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Abstract

How to efficiently serve ever-larger trained natural language models in practice1

has become exceptionally challenging even for powerful cloud servers due to2

their prohibitive memory/computation requirements. In this work, we present3

an efficient and affordable post-training quantization approach to compress large4

Transformer-based models, termed as ZeroQuant. ZeroQuant is an end-to-end5

quantization and inference pipeline with three main components: (1) a fine-grained6

hardware-friendly quantization scheme for both weight and activations; (2) a novel7

affordable layer-by-layer knowledge distillation algorithm (LKD) even without8

the access to the original training data; (3) a highly-optimized quantization system9

backend support to remove the quantization/dequantization overhead. As such,10

we are able to show that: (1) ZeroQuant can reduce the precision for weights and11

activations to INT8 in a cost-free way for both BERT and GPT-3-style models12

with minimal accuracy impact, which leads to up to 5.19x/4.16x speedup on those13

models compared to FP16 inference; (2) ZeroQuant plus LKD affordably quantize14

the weights in the fully-connected module to INT4 along with INT8 weights in the15

attention module and INT8 activations, resulting in 3x memory footprint reduction16

compared to the FP16 model; (3) ZeroQuant can be directly applied to two of the17

largest open-sourced language models, including GPT-J6B and GPT-NeoX20B, for18

which our INT8 model achieves similar accuracy as the FP16 model but achieves19

up to 5.2x better efficiency. Our code is open-sourced at [1].20

1 Introduction21

Large-scale natural language models have been widely adopted in different applications, e.g., natural22

language understanding using BERT [64] and generation tasks using GPT-style models [49]. Although23

those models have achieved cutting-edge accuracy results, as the model size keeps increasing24

dramatically, the requirements of memory footprint and the computational cost to deploy them25

become a major bottleneck, even on cloud servers with powerful GPU devices.26

One promising way to alleviate this challenge is quantization, which can reduce the bit precision for27

both weight and activations for lower memory footprint and faster compute (e.g., INT8 Tensor cores28

on T4/A100). However, quantization usually requires retraining (also known as quantization aware29

training, or QAT in short) to recover the accuracy degradation from representation loss of weight and30

activations. To enable QAT, the full training pipeline is usually required, including the training data31

and compute resources, to finetune the model. Access to those components is now oftentimes not32

available, and QAT is also a time-consuming process, particularly for those large-scale models.33

Recently, zero-shot quantization [10, 47] and post-training quantization (PTQ) [46, 39] are proposed34

to address the training-data access and compute requirement challenges since PTQ generally requires35

no (or minimal) retraining. But most of those works primarily focus on computer vision problems on36

relatively small scales. More recently, [7] shows promising PTQ results on BERT. However, (1) its37
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main focus is on high-precision quantization (INT8/FP16) on BERTbase, (2) it does not consider other38

billion-scale generative models (GPT-3-style models [9]). More importantly, most of these works do39

not report real latency improvement, putting the usefulness of these methods in improving inference40

latency into question. For example, existing work often do not discuss the quantization/dequantization41

cost associated with different quantization schemes, which in fact has a big impact to the performance42

benefit of using low precision.43

Besides, for extreme quantization (e.g., INT4), knowledge distillation is usually used to boost perfor-44

mance, which adds another source of expensive computation cost as compared to QAT. Furthermore,45

in order to achieve better accuracy performance, hidden-states knowledge distillation, e.g., [3, 80], is46

usually applied for the quantized model. This would put significant pressure on the GPU memory47

and the compute resource requirement since both the teacher and student models needed to be loaded48

into the GPU memory for training.49

In this paper, we present ZeroQuant, an end-to-end post-training quantization and inference pipeline,50

to address those challenges, targeting both INT8 and INT4/INT8 mixed-precision quantization.51

Specifically, our contributions are:52

• We apply fine-grained hardware-friendly quantization schemes on both weight and activations, i.e.,53

group-wise quantization for weight and token-wise quantization for activations. Both quantization54

schemes can significantly reduce the quantization error and retain hardware acceleration properties.55

• We propose a novel layer-by-layer knowledge distillation method (LKD) for INT4/INT8 mixed-56

precision quantization, where the neural network is quantized layer-by-layer through distillation57

with minimal iterations and even without the access to the original training data. As such, at any58

given moment, the device memory is primarily populated only with a single extra layer’s footprint,59

making billion-scale model distillation feasible with limited training budget and GPU devices.60

• We develop a highly optimized inference backend, which eliminates the expensive computation61

cost of quantization/dequantization operators, enabling latency speedups on INT8 Tensor cores on62

modern GPU hardware.63

• Our empirical results show that:64

– ZeroQuant enables quantizing BERT and GPT-3-style models into INT8 weight and activations65

to retain accuracy without incurring any retraining cost. Compared to FP16 inference, our INT866

model achieves up to 5.19x/4.16x speedup on BERTbase/GPT-3350M on A100 GPUs.67

– ZeroQuant plus LKD can do INT4/INT8 mixed-precision quantization for BERT and GPT-68

