting323

We present detailed experimental settings for experiment results reproduction. For all experiments,324

we use the ImageNet 64× 64 pre-trained model (≈ 120M parameters) in Nichol and Dhariwal [26].325

Our model consists of a total of 15 attention blocks and 30 residual blocks. Input images go under326

four downsampling steps, each with [2C, 2C, 2C, 4C] channels where C = 128, and then upsampled327

via four symmetric steps. The pre-trained model employs multi-head attention blocks with 4 heads.328

We employ Adam [19] for all experiments, with a learning rate of 2 · 10−4 and epsilon of 1 · 10−8.329

We set the batch size to 128 and 5 for fine-tuning and sampling, respectively. Opposed to Nichol330

and Dhariwal [26], we do not use neither dropout [39] nor exponential moving average over model331

parameters.332

To fine-tune diffusion models, we use the hybrid loss in (11) with cosine beta scheduling such that333

(β1, β2) = (1 · 10−4, 2 · 10−2). We set diffusion timesteps as T = 1000.334

We fine-tune the pre-trained model with 1000 CelebA images and 400 Pokemon images. Evaluation335

metrics are computed between the whole training dataset and 10K/5K samples from CelebA/Pokemon336

dataset.337

C.3 Metrics338

Since quantifying image generation performance remains a challenge, metrics must be carefully339

chosen. We use two different evaluation metrics: (i) clean Fréchet Inception Distance (cFID) [28] and340

(ii) Kernel Inception Distance (KID) [2]. While FID [11] is a popular choice for capturing both image341

fidelity and diversity, Parmar et al. [28] points out that FID is inconsistent with image resizing and342

quantization. To resolve such an issue, we use cFID by default. Due to our relatively small dataset343

size, we also implement KID which is proven to be unbiased and asymptotically normal. Metrics are344

computed between the whole training dataset and generated images.345

C.4 Time-aware adapter346

In this section, we review a detailed structure of the time-aware adapter. In conventional adapter-based347

methods [15, 16], independent adapters are employed across all blocks. In Houlsby et al. [15] and348

Karimi Mahabadi et al. [16], every single transformer layer needs two separate adapters so that the349

number of adapters needed grows as to the number of layers. We alleviate such an issue using a350

weight-sharing technique. We let the same adapter submodule fit into several attention blocks.351

We build two time-fusion modules which integrate into attention blocks with 384 and 512 channels.352

Time-fusion module first match the dimension of two inputs, tembed and zin. The time-embedding353

vector tembed goes through two linear layers to match the dimension of zin, and we add such two354

vectors before passing on to the final linear layer. Similarly, we build only two cross-attention355

modules which are attached to attention blocks with 384 and 512 channels. We implement vanilla356

single-head attention operation. Importantly, we construct separate time-scaling modules for all357

attention blocks analogous to conventional NLP adapters. This is because we want to regulate the358

information from time-aware adapter in a block-wise manner. Time-scaling module is merely an359

MLP with two fully connected layers with SiLU activation [7].360
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D Additional results361

Figure 4: Selected samples after fine-tuning for 1500 epochs on CelebA dataset: (top) naïve fine-
tuning, (middle) attention-block fine-tuning, (bottom) A3FT.
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