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Abstract

Most existing policy learning solutions require the learning agents to receive1

high-quality supervision signals, e.g., rewards in reinforcement learning (RL) or2

high-quality expert demonstrations in behavioral cloning (BC). These quality su-3

pervisions are either infeasible or prohibitively expensive to obtain in practice. We4

aim for a unified framework that leverages the available cheap weak supervisions5

to perform policy learning efficiently. To handle this problem, we treat the “weak6

supervision” as imperfect information coming from a peer agent, and evaluate the7

learning agent’s policy based on a “correlated agreement” with the peer agent’s8

policy (instead of simple agreements). Our approach explicitly punishes a pol-9

icy for overfitting to the weak supervision. In addition to theoretical guarantees,10

extensive evaluations on tasks including RL with noisy reward, BC with weak11

demonstrations, and standard policy co-training (RL + BC) show that our method12

leads to substantial performance improvements, especially when the complexity or13

the noise of the learning environments is high.14

1 Introduction15

Recent breakthrough in policy learning (PL) opens up the possibility to apply these techniques in real-16

world applications such as robotics [1, 2] and self-driving [3, 4]. Nonetheless, most existing works17

require agents to receive high-quality supervision signals, e.g., reward or expert demonstrations,18

which are either infeasible or prohibitively expensive to obtain in practice. The reward may be19

collected through faulty sensors thus not credible [5, 6, 7]. The demonstrations by an expert in20

behavioral cloning (BC) are often imperfect due to limited resources and environment noise [8, 9, 10].21

Learning from weak supervision signals such as noisy rewards r̃ (noisy versions of r) [7] or low-22

quality demonstrations eDE (noisy versions of DE) produced by untrustworthy expert ⇡̃E [9] is one23

of the outstanding challenges that prevents a wider application of PL. Although some recent works24

have explored these topics separately in their specific domains [11, 7, 12], there lacks unified solution25

for robust policy learning in this imperfect situation. We first formulate a meta-framework to study26

RL/BC with weak supervision signals and call it weakly supervised policy learning. Then as a27

response, we propose a theoretically principled solution concept, PeerPL, to perform efficient policy28

learning using the available weak supervision.29

Our solution is inspired by the literature of information elicitation without verification [13, 14, 15],30

where the problem concerns evaluating self-reported information without ground truth verification.31

Instead, only a group of other agents’ reports (for the same task, but none of them is assumed32

to be perfect) are available to serve the validation. We adopt a similar idea and treat the “weak33

supervision” as information coming from an imperfect peer agent, and evaluate the learning agent’s34

policy based on a “correlated agreement” (CA) with the weak supervision signals. Compared to35

standard reward/loss functions that encourage simple agreements with the supervision, our approach36

punishes “over-agreement" to avoid overfitting to the weak supervision, which offers us a family of37

solutions that do not require prior knowledge of the weakness of the supervision.38
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We demonstrate how the proposed PeerPL framework adapts in challenging tasks including RL with39

noisy rewards and BC from weak demonstrations. We provide intensive analysis of the convergence40

behavior and the sample complexity for our solutions. These results jointly demonstrate that our41

approach enables agents to learn the optimal policy efficiently using only weak supervision. Experi-42

ment results show strong evidence that PeerPL brings significant improvements over state-of-the-art43

solutions, especially when the complexity or the noise of the learning environments is high.44

To summarize, the contributions in the paper are mainly three-folds: (1) We provide a unified45

formulation of the weakly supervised policy learning problems; (2) We propose PeerPL, a new way46

to perform policy evaluation for RL/BC tasks; (3) PeerPL is theoretically guaranteed to recover47

the optimal policy, as if the supervision are of high-quality and clean. Competitive empirical48

performances are observed in several policy learning tasks.49

1.1 Related Work50

Learning with Noisy Supervision Learning from noisy supervision is a widely explored topic.51

The seminal work [16] first proposed an unbiased surrogate loss function to recover the true loss52

from the noisy label distribution, given the knowledge of the noise rates of labels. Follow-up works53

offered ways to estimate the noise rates [17, 18, 19, 20, 21, 22]. A recent work [7] adapts this idea54

to the RL setting and proposes a statistics-based estimation algorithm for the noise rate in observed55

rewards. Nonetheless, the estimation of noise rates is highly non-trivial and in-efficient, especially56

when the state-action space is huge. Further, as in a sequential process, the error in the estimation can57

accumulate and amplify when deploying an RL algorithm. In contrast, our solution does not require a58

priori specification of the noise rates, therefore offloading the burden of estimation.59