3-style models. This results in a 3x memory footprint reduction with marginal accuracy loss69

as compared to the FP16 model. Also, thanks to the lightweight of LKD, we can finish the70

quantization process in 33s (10 minutes) for BERTbase (BERTlarge). We also demonstrate that71

LKD can use other datasets to achieve similar performance to the original training data.72

– We demonstrate the scalability of ZeroQuant on two of the largest open-sourced language models,73

i.e, GPT-J6B and GPT-NeoX20B, with INT8 quantization. ZeroQuant can achieve 3.67x speedup74

over the FP16 model for GPT-J6B and (2) reduce the GPU requirement for inference from 2 to 175

and latency from 65ms to 25ms for GPT-NeoX20B (i.e., 5.2x better system efficiency in total).76

2 Related Work77

Model compression has been explored from different aspects [26, 38, 40, 35, 44, 21, 25, 51, 19, 75,78

41, 27, 56, 60, 29, 61, 69, 34, 15, 39, 32]. Among those, quantization is one of the most promising79

directions as it directly reduces the memory footprint and compute intensity. Here, we focus on80

quantization for NLP models and briefly discuss the related work.81

The majority of quantization works can be categorized into quantization-aware training (QAT).82

[57, 77] are the first few works to quantize BERT models using integer numbers for both weight83

and activations. Particularly, [57] utilizes Hessian information to push the weight bit-precision to84

even INT2/INT4, and it also proposes group-wise quantization to quantize the weight matrix in a85

more fine-grained granularity compared to single matrix quantization. [22] introduces quantization86

noise to alleviate the variations of QAT. [80, 3] leverage very expensive knowledge distillation [27]87

and data augmentation [29] to ternarize/binarize weights. [30] combines knowledge distillation [29]88

and learned step size quantization [20] to quantize the weight to 2–8 bits. Recently, [62] also uses89

knowledge distillation to compress GPT-2 models on task-specific problems to INT2. All those90

works quantize models using the original training datasets. More importantly they need retraining or91

finetuning the full model to recover the accuracy, and such compute cost on extra-large models, like92

[58, 12], can be hardly affordable for most research labs or practitioners.93
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One solution to overcome the compute cost challenge is post-training quantization (PTQ). However,94

PTQ often induces a significant drop in accuracy because the network can be sensitive to quantization95

errors. Along this line, one of the first works applied to Transformer-based [65] models is [76].96

The authors introduce centroid-based quantization method, where outlier numbers use FP32 format97

and the rest numbers are quantized using non-uniform quantization. As such, it is hard to get the98

real inference latency benefit on general compute accelerators, e.g., CPU and GPU, because the99

parallel processing units in these hardware do not support efficient computation of mixed data types.100

More recently, [7] introduces high-precision activation quantization (FP16) for part of the model to101

overcome the high dynamic activation ranges. However, to the best of our knowledge, (1) How to102

apply PTQ on GPT-3-style models while achieving high accuracy has not been studied in any of103

previous work yet; (2) How to apply PTQ on billion (or even a dozen of billions) scale model is still104

under-explored; (3) Efficient inference system backend is still missing, especially for fine-grained105

quantization schemes, making it hard to achieve low latency on commodity hardware. ZeroQuant106

resolves all those limitations by considering the system backend into the algorithm design and we107

verify its capability on both BERT and large-scale GPT-3-style (up to 20 billion, i.e., GPT-NeoX20B)108

models for various tasks.109

3 Background and Challenge110

We give a brief overview of the transformer architecture and quantization background in Appendix A.111

Please refer to [65] and [24] for more details about the transformer architecture and quantization.112

Post-training quantization (PTQ) exhibits great compression efficiency compared to quantization-113

aware training (QAT) since PTQ is usually applied to quantize the model without retraining. A114

common strategy of PTQ is to feed the training data to the network and calibrate the scaling factor, S,115

using the running mean. Please see Appendix B.1 for more details.116

Some work has been done for BERTbase models [7] with INT8 weight and mixed INT8/FP16117

activation quantization. However, there is no investigation for (1) even lower bit-precision PTQ on118

BERT models and (2) large-scale GPT-3-style models. Here, we briefly discuss the challenge of the119

application of PTQ on both BERT (in Appendix C) and GPT-3-style models.120

Figure 1: The activation range (left) and row-wise weight range of the attention output matrix (right)
of different layers on the pretrained GPT-3350M. See Figure C.1 for the results of BERTbase.

The results of GPT-3350M with PTQ are shown in Table 1. As can be seen, the INT8 activation121

quantization (i.e., the row of W16A8) causes the primary accuracy loss. Further pushing the weight122

to INT8 (i.e., the row of W8A8) does not change the accuracy of zero-shot evaluation tasks but leads123

the causal language modeling task (Wikitext-2) to worse perplexity score, which demonstrates the124

sensitivity of generation tasks as compared to other zero-shot evaluation problems. For W4/8A16,125

on some accuracy-based tasks, GPT-3350M still achieves reasonable performance like OpenBookQA126

but it loses accuracy on the majority of the rest tasks. Particularly, for Wikitext-2, GPT-3350M with127

W4/8A16 cannot generate any meaningful text anymore. Please also see Appendix C for the analysis128

for BERT.129

Dynamic Activation Range To investigate why INT8 activation leads to significant accuracy drop130

for both BERT and GPT-3-style models, we plot the token-wise (i.e., the hidden state of each token)131

range of each activation for different transformer layers of GPT-3350M in Figure 1 (left). As can132

be seen, different tokens have dramatically different activation ranges. For example, the maximum133
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Table 1: Post training quantization results of GPT-3350M on 20 zero-shot evaluation datesets. Here
WxAy means x-/y-bit for weight/activation. Particularly, for W4/8, we quantize the MHSA’s weight
to INT8 and FFC’s weight to INT4. Please see Table H.1 for the results of all 20 tasks.

Precision Lambada (") PIQA (") OpenBookQA (") RTE (") ReCoRd (") Ave. 19 Tasks (") Wikitext-2 (#)

W16A16 49.3 66.3 29.4 53.8 75.1 38.9 21.5
W8A16 49.3 66.1 29.6 54.2 74.8 38.5 22.1
W16A8 44.7 64.8 28.2 52.7 69.2 37.8 24.6
W8A8 42.6 64.1 28.0 53.1 67.5 37.8 26.2
W4/8A16 0.00 51.4 30.2 52.7 16.1 28.9 1.76e5

range of the last layer is around 35 but the minimum range is close to 8. This larger variance in the134

activation range makes it difficult to use a fixed quantization range (usually the maximum value) for135

all tokens to retain the prediction accuracy, because the limited representation power for small range136

tokens is going to hurt the accuracy performance.137

Different Ranges of Neurons in Weight Matrices Similarly, we plot the row-wise (i.e., the output138

dimension) weight range of the attention output matrix (Wo) of GPT-3350M in Figure 1 (right). There139

is a 10x difference between the largest magnitudes of different rows and this leads to the worse140

generation performance of the INT8 weight PTQ. This also makes it very challenging when INT4141

quantization is applied as the INT4 only has 16 numbers and a 10x smaller range leads to 2 (or 3)142

numbers for the representations of those smaller-range rows.143

This analysis results also indicate why more expensive hidden-states knowledge distillation [3, 37] is144

used for ultra-low precision quantization to close the accuracy gap. However, as the training cost145

of knowledge distillation for large-scale models is too high, a lightweight and efficient method is146

desirable for PTQ.147

4 Methodology148

4.1 Fine-grained Hardware-friendly Quantization Scheme149

As shown in Section 3, even applying INT8 PTQ to BERT/GPT-3-style models leads to significant150

accuracy degradation. The key challenge is the representation of INT8 cannot fully capture the151

different numerical ranges of different rows in weight matrices and different activation tokens. One152

way to address this is to use group-wise (token-wise) quantization for the weight matrix (activations).153

Group-wise Quantization for Weights Group-wise weight matrix quantization has first been154

proposed in [57], where a weight matrix W 2 Rn⇥m is partitioned in to g groups, and each group is155

quantized separately. However, in [57], the authors only apply this for quantization aware training.156

More importantly, they do not consider the hardware efficiency constraint and they do not have a157

system backend support. As such, they lack the real latency reduction benefit.158

In our design, we consider the hardware constraint from Ampere Architecture of GPUs (e.g, A100),159

where the compute unit is based on Warp Matrix Multiply and Accumulate (WMMA) tiling size [54]160

to achieve the best speedup. Later, we will show that our group-wise quantization leads to much161

better accuracy as compared to single-matrix quantization due to its finer-granularity quantization162

while still achieving great latency reduction.163

Token-wise Quantization for Activations As mentioned in Section 3 and Appendix A.2, a common164

practice for existing PTQ work is to use static quantization for activation, where the min/max range165

is calculated at an offline calibration phase. Such a method might be sufficient for small scale models166

where the variance in the activation range is small. However, as analyzed in Section 3, there is a167

huge variance in the activation range for large-scale transformer models such as GPT-3350M and168

BERTbase. As such, a static quantization scheme (often applied to all tokens/samples) would lead to169

significant accuracy drop. One natural idea to overcome this issue is to adopt finer-grained token-wise170

quantization and dynamically calculate the min/max range for each token to reduce the quantization171

error from activations. Our evaluation in Section 5 also shows that token-wise quantization for172

activation significantly improves the accuracy of GPT-3-style and BERT models.173

However, directly applying token-wise quantization using existing DL frameworks, such as the174

PyTorch quantization suite, would lead to significant quantization and dequantization cost because175

token-wise quantization introduces additional operations that lead to expensive data movement176

overhead between the GPU compute units and the main memory. To address this issue, we build a177
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Figure 2: The illustration of normal (left) and our fused (right) INT8 GeMM.

highly optimized inference backend for token-wise quantization of transformer models. For example,178

the inference backend of ZeroQuant employs so called kernel fusion technique to fuse quantization179

operator with its previous operator, like layer normalization, to alleviate the data movement cost180

from token-wise quantization. Similarly, the dequantization cost of the different GeMMs’ output181

is alleviated by scaling the INT32 accumulation using both the weight and activation quantization182

scales, before writing the final FP16 result back to the main memory for the next FP16 operator (like183