Behavioral Cloning (BC) Standard BC [23, 24] tackles the sequential decision-making problem60

by imitating the expert actions using supervised learning. Specifically, it aims to minimize the61

one-step deviation error over the expert trajectory without reasoning the sequential consequences of62

actions. Therefore, the agent suffers from compounding errors when there is a mismatch between63

demonstrations and real states encountered [24, 25]. Recent works introduce data augmentations [26]64

and value-based regularization [27] or inverse dynamics models [28, 29] to encourage learning65

long-horizon behaviors. While being simple and straightforward, BC has been widely investigated66

in a range of application domains [30, 31] and often yields competitive performance [32, 27]. Our67

framework is complementary to the current BC literature by introducing a learning strategy from68

weak demonstrations (e.g., noisy or from a poorly-trained agent) and provides theoretical guarantees69

on how to retrieve clean policy under mild assumptions [33].70

Correlated Agreement Information elicitation mechanisms aim to elicit information from self-71

interested agents without ground-truth verification [13, 14, 15]. The only source of information to72

serve as verification comes from the agents’ unverified and imperfect reports. Particularly, in [14, 15],73

a correlated agreement (CA) type of mechanism is proposed. CA evaluates the correlations between74

agents’ reports. But in addition to encouraging a certain agreement between agents’ reports, CA75

also punishes over-agreement when two agents always report identically. This property helps reduce76

the effect of noisy reports by discouraging overfitting. Recently, [34] adapts a similar idea to the77

supervised learning setting. We consider a more challenging weakly supervised policy learning task78

and study the convergence rates in sequential decision-making problems.79

2 Policy Learning from Weak Supervision80

We begin by introducing a general framework to unify the problem of performing PL using weak81

supervision. Then we provide instantiations of the proposed weakly supervised formulation with two82

different applications: (1) RL with noisy reward and (2) behavioral cloning (BC) using weak expert83

demonstrations.84

2.1 Preliminary of Policy Learning85

The goal of policy learning (PL) is to learn a policy ⇡ that the agent could follow to perform a series86

of actions in a stateful environment. For RL, the interactive environment is characterized as an MDP87

M = hS,A,R,P, �i. At each time t, the agent in state st 2 S takes an action at 2 A by following88

the policy ⇡ : S⇥A ! R, and potentially receives a reward r(st, at) 2 R. Then the agent transfers to89
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the next state st+1 according to a transition probability function P . We denote the generated trajectory90

⌧ = {(st, at, rt)}Tt=0, where T is a finite or infinite horizon. RL algorithms aim to maximize the91

expected reward over the trajectory ⌧ induced by the policy: J(⇡) = E(st,at,rt)⇠⌧ [
PT

t=0 �
t
rt], where92

� 2 (0, 1] is the discount factor.93

Another popular policy learning method is behavioral cloning (BC). The goal of BC is to mimic the94

expert policy ⇡E through a set of demonstrations DE = {(si, ai)}Ni=1 drawn from a distribution DE95

(generated according to ⇡E), where (si, ai) is the sampled state-action pair from the expert trajectory.96

Typically, training a policy with standard BC corresponds to maximizing the following log-likelihood:97

J(⇡) = E(s,a)⇠DE
[log ⇡(a|s)].98

In both RL and BC, the learning agent receives “supervision” through either the reward r by99

interacting with environments or the expert policy ⇡E as observable demonstrations. Consider a100

particular policy class ⇧, the optimal policy is then defined as ⇡⇤ = argmax⇡2⇧ J(⇡): ⇡⇤ obtains101

the maximum expected reward over the horizon T in RL and ⇡
⇤ corresponds to the clean expert102

policy ⇡E in BC. In practice, one can also combine both RL and BC approaches to take advantage of103

both worlds [35, 36, 11, 33]. Specifically, a recent hybrid framework called policy co-training [33]104

will be considered in this paper.105

2.2 A Meta Framework for Policy Learning with Weak Supervision106

With full supervision, both RL and BC can converge to the optimal policy ⇡
⇤. However, when only107

weak supervision is available, with an over-parameterized model such as a deep neural network, the108

learning agent will easily memorize the weak supervision and learn a biased policy [37]. In our meta109

framework, instead of converging to any biased policy, we focus on learning the optimal policy ⇡
⇤110

with only a weak supervision sequence denoted as {(si, ai), eYi}
N
i=1. The weak supervision signal eY111

could be the reward r̃ for RL or the action ã performed by an expert policy ⇡̃E for BC, which are112

noisy versions of the corresponding high-quality supervision signals. See more details below.113

RL with Noisy Reward Consider a finite MDP fM = hS,A,R, F,P, �i with noisy reward chan-114

nels [7], where R : S ⇥A ! R, and the noisy reward r̃ is generated following a certain function115

F : R ! eR. Denote the trajectory a policy ⇡✓ generates via interacting with fM as ⌧̃✓. Assume the116

reward is discrete and has |R| levels. The noisy reward can be characterized via a matrix CRL
|R|⇥|R|,117

where each entry cj,k indicates the flipping probability for generating a possibly different outcome:118

c
RL
j,k = P (r̃t = Rk|rt = Rj). We call r and r̃ the true reward and noisy reward respectively.119

BC with Weak Demonstration Instead of observing the true expert demonstration generated120

according to ⇡E , denote the available weak demonstrations by {(si, ãi)}Ni=1, where ãi ⇠ ⇡̃E(·|si)121

is the noisy action and each state-action pair (si, ãi) is drawn from distribution eDE . In particular,122

we assume the noisy action ãi is independent of the state s given the deterministic expert action123

⇡E(s), i.e., P(ãi|⇡E(si)) = P(ãi|si,⇡E(si)). Similar to RL, we assume the noisy actions can be124

characterized by a confusion matrix CBC
|A|⇥|A|, where each entry cj,k indicates the flipping probability125

for taking a sub-optimal action that differs from ⇡E(s): cBC
j,k = P(⇡̃E(s) = Ak|⇡E(s) = Aj). We126

aim to recover ⇡⇤ as if we were able to access the quality expert demonstration ⇡E instead of ⇡̃E .127

Knowledge of C We emphasize that our method makes PL robust to weak supervision automatically,128

which is free of any knowledge characterizing the signal weakness, i.e., CRL
|R|⇥|R| nor CBC

|A|⇥|A|.129

Comparing with methods requiring knowledge of the confusion matrices [16, 7], we get rid of the130

accumulated error of an imperfect confusion matrix and make it easier to implement.131

Evaluation Function We have an evaluation function Eva⇡((si, ai), eYi) which evaluates a taken132

policy at state (si, ai) using the weak supervision eYi. In the RL setting, this Eva⇡ is the loss for133

different RL algorithms, which is a function of the noisy reward r̃ received at (si, ai). While for the134

BC setting, this Eva⇡ is the loss used to evaluate the action taken by the agent given the action taken135

by the expert. Furthermore, we let J (⇡) denote the function that evaluates policy ⇡ under a set of state136

action pairs with weak supervision signals {(si, ai), eYi}
N
i=1, i.e., J(⇡) = E(s,a)⇠⌧ [Eva⇡((s, a), Ỹ )].137

The above unified notations are only for better delivery of our framework and we still treat PL as a138

sequential decision problem.139
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Figure 1: Illustration of weakly supervised policy learning and our PeerPL solution with corre-
lated agreement (CA). We use Ỹ to denote a weak supervision, be it a noisy reward, or a noisy
demonstration. Eva stands for an evaluation function. “Peer Agent” corresponds to weak supervision.

3 PeerPL: Weakly Supervised PL via Correlated Agreement140

To deal with weak supervision in PL, we propose a unified and theoretically principled framework141

PeerPL. We treat the weak supervision as information coming from a “peer agent”, and then evaluate142

the policy using a certain type of “correlated agreement” function between the learning policy and143

the peer agent’s information.144

3.1 Overview of the Idea: Correlated Agreement with Weak supervision145

We first present the general idea of our PeerPL framework using a concept named “correlated146

agreement” (CA). For each weak supervision ((si, ai), eYi), we randomly (with replacement) sample147

two other instances indexed by j and k. Then we take the state-action pair (sj , aj) of sample j and148

the supervision signal eYk of sample k, and evaluate ((si, ai), eYi) according to the following rule:149

CA with Weak Supervision: Eva⇡

�
(si, ai), eYi

�
� Eva⇡

�
(sj , aj), eYk

�
.

This operation is illustrated in Figure 1. We further show intuitions and a toy example below.150

Intuition The first term above encourages an “agreement” with the weak supervision (that a policy151

agrees with the corresponding supervision), while the second term punishes a “blind” and “over”152

agreement that happens when the agent’s policy always matches with the weak supervision even153

on randomly paired traces (noise). The randomly paired instances j, k help us achieve this check.154