GeLU). Those optimization will be discussed in more details in Section 4.3.184

Token-wise quantization can significantly reduce the representation error for quantized activations.185

Also, as it does not need to calibrate the activation range, later we will show that there is no186

quantization-related cost (e.g., activation range calibration) for a moderate quantization scheme187

(INT8 weight with INT8 activation) for ZeroQuant.188

4.2 Layer-by-layer Knowledge Distillation with Affordable Cost189

Knowledge distillation (KD) is one of the most powerful methods to alleviate the accuracy degradation190

after model compression. However, there are several limitations of KD, especially for hidden-states191

KD on large-scale language models: (1) KD needs to hold a teacher and a student model together dur-192

ing the training, which dramatically increases the memory and compute cost; (2) KD usually requires193

full training of the student model. Therefore, several copies (gradient, first/second order momentum)194

of the weight parameters need to be stored in memory to update the model; (3) KD generally requires195

original training data, which sometimes are not accessible due to privacy/confidential issues.196

To address those limitations, we present our layer-by-layer distillation (LKD) algorithm. Assume197

the target model for quantization has N transformer blocks, L1, ..., LN , the accessible dataset has198

input (X, Y ), which can be the original training data or datasets from other resources. Our LKD199

quantizes the network layer-by-layer and uses its original (i.e., unquantized) version as the teacher200

model. More specifically, assume layer Lk is going to be quantized, and its quantized version is bLk.201

Then we use the output of the Lk�1 (i.e., by running inference on X over the first k � 1 layers) as202

the input of Lk and bLk, measure the difference, and do the model update to Lk, i.e.,203

LLKD,k = MSE
⇣
Lk · Lk�1 · Lk�2 · ... · L1(X)� bLk · Lk�1 · Lk�2 · ... · L1(X)

⌘
, (1)

where MSE is the mean square loss, and it can be also replaced by other losses (e.g., KL divergence)204

as well. As can be seen, (1) our LKD does not need to hold a separate teacher as we use the same L1205

to Lk�1 for both teacher/student model. As such, the only extra model cost we have is Lk; (2) the206

memory overhead of optimizer states are significantly reduced as the only optimizing layer is Lk; (3)207

as we never optimize the end-to-end model, the training does not depend on the label anymore. Later,208

we will show that LKD does not rely on the original training data in Section 5.6.209

4.3 Quantization-Optimized Transformer Kernels210

Both optimizing the inference latency and model size is crucial for serving large-scale transformer211

models in practice. During inference, the batch size is often relatively small, so the inference latency212

of the model primarily depends on the time of loading inference needed data from the main memory.213

By quantizing the weights and activations to lower precision, we reduce the data volume needed to214

load those data, which allows more effective use of memory bandwidth and higher loading throughput.215

However, simply converting weights/activations to INT8 does not guarantee improved latency because216

there are additional data movement overhead associated with quantization/dequantization operations217

as shown in Figure 2 (red box). Such an overhead becomes expensive and in some cases surpasses218

the performance benefits of using low precision. To reap the accuracy improvement from token-wise219

quantization while obtaining improved latency, we now present our optimizations that maximize the220

memory bandwidth utilization to speed up inference latency for ZeroQuant.221

CUTLASS INT8 GeMM To support INT8 computation, we use CUTLASS [6] INT8 GeMM222

implementation tuned for different batch sizes. Unlike standard GPU backend library, such as223
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Table 2: Result of BERTbase on the development set of GLUE benchmark (except WNLI). [57]+ uses
128 groups for weight matrix which is hard to get GPU acceleration. [7]⇤ uses mixed INT8 and FP16
activation, and it directly reports the average metric of MNLI/MRPC/QQP/STS-B, which is basically
the average of the two metrics we used for our runs.

Precision (Method) CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B Ave. Ave. Time (s)

W16A16 (Baseline) 59.72 84.94 85.06 86.27/90.57 92.15 91.51/88.56 72.20 93.23 90.06/89.59 83.95 N/A

W8A8 [57] (QAT)+ — 83.91 83.83 — — — — 92.83 — — —
W8A8 [77] (QAT) 58.48 — — —/89.56 90.62 —/87.96 68.78 92.24 89.04/— — —
W8A8 (QAT) 61.21 84.80 84.64 83.82/88.85 91.29 91.29/88.28 71.12 92.89 88.39/88.18 83.37 2900
W8A8 (PTQ) 56.06 79.99 81.06 75.49/79.67 87.35 89.92/86.82 48.38 91.40 86.58/86.44 77.41 6
W8A8/16 [7] (PTQ)⇤ 58.63 82.67 82.67 88.74 90.41 89.40 68.95 92.66 88.00 82.46 Unknown
W8A8 (ZeroQuant) 59.59 84.83 85.13 86.03/90.39 91.98 91.45/88.46 71.12 93.12 90.09/89.62 83.75 0

W4/8A16 (PTQ) 0.00 16.74 16.95 31.62/0.00 50.74 63.18/0.00 47.29 70.64 16.48/15.91 33.11 6
W4/8A16 (ZeroQuant) 57.29 82.69 83.27 84.56/88.40 90.04 86.52/79.49 70.76 92.78 88.46/88.61 81.65 0
W4/8A16 (ZeroQuant-LKD) 58.50 83.16 83.69 84.80/89.31 90.83 88.94/84.12 70.04 92.78 88.49/88.67 82.35 31