Note our mechanism does not require the knowledge of CRL
|R|⇥|R| nor CBC

|A|⇥|A|, and offers a prior-155

knowledge free way to learn effectively with weak supervision.156

Toy Example Consider a toy BC setting where the policy fully memorizes the weak supervision157

a
0
1 = a

0
2 = a

0
3 = 1, a04 = 0 and outputs a sequence of actions a1 = a2 = a3 = 1, a4 = 0 at158

the same sequence of states. Let Eva⇡((si, ai), a0i) = 1 if the policy agrees with the demonstra-159

tion, otherwise Eva⇡((si, ai), a0i) = 0. Without CA: We have E[Eva⇡((si, ai), a0i)] = 1 for agree-160

ing with this noisy/imperfect/low-quality supervision. With CA: We have E[Eva⇡((si, ai), a0i) �161

Eva⇡((sj , aj), a0k)] = 1 � (0.752 + 0.252) = 0.375, where 0.752 + 0.252 is the probability of162

randomly paired aj and a
0
k matching each other. The above example shows that a full agreement with163

the weak supervision will instead be punished!164

In what follows, we consolidate our implementations within each of the settings considered and165

provide theoretical guarantees under weak supervision.166

3.2 PeerRL: Peer Reinforcement Learning167

We propose the following objective function to punish the over-agreement based on CA:168

J
RL(⇡✓) = E

h
EvaRL

⇡

�
(si, ai), r̃i

�i
� ⇠ · E

h
EvaRL

⇡

�
(sj , aj), r̃k

�i
, (1)

where EvaRL
⇡

�
(s, a), r̃

�
= �`

�
⇡✓, (s, a, r̃)

�
. (2)

In (1), the first expectation is taken over (si, ai, r̃i) ⇠ ⌧̃✓ and second one is taken over (sj , aj , r̃j) ⇠169

⌧̃✓, (sk, ak, r̃k) ⇠ ⌧̃✓, where ⌧̃ is the trajectory specified by the noisy reward function r̃. Recall j, k170
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denote two randomly and independently sampled instances. Loss function ` depends on the employed171

RL algorithms, e.g., temporal difference error [38, 39] or the policy gradient loss [40]. The learning172

sequence is encoded in ⇡. The objective J
RL(⇡) represents the accumulated reward with agreement173

check. Parameter ⇠ � 0 balances the penalty for blind agreements induced by CA.174

Peer RL In what follows, we consider the Q-Learning [41] as the underlying learning algorithm175

where `(⇡✓, (s, a, r̃)) = �r̃ and demonstrate that the CA mechanism provides strong guarantees for176

Q-Learning with only observing the noisy reward. For clarity, we define peer RL reward:177

Peer RL Reward: r̃peer(s, a) = r̃(s, a)� ⇠ · r̃
0
,

where r̃0
⇡sample
⇠ {r̃(s, a)|s 2 S, a 2 A} is a reward sampled over all state-action pairs according to a178

fixed policy ⇡sample. Note the sampling policy ⇡sample is independent of ⇡ and the choice of ⇡sample179

does not affect our theoretical results. We adopt a random sampling strategy in practice. Parameter180

⇠ � 0 balances the noisy reward and the punishment for blind agreement (with r̃
0). We set ⇠ = 1181

(for binary case) in the following analysis and treat each (s, a) equally when sampling the r
0. In182

experiments, we find r̃peer is not sensitive to the choice of ⇠ and keep ⇠ constant for each run.183

Robustness to Noisy Rewards Now we show peer reward r̃peer offers us an affine transformation184

of the true reward in expectation, which is the key to guaranteeing the convergence of our Peer RL185

algorithm to converge to ⇡
⇤. For clarity, consider the binary reward setting (r+ and r�) and denote186

the error in r̃ as e+ = P(r̃ = r�|r = r+), e� = P(r̃ = r+|r = r�) (a simplification of CRL
|R|⇥|R| in187

the binary setting).188

Lemma 1. Let r 2 [0, Rmax] be a bounded reward. Assume 1� e� � e+ > 0 then, we have:189

E[r̃peer] = (1� e� � e+) · E[rpeer] = (1� e� � e+) · E[r] + const ,

where rpeer = rpeer(s, a) = r(s, a)� ⇠ · r
0 is the peer RL reward when observing the true reward r.190

Lemma 1 shows that by subtracting the peer penalty term r̃
0 from noisy reward r̃, r̃peer recovers the191

clean and true reward r in expectation.192

Remark It is notable that the expectation of the noisy reward E[r̃] writes as:193

E[r̃] = (1� e� � e+)E[r] + e�r+ + e+r�| {z }
const

.

Nonetheless, the constant in peer reward has far less effect on the true reward r, especially when the194

noise rate is high. To see this:195

E[r̃] = ⌘ ·

✓
E[r] + e+

1� e� � e+
r� +

e�
1� e� � e+

r+

◆
,

E[r̃peer] = ⌘ · (E[r]� (1� ppeer)r� � ppeerr+),

where ⌘ = 1� e� � e+ > 0, ppeer 2 [0, 1] denotes the probability that a sample policy sees a reward196

r+ overall. Since the magnitude of noise terms e�
1�e��e+

and e+
1�e��e+

can potentially become much197

larger than 1 � ppeer and ppeer in a high-noise regime, e�
1�e��e+

r+ + e+
1�e��e+

r� will dilute the198

informativeness of E[r]. On the contrary, E[r̃peer] contains a moderate constant noise thus maintaining199

more useful training signals of the true reward in practice.200

Based on Lemma 1, we further offer the following convergence guarantee:201

Theorem 1. (Convergence) Given a finite MDP with noisy reward, denoting as fM =202

hS,A,R, F,P, �i, the Q-learning algorithm with peer rewards, given by:203

Qt+1(st, at) = (1� ↵t)Qt(st, at) + ↵t

⇥
r̃peer(st, at) + �max

a02A
Qt(st+1, a

0)
⇤
,

⇡t(s) = argmax
a2A

Qt(s, a)

converges w.p.1 to the optimal policy ⇡
⇤(s) as long as

P
t ↵t = 1 and

P
t ↵

2
t < 1.204

Theorem 1 states that the learning agent will converge to the optimal policy w.p.1 with peer rewards205

without requiring any knowledge of the corruption in rewards (CRL
|R|⇥|R|, as opposed to previous206
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(a) e = 0.2 (b) e = 0.4
Figure 2: Learning curves of DDQN on CartPole
with true reward (r) , noisy reward (r̃) , sur-
rogate reward [7] (r̂) , and peer reward (r̃peer,
⇠ = 0.2) .

(a) e = 0.2 (b) e = 0.4
Figure 3: Learning curves of DDPG [42] on Pen-
dulum with true reward (r) , noisy reward (r̃) ,
and peer reward (r̃peer, ⇠ = 0.2) . The perfor-
mance of surrogate reward is omitted for clarity.

work [7] that requires such knowledge). Moreover, we found that to guarantee the convergence to207

⇡
⇤, the number of samples needed for our approach is no more than O(1/(1� e� � e+)2) times of208

the one needed when the RL agent observes true rewards perfectly (see Appendix A).209

Extension Even though we only present an analysis for the binary case for Q-Learning, our approach210

is rather generic and is ready to be plugged into modern DRL algorithms. We provide multi-reward211

extensions, implementations with DQN [38] and policy gradient [40] in Appendix A.212

3.3 PeerBC: Peer Behavioral Cloning213

Similarly, we present our CA solution in the setting of behavioral cloning (PeerBC). In BC, the214

supervision is given by the weak expert’s noisy trajectory. At each iteration, the agent learns under215

weak supervision ã, and the training samples are generated from the distribution eDE determined by216

the weak expert. The EvaBC
⇡ function in BC evaluates the agent policy ⇡✓ and the weak trajectory217

{(si, ãi)}Ni=1 using `(⇡✓, (si, ãi)), where ` is an arbitrary classification loss. Taking the cross-entropy218

for instance, the objective of PeerBC is:219

J
BC(⇡✓) = E

h
EvaBC

⇡

�
(si, ai), ãi

�i
� ⇠ · E

h
EvaBC

⇡

�
(sj , aj), ãk

�i
, (3)

where EvaBC
⇡

�
s, a), ã

�
= �`

�
⇡✓, (s, ã)

�
= log ⇡✓(ã|s). (4)

In (3), the first expectation is taken over (si, ãi) ⇠ eDE , ai ⇠ ⇡(·|si) and the second is taken over220

(sj , ãj) ⇠ eDE , aj ⇠ ⇡(·|sj), (sk, ãk) ⇠ eDE , ak ⇠ ⇡(·|sk). Again, the second EvaBC
⇡ term in J

BC221

serves the purpose of punishing over-agreement with the weak demonstration. Similarly, ⇠ � 0 is a222

parameter to balance the penalty for blind agreements.223

Robustness to Noisy Demonstrations We prove that the policy learned by PeerBC converges to the224

expert policy when observing a sufficient amount of weak demonstrations. We focus on the binary225

action setting for theoretical analyses, where the action space is given by A = {A+, A�} and the226

weakness or noise in the weak expert ⇡̃E is quantified by e+ = P(⇡̃E(s) = A�|⇡E(s) = A+) and227

e� = P(⇡̃E(s) = A+|⇡E(s) = A�). Let ⇡ eDE
be the optimal policy for maximizing the objective in228

(3) with imperfect demonstrations eDE (a particular set of with N i.i.d. imperfect demonstrations).229