W4/8A8 (ZeroQuant) 56.69 82.46 83.06 84.07/88.03 90.13 87.04/80.50 70.76 92.78 88.07/88.44 81.55 0
W4/8A8 (ZeroQuant-LKD) 58.80 83.09 83.65 85.78/89.90 90.76 89.16/84.85 71.84 93.00 88.16/88.55 82.71 31

cuDNN, using CUTLASS allows us to more flexibly fuse quantization operation before and after224

GeMM to reduce kernel launching and data-movement overhead.225

Fusing Token-wise Activation Quantization Token-wise quantization/dequantization introduce226

many additional operations that lead to extra data movement cost. To eliminate these cost, we use227

kernel fusion [68] to fuse quantization operation for activation with its previous element-wise and/or228

reduction operations such as bias-add, GeLU, and LayerNorm into a single operator, as illustrated by229

the green box in Figure 2. For the dequantization operation (e.g., dequantizing the integer output230

from the GeMM operator), we similarly fuse it with our custom GeMM schedule to avoid additional231

read/write accesses to the main memory as illustrated by the blue box in Figure 2.232

By doing the above optimizations, we are able to show significant latency reduction for BERT233

and GPT-3-style models in Section 5. Please see Appendix D for more details about our system234

optimization.235

5 Results236

Experimental Details To evaluate the proposed ZeroQuant, we test it on both BERT and GPT-3237

models. For BERT, we tested both BERTbase and BERTlarge on GLUE benchmark; and for GPT-3-style238

models, we tested the GPT-3350M (i.e., GPT-3-style model with 350M parameters) and GPT-31.3B (i.e.,239

GPT-3-style model with 1.3B parameters) on 20 zero-shot evaluation tasks, including 19 accuracy-240

based tasks and 1 language modeling generation task. To illustrate the scalability of the proposed241

ZeroQuant, we also directly apply it to two of the largest open-sourced GPT-3-style models, i.e.,242

GPT-J6B [67] and GPT-NeoX20B [5]. We use a fixed set of hyperparameters for all the LKD-related243

experiments even though tuning them may benefit our results. Please see Appendix B.2 for more244

training details and see Appendix B.3 for the reported metrics for BERT. To provide a comprehensive245

study, we also include a tuning result in Appendix E on BERT and an ablation study for different246

proposed components in Section 5.5.247

Notation Explanation We use WxAy to represent using x-bit for weight quantization and y-bit for248

activation quantization. Unless specific explanation, for W4/8, we quantize the MHSA’s weight to249

INT8 and FFC’s weight to INT4; for A8/16, we use FP16 activation for self-attention calculation (i.e.,250

the GeMM related to Wq/k/v) and use INT8 for the rest calculation. We use ZeroQuant to represent251

the method with only fine-grained quantization schemes and use ZeroQuant-LKD to represent the252

method with both fine-grained quantization schemes and LKD.253

5.1 Main Results of BERT254

BERTbase We report the results of BERTbase in Table 2. For W8A8, the average accuracy of PTQ255

degrades more than 10 points. However, ZeroQuant can achieve 83.75 scores, which is only 0.2256

lower than baseline. Particularly, as ZeroQuant has no activation range calibration phase, the cost of257

ZeroQuant is 0 which is even cheaper than standard PTQ. As compared to [7], our method achieves a258

better average score (1.29 higher). Meanwhile, as compared to INT8 activation used in ZeroQuant,259

[7] uses mixed INT8 and FP16 activation.260

We also compare our method with our internal trained QAT and other QAT works [57, 77]. As can be261

seen, with comparable accuracy results as those QAT methods, ZeroQuant can save the retraining262

cost from 2900s to 0s for INT8 quantization.263

6



Table 3: Result of BERTlarge on the development set of GLUE benchmark (except WNLI). +We
extensively tuned the learning rate for QAT (see Appendix F for more details).

Precision (Method) CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B Ave. Ave. Time (s)

W16A16 (Baseline) 63.35 86.65 85.91 87.99/91.62 92.24 91.08/88.08 74.01 93.46 90.34/90.11 85.03 N/A

W8A8 [77] (QAT) — — — —/90.9 91.74 90.12/— — —
W8A8 (QAT)+ 59.85 86.65 86.35 85.29/89.43 92.55 91.60/88.60 61.37 93.23 87.55/87.65 82.78 7181
W8A8 (PTQ) 60.57 75.69 76.94 81.13/84.93 88.49 84.04/74.35 46.93 91.74 62.75/55.77 73.54 31
W8A8 (ZeroQuant) 63.38 86.52 85.64 87.75/91.50 92.31 91.09/88.05 72.56 93.35 90.45/90.19 84.81 0

W4/8A16 (PTQ) 0.00 16.85 33.24 68.38/80.89 51.25 63.18/0.00 52.71 52.41 -5.74/-8.51 35.73 31
W4/8A16 (ZeroQuant) 62.99 84.77 84.42 87.50/91.16 91.63 90.03/86.41 48.01 92.16 89.49/89.28 81.23 0
W4/8A16 (ZeroQuant-LKD) 63.72 84.90 84.81 87.99/91.39 91.45 90.34/86.92 51.62 92.43 89.46/89.29 81.85 550

W4/8A8 (ZeroQuant) 62.34 84.62 84.25 87.75/91.38 91.87 89.86/86.09 47.65 91.97 89.39/89.17 81.06 0
W4/8A8 (ZeroQuant-LKD) 63.51 84.70 84.71 88.73/91.99 91.73 90.25/86.74 49.82 92.09 89.34/89.08 81.62 550

Table 4: Post training quantization result of GPT-3350M on 20 zero-shot evaluation datasets. Please
see Table H.1 for the results of all 20 tasks.