Note `(·) is specified as the 0-1 loss: (⇡(s), a) = 1 when ⇡(s) 6= a, otherwise (⇡(s), a) = 0. We230

have the following upper bound on the error rate.231

Theorem 2. Denote by R eDE
:= P(s,a)⇠DE

(⇡ eDE
(s) 6= a) the error rate for PeerBC. With probability232

at least 1� �, it is upper-bounded as:233

R eDE


1 + ⇠

1� e� � e+

r
2 log 2/�

N
. (5)

Theorem 2 states that as long as weak demonstrations are observed sufficiently, i.e., N is sufficiently234

large, the policy learned by PeerBC is able to converge to the clean expert policy ⇡E(s) with a235

convergence rate of O
�
1/
p
N
�
.236

Peer Policy Co-Training Our discussion of BC allows us to study a more challenging co-training237

task [33]. Given a finite MDP M, there are two agents that receive partial observations and238
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Table 1: Numerical performance of DDQN on CartPole with true reward (r), noisy reward (r̃),
surrogate reward r̂ [7], and peer reward r̃peer(⇠ = 0.2). Ravg denotes average reward per episode
after convergence, the higher (") the better; Nepi denotes total episodes involved in 10,000 steps, the
lower (#) the better.

e = 0.1 e = 0.2 e = 0.3 e = 0.4

Ravg " Nepi # Ravg " Nepi # Ravg " Nepi # Ravg " Nepi #

DDQN

r 195.6± 3.1 101.2± 3.2 195.6± 3.1 101.2± 3.2 195.6± 3.1 101.2± 3.2 195.2± 3.0 101.2± 3.3
r̃ 185.2± 15.6 114.6± 6.0 168.8± 13.6 123.9± 9.6 177.1± 11.2 133.2± 9.1 185.5± 10.9 163.1± 11.0
r̂ 183.9± 10.4 110.6± 6.7 165.1± 18.2 113.9± 9.6 192.2 ± 10.9 115.5± 4.3 179.2± 6.6 125.8± 9.6

r̃peer 198.5 ± 2.3 86.2 ± 5.0 195.5 ± 9.1 85.3 ± 5.4 174.1± 32.5 88.8 ± 6.3 191.8 ± 8.5 106.9 ± 9.2

we let ⇡
A and ⇡

B denote the policies for agent A and B. Moreover, two agents are trained239

jointly to learn with rewards and noisy demonstrations from each other (e.g., at preliminary train-240

ing phase). Symmetrically, we consider the case where agent A learns with the demonstrations241

from B on sampled trajectories, and ⇡B effectively serves as a noisy version of expert policy242

⇡E = argmax⇡2⇧ E(s,a)⇠DE
[log ⇡(a|s)].243

Algorithm 1 Peer policy co-training (PeerCT)

Require: Views A, B, MDPs MA, MB , policies ⇡A,⇡B , mapping
functions fA!B , fB!A that maps states from one view to the
other view, CA coefficient ⇠, step size � for policy update.

1: repeat

2: Run ⇡A to generate trajectories ⌧A = {(sAi , aA
i , r

A
i )}Ni=1.

3: Run ⇡B to generate trajectories ⌧B = {(sBj , aB
j , r

B
j )}Mj=1.

4: Agents label the trajectories for each other

⌧ 0A  
n
(sAi ,⇡

B�fB A(s
A
i )

�oN

i=1
,

⌧ 0B  
n
(sBj ,⇡

A�fA B(s
B
j )

�oM

j=1
.

5: Update policies: ⇡{A,B}  ⇡{A,B} + � ·rJCT(⇡{A,B})
6: until convergence

For simplicity of demonstration, we244

focus on recovering the clean ex-245

pert policy by only adapting the BC246

evaluation term (ignoring the effect247

of RL rewards, see Eqn. (6)). De-248

note by ⌧
A
✓ = {(sAi , a

A
i , r

A
i )}

N
i=1249

the trajectory that ⇡
A generated250

via interacting with the partial251

world M
A. Then ⇡

B substi-252

tutes each action a
A
i with its se-253

lection a
0B
i ⇠ ⇡

B(·|fA!B(sAi )) as254

the weak supervision. Similar to255

PeerRL/PeerBC, the objective func-256

tion of peer co-learning (PeerCT)257

becomes258

JCT(⇡✓) = E
h
EvaRL

⇡

�
(sAi , a

A
i ), r

A
i

�
+ EvaBC

⇡

�
(sAi , a

A
i ), a

0B
i

�i
� ⇠ · E

h
EvaBC

⇡

�
(sAj , a

A
j ), a

0B
k

�i
, (6)

where the first expectation is taken over (sAi , aAi , rAi ) ⇠ ⌧
A
✓ , and a

0B
i ⇠ ⇡

B(·|fA!B(sAi )), and the259

second is taken over (sAj , aAj , rAj ) ⇠ ⌧
A
✓ , (sAk , a

A
k , r

A
k ) ⇠ ⌧

A
✓ , and a

0B
k ⇠ ⇡

B(·|fA!B(sAk )), ` is the260

loss function defined in Eqn. (4) to measure the policy difference, and EvaRL
⇡ ,EvaBC

⇡ are defined261

in Eqn. (2) and (4) respectively. The full algorithm PeerCT is provided in Algorithm 1. We omit262

detailed discussions on the convergence of PeerCT - it can be viewed as a straight-forward extension263

of Theorem 2 in the context of co-training.264

4 Experiments265

We evaluate our solution in three challenging weakly supervised PL problems. Experiments on266

control games and Atari show that, without any prior knowledge of the noise, our approach is able to267

leverage weak supervision more effectively.268

4.1 PeerRL with Noisy Reward269

CartPole: We first evaluate our method in RL with noisy reward setting. Following [7], we consider270

the binary reward {�1, 1} for Cartpole where the symmetric noise is synthesized with different error271

rates e = e� = e+. We choose DQN [38] and DDQN [39] algorithms and train the models for272

10,000 steps. We repeat each experiment 10 times with different random seeds and leave extra results273

in Appendix D.274
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(a) Pong (b) Boxing (c) Enduro (d) Freeway

Figure 4: Learning curves of BC on Atari. Standard BC , PeerBC (ours) , expert .

(a) Acrobot (b) CartPole (c) Pong (d) Breakout
Figure 5: Policy co-training on control/Atari. Single view , [33] , PeerCT (ours) .

Figure 2 shows the learning curves for DDQN with different approaches in noisy environments275

(⇠ = 0.2) 1. Since the number of training steps is fixed, the faster the algorithm converges, the fewer276

total episodes the agent will involve thus the learning curve is on the left side. As a consequence,277

the proposed peer reward outperforms other baselines significantly even in a high-noise regime (e.g.,278

e = 0.4). Table 1 provides quantitative results on the average reward Ravg and total episodes Nepi.279

We find the agents with peer reward lead to a larger Ravg (less generalization error) and a smaller280

Nepi (faster convergence) consistently, which again verifies the effectiveness of our approach.281

Pendulum: We further conduct experiments on a more challenging continuous control282

task Pendulum, where the goal is to keep a frictionless pendulum standing up. Since the283

rewards in pendulum are continuous: r 2 (�16.3, 0.0], we discretized it into 17 intervals:284

(�17,�16], (�16,�15], · · · , (�1, 0], with its value approximated using its maximum point. We285

experiment DDPG [42] and uniform noise in this environment. In Figure 3, the RL agents with the286

proposed CA objective successfully converge to the optimal policy under different amounts of noise.287

On the contrary, the agents with noisy rewards suffer from biased noise, especially in a high-noise288

regime. Prior work [7] has similar learning curves like peer reward on Pendulum and are omitted289

for clarity. However, we highlight that peer reward does not require any knowledge of noise rates or290

complicated estimation algorithms compared to [7].291

Analysis of the benefits in PeerRL More surprisingly, we observed that the agents on CartPole with292

peer reward even lead to faster convergence than the ones observing true reward perfectly when the293

noise rate e is small. This indicates the possibility of other benefits to further promote peer reward,294

other than the noise reduction one we primarily focused on. We hypothesize this is because (1) peer295

reward scales the reward signals appropriately, which potentially reduces the variance and makes it296

easier to learn from; (2) the peer penalty term encourages explorations in RL implicitly (but then it297

removes the bias in the noisy supervision in expectation); (3) the human-specific “true reward” is also298

imperfect which leads to a weak supervision scenario. More discussions and analysis are deferred to299

Appendix C.5. However, we emphasize that the advantage of recovering from noisy reward signal is300

non-negligible, especially in a high-noise regime (e.g., e = 0.4 in Figure 2 and 3).301

4.2 PeerBC from Weak Demonstrations302

Atari: In BC setting, we evaluate our approach on four vision-based Atari games. For each303

environment, we train an imperfect RL model with PPO [43] algorithm. Here, “imperfect” means the304

training is terminated before convergence when the performance is about 70% ⇠ 90% as good as the305

fully converged model. We then collect the imperfect demonstrations using the expert model and306

generate 100 trajectories for each environment. The results are reported under three random seeds.307

Figure 4 presents the comparisons for standard BC and PeerBC, from which we observe that our308

approach outperforms standard BC and even the expert it learns from. Note that during the whole309