Precision (Method) Lambada (") PIQA (") OpenBookQA (") RTE (") ReCoRd (") Ave. 19 Tasks (") Wikitext-2 (#) Time Cost

W16A16 49.3 66.3 29.4 53.8 75.1 38.9 21.5 N/A

W8A8 (PTQ) 42.6 64.1 28.0 53.1 67.5 37.8 26.2 7 mins
W8A8 (ZeroQuant) 51.0 66.5 29.2 53.4 74.9 38.7 21.7 0

W4/8A16 (PTQ) 0.00 51.4 30.2 52.7 16.1 28.9 1.76e5 7 mins
W4/8A16 (ZeroQuant) 10.1 58.5 27.2 52.0 56.5 33.5 88.6 0
W4/8A16 (ZeroQuant-LKD) 39.8 63.8 29.4 53.1 70.1 37.0 30.6 1.1 hours

W4/8A8 (ZeroQuant) 10.5 57.7 28.0 52.7 55.3 33.4 92.1 0
W4/8A8 (ZeroQuant-LKD) 37.4 61.8 28.2 53.1 68.5 36.6 31.1 1.1 hours

For the more aggressive weight quantization with minimal (or no) training quantization, i.e., W4/8A16,264

PTQ fully loses all accuracy (pure random prediction). However, ZeroQuant can still achieve an265

81.65 average score. On top of ZeroQuant, if we add our LKD, the accuracy can be further boosted266

to 82.35 with a cost of 31s per task using only a single GPU, which is 93.5x cheaper than INT8 QAT267

quantization. We also test ZeroQuant and ZeroQuant-LKD under the W4/8A8 quantization scheme268

and both of them achieve similar accuracy performance as W4/8A16. If hyper-parameter tuning269

is applied to LKD, ZeroQuant-LKD can achieve an 83.22 average score under W4/8A8, which is270

similar to QAT’s W8A8 result. Please see Appendix E for more details.271

BERTlarge We test our methods on BERTlarge as well and the results are shown in Table 3. Similar272

to BERTbase, ZeroQuant achieves much better accuracy than PTQ methods. As compared to QAT273

methods, ZeroQuant has comparable results on larger datasets (like MNLI/QQP) and has better274

performance on small tasks (e.e., CoLA/MRPC/RTE). We actually tune QAT for multiple learning275

rates but cannot get even better performance for those small tasks (see Appendix F for more details).276

For more aggressive quantization schemes, like W4/8A16 and W4/8A8, ZeroQuant and ZeroQuant-277

LKD still achieve good accuracy except for RTE but the model size is about 3x smaller than FP16278

counterpart. This is aligned with the INT8 QAT results, which lose significantly more accuracy on279

RTE. Thanks to the lightweight cost of LKD, it only takes about 550s to finish each task even on280

BERTlarge, which is 13x cheaper than QAT.281

5.2 Main Results of GPT-3-style Models282

GPT-3350M We first test ZeroQuant and ZeroQuant-LKD on GPT-3350M and report the result in Table 4.283

The first interesting finding of zero-shot evaluation on GPT-3-stype models is that the accuracy284

performance of accuracy-based tasks is more tolerant to quantization than generation tasks. For285

instance, W8A8 PTQ has a 1.1% average accuracy drop on 19 accuracy-based tasks as compared286

to 4.7 points loss on Wikitext-2. Comparing ZeroQuant with PTQ using W8A8, we can reduce the287

accuracy gap from 1.1% to 0.2% and the perplexity (PPL) gap from 4.7 to 0.2 with no activation288

range calibration cost.289

For W4/8A16 quantization scheme, PTQ can hardly predict reasonable answers for the majority of290

tasks and its generation performance on Wikitext-2 is fully crashed. As a comparison, ZeroQuant still291

achieves non-trivial performance on some tasks but its generation performance significantly degrades292

on Wikitext-2. LKD brings a significant performance boost for this W4/8A16 setting. Note that293

ZeroQuant-LKD increases the accuracy from 33.5 to 37.0 and decreases the PPL from 88.6 to 30.6294

compared to ZeroQuant, and the entire cost of this is just 3.1 hours on a single A100 GPU. Note that295

this is about 0.027% GPU hours of the full pretraining cost (128 A100 GPUs for 32 hours). Similar296

to W4/8A16, ZeroQuant-LKD achieves much better performance than ZeroQuant on W4/8A8 by297

using the lightweight LKD.298
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Table 5: Post training quantization result of GPT-31.3B on 20 zero-shot evaluation datasets. Please
see Table H.2 for the results of all 20 tasks.

Precision (Method) Lambada (") PIQA (") OpenBookQA (") RTE (") ReCoRd (") Ave. 19 Tasks (") Wikitext-2 (#) Time Cost

W16A16 61.3 71.4 33.6 53.1 82.6 42.4 15.3 N/A

W8A8 (PTQ) 54.8 67.7 16.6 54.5 75.7 40.5 18.9 13 mins
W8A8 (ZeroQuant) 62.6 70.7 33.4 52.7 80.9 42.3 15.7 0

W4/8A16 (PTQ) 0.00 50.4 27.0 50.9 15.8 29.0 1.35e5 13 mins
W4/8A16 (ZeroQuant) 43.9 66.5 30.0 52.7 77.3 39.38 21.9 0
W4/8A16 (ZeroQuant-LKD) 59.4 69.5 31.6 52.7 79.7 41.5 17.6 3 hours

W4/8A8 (ZeroQuant) 46.8 66.4 28.8 52.7 76.2 39.24 24.1 0
W4/8A8 (ZeroQuant-LKD) 48.7 68.1 29.0 52.0 77.4 39.90 18.2 3 hours

Table 6: The speedup of our W8A8 as compared to W16A16. We measure the end-to-end average
latency for the entire BERT model, and the time reported is in milliseconds.

Seq Len Precision 128 256
BS 1 2 4 8 16 16 64 128 1 2 4 8 16 16 64 128

BERTbase

W16A16 2.45 3.22 3.85 5.51 9.96 17.93 34.25 67.08 3.13 4.05 5.70 10.55 19.27 36.69 71.75 140.0
W8A8 1.08 1.16 1.42 1.76 2.58 3.90 6.74 12.92 1.22 1.44 2.08 2.88 4.10 7.80 14.66 28.13

Speedup 2.27 2.78 2.71 3.13 3.86 4.60 5.08 5.19 2.57 2.81 2.74 3.66 4.70 4.70 4.89 4.98

BERTlarge

W16A16 5.45 6.38 8.73 13.88 26.34 48.59 92.49 183.4 6.39 8.94 14.66 27.99 51.94 98.78 195.9 384.5
W8A8 2.08 2.58 2.84 3.79 6.21 10.28 18.86 36.62 2.55 3.36 4.16 6.88 11.61 21.20 41.24 79.90

Speedup 2.62 2.47 3.07 3.66 4.24 4.73 4.90 5.01 2.51 2.66 3.52 4.07 4.47 4.66 4.75 4.81

GPT-31.3B The results of GPT-31.3B are shown in Table 5. Similar to GPT-3350M, for W8A8, Zero-299

Quant has much better performance than PTQ with less no activation calibration cost, particularly300

for the generation task Wikitext-2 (3.2 points lower). Also, for W4/8 quantization, LKD can bring301

non-trivial performance gain for ZeroQuant. The cost of LKD is about 0.02% of the full pre-training302

cost (128 A100 GPUs for 120 hours)303

5.3 Latency Reduction of BERT and GPT-3-style Models304

We compare the inference speed of BERT between FP16 and our INT8 versions in Table 6 on a single305

40G-A100 GPU. Using our efficient quantization kernel implementation and operator fusion, the306

INT8 model can achieve 2.27–5.19x speedup on BERTbase and 2.47–5.01x on BERTlarge.307

We also include the latency comparison of GPT-3-style models between FP16 and our INT8 version.308

Particularly, we use the model to generate the first 50 tokens based on a given text and measure309

the average latency. Our INT8 model leads to 4.16x/4.06x speedup for GPT-3350M/GPT-31.3B as310

compared to the FP16 counterpart.311

5.4 A Showcase of GPT-J6B and GPT-NeoX20B312

To demonstrate the scalability of ZeroQuant, we applied it to two of the largest open-sourced models,313

i.e., GPT-J6B and GPT-NeoX20B, which have 6B and 20B parameters separately.314

We report the results of GPT-J6B in Table 7 on three generation datasets, i.e., PTB [42], Wikitext-2,315

and Wikitext-103 [43]. As can be seen, as compared to FP16 precision, ZeroQuant achieves similar316

PPL on all three different tasks. To compare the latency, we again use the average latency number to317

generate the first 50 tokens. Our W8A8 can get up to 3.67x speedup compared to the FP16 version.318

To quantize GPT-NeoX20B to W8A8 for all GeMMs, the accuracy significantly decreases. We retrieve319

the quantization of each weight matrix and of each activation, and finally find out that the activation320

quantization for the attention calculation (i.e., the input of self-attention) causes the accuracy loss.321

We conjecture that this is because of the sensitivity of the self-attention module for extra-large models322

(20B) but cannot verify this for other models due to the lack of open-sourced extra-large models and323

the full evaluation pipeline. As such, we leave the input activation for self-attention in FP16 and324

quantize the rest to INT8. The results are shown in Table 8. Our W8A8/16 achieves similar accuracy325

performance but can reduce both the GPU resource requirement (from 2 A100 GPUs to 1) and the326

latency from 65ms to 25ms, which together lead to 5.2x better throughput/efficiency.327