1We analysed the sensitivity of ⇠ and found the algorithm performs reasonable when ⇠ 2 (0.1, 0.4). More
insights and experiments with varied ⇠ is deferred to Appendix D.
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Table 2: BC from weak demonstrations. PeerBC successfully recovers better policies than expert.
Environment Pong Boxing Enduro Freeway Lift (")

Expert 15.1± 6.6 67.5± 8.5 150.1± 23.0 21.9± 1.7 -
Standard BC 14.7± 3.2 56.2± 7.7 138.9± 14.1 22.0± 1.3 �6.6%

PeerBC
⇠ = 0.2 18.8± 0.6 67.2± 8.4 177.9± 29.3 22.5± 0.6 +11.3%
⇠ = 0.5 16.6± 4.0 75.6± 5.4 230.9± 73.0 22.4± 1.3 +19.5%
⇠ = 1.0 16.7± 4.3 69.7± 4.7 230.4± 61.6 8.9± 4.9 +2.0%

Fully converged PPO 20.9± 0.3 89.3± 5.4 389.6± 216.9 33.3± 0.8 -

Table 3: Comparison with single view training and CoPiEr [33] on standard policy co-training.
Environment Acrobot CartPole Pong Breakout

Single View A �136.6± 15.6 172.8± 5.5 17.8± 0.6 148.0± 16.5
B �126.4± 8.0 186.7± 8.1 17.7± 0.5 137.8± 12.5

CoPiEr A �136.2± 5.2 174.1± 5.1 16.8± 0.5 107.5± 5.8
B �131.5± 4.5 174.3± 5.4 16.5± 0.2 82.7± 6.9

PeerCT A �87.0± 3.9 188.8± 2.7 20.5± 0.4 263.6± 36.0
B �87.1± 6.3 184.7± 3.9 20.4± 0.5 268.6± 33.6

training process, the agent never learns by interacting directly with the environment but only have310

access to the expert trajectories. Therefore, we owe this performance gain to PeerBC’s strong ability311

for learning from weak supervision. The peer term we add not only provably eliminates the effects of312

noise but also extracts useful strategy from the demonstrations. See results in Table 2. Our approach313

consistently outperforms the expert and standard BC. As a reference, we also compare two other314

baselines GAIL [44] and SQIL [27] and provide the sensitivity analysis of ⇠ in Appendix D.315

Analysis of benefits in PeerBC Similarly, the performance improvement of PeerBC might be also316

coupled with multiple possible factors. (1) The imperfect expert model might be a noisy version of317

the fully-converged agent since there are less visited states on which the selected actions of the model318

contains noise. (2) The improvements might be brought up by biasing against high-entropy policies319

thus PeerBC is useful when the true policy itself is deterministic. We provide more discussions about320

the second factor in Appendix C.6.321

4.3 PeerCT for Standard Policy Co-training322

Continuous Control/Atari: Finally, we verify the effectiveness of the PeerCT algorithm in policy323

co-training setting [33]. This setting is more challenging since the states are partially observable324

and each agent needs to imitate another agent’s behavior that is highly biased and imperfect. Note325

that we adopt the exact same setting as [33] without any synthetic noise included. This implies the326

potential of our approach to deal with natural noise in real-world applications. Following [33], we327

mask the first two dimensions respectively in the state vector to create two views for co-training in328

classic control games (Acrobot and CartPole). Similarly, the agent either removes all even index329

coordinates (view-A) in the state vector or removing all odd index ones (view-B) on Atari games. As330

shown in Table 3 and Figure 5, PeerCT algorithm outperforms training from single view, and CoPiEr331

algorithm consistently on both control games (⇠ = 0.5 in Figure 5a, 5b) and Atari games (⇠ = 0.2 in332

Figure 5c, 5d). In most cases, our approach leads to a faster convergence and lower generalization333

error compared to CoPiEr, which again verify that our ways of leveraging information from peer334

agent enables recovery of useful knowledge from highly imperfect supervision.335

5 Conclusion336

We have proposed PeerPL, a weakly supervised policy learning framework to unify a series of RL/BC337

problems with low-quality supervision signals. In PeerPL, instead of blindly memorizing the weak338

supervision, we evaluate a learning policy’s correlated agreements with the weak supervision. We339

demonstrate how our method adapts in RL/BC and the hybrid co-training tasks and provide analysis340

of the convergence rate and sample complexity. Current theorems focus on the specific discrete noise341

model. Future work may extend it to more general noise scenarios and evaluate our method on real342

RL/BC systems, such as robotics and self-driving.343
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