5.5 Ablation Study of Different Components328

To investigate the performance gain of each component we introduced in Section 4, i.e., group-wise329

weight quantization, token-wise activation quantization, and lightweight layer-by-layer knowledge330

distillation, we here do an ablation study on BERTlarge with W4/8A8.331
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Table 7: Post training quantization result of GPT-
J6B on three zero-shot generation tasks
Precision PTB Wikitext-2 Wikitext-103 Latency

W16A16 20.47 10.35 10.35 29.13ms (1x)
W8A8 20.97 10.51 10.52 7.94ms (3.67x)

Table 8: Post training quantization result of GPT-
NeoX20B on 19 zero-shot evaluation datasets.
Please see Table H.4 for the results of all 19 tasks.
Precision Lambada PIQA Ave. 19 Tasks Latency

W16A16 71.7 77.7 50.5 2⇥65ms (1x)
W8A8/16 71.9 78.3 50.4 1⇥25ms (5.2x)

Table 9: Ablation study of different components for BERTlarge on the development set of GLUE.
The quantization scheme used here is W4/8A8. Here, GP is the abbreviation of group-wise weight
quantization, TQ is the abbreviation of token-wise activation quantization.

GQ TQ LKD CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B Ave.
7 7 7 -0.79 33.07 32.94 68.38/80.54 49.42 63.18/0.00 52.71 52.29 -4.27/-1.90 35.85
3 7 7 59.81 66.63 68.79 68.63/71.17 83.87 78.24/61.30 46.93 89.45 54.58/32.52 66.52
3 3 7 62.34 84.62 84.25 87.75/91.38 91.87 89.86/86.09 47.65 91.97 89.39/89.17 81.06
3 3 3 63.51 84.70 84.71 88.73/91.99 91.73 90.25/86.74 49.82 92.09 89.34/89.08 81.62

Table 10: Post training quantization result of GPT-3350M on 20 zero-shot evaluation datesets The
quantization scheme here is W4/8A8. Please see Table H.3 for the results of all 20 tasks.

Method Data Resource Lambada (") PIQA (") OpenBookQA (") RTE (") ReCoRd (") Ave. 19 Tasks (") Wikitext-2 (#)

ZeroQuant — 10.5 57.7 28.0 52.7 55.3 33.4 92.1
ZeroQuant-LKD Random data 26.1 59.3 29.2 50.5 64.9 34.5 40.6
ZeroQuant-LKD Wikipedia 33.9 62.4 28.0 52.7 69.5 36.2 30.4
ZeroQuant-LKD Original data 37.4 61.8 28.2 53.1 68.5 36.6 31.1

We present the results in Table 9. As can be seen, group-wise weight quantization boosts the accuracy332

(random-guess prediction) from PTQ to a non-trivial result (66.52). Further adding token-wise333

quantization improves 14.54 points accuracy performance. On top of those (i.e., ZeroQuant), LKD334

further brings a 0.56 point gain.335

5.6 No Access to The Original Training Data336

As mentioned in previous sections, the original training data are oftentimes hard to access due to the337

privacy and/or confidential issues. Therefore, we here study the performance of our LKD when there338

is no direct access to the original training data. As the distillation objective of our LKD does not339

depend on the label, the training data used for LKD can be very flexible.340

We compare the performance of GPT-3350M on W4/8A8 quantization scheme using three different341

training data resources, i.e., random data (using random integer number to generate token ids),342

Wikipedia (using Huggingface to get the data1), and original PILE dataset.343

The results are shown in Table 10. Compared to ZeroQuant, LKD using random data can boost the344

accuracy by 1.1% and reduce the PPL from 92.1 to 40.6. The reason why random data can still345

significantly improve the performance is that LKD does not optimize the end-to-end pipeline and346

it only layer-by-layer learns the internal dependency from the teacher model. Therefore, random347

data can also provide meaningful information. Using Wikipedia data from Huggingface can further348

improve the accuracy to 36.2 and reduce the PPL to 30.4, which is comparable to the results using349

the original data. This indicates that a clean text dataset can be used for LKD when we do not have350

access to the original full dataset.351

6 Conclusions352

With the rapid growth of large model sizes, we have reach a point to consider how to serve those353

models in practice. Although several works demonstrate that post-training quantization can be applied354

to BERT models, to the best of our knowledge, there have been no existing works on (1) billion-scale355

GPT-3-style models, (2) ultra-low precision post-training quantization, and (3) end-to-end solution of356

how to efficiently serve the quantized model online. In this work, we offer fine-grained compression357

schemes for both weight and activations to enable INT8 quantization for up to 20B-scale models358

(GPT-NeoX20B). We also offer a novel affordable layer-by-layer knowledge distillation for ultra-low359

precision quantization, which leads to 3x model size reduction compared to FP16 model while360

achieving minimal accuracy degradation. Furthermore, we provide a system backend support and361

show up to 5.19x speedup on BERT models and 5.2x better efficiency on GPT-NeoX20B.362

1https://huggingface.co/datasets/wikipedia
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