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Abstract

This survey presents a comprehensive exam-001
ination of knowledge conflicts in Large Lan-002
guage Models (LLMs). It explores the intricate003
challenges that arise when LLMs integrate con-004
textual knowledge with their parametric knowl-005
edge. Our focus is on three primary types of006
knowledge conflicts: context-memory, inter-007
context, and intra-memory conflict. These con-008
flicts can significantly impact the trustworthi-009
ness and accuracy of LLMs, especially in real-010
world applications where misinformation and011
noise are prevalent. The survey categorizes012
these conflicts, investigates their causes, and013
reviews potential mitigation strategies. It aims014
to provide insights into enhancing the robust-015
ness of LLMs, making it a valuable resource016
for advancing research in this evolving area.017

1 Introduction018

Large language models (LLMs) (Brown et al.,019

2020; OpenAI, 2023b; Touvron et al., 2023) are020

renowned for encapsulating a vast repository of021

world knowledge (Petroni et al., 2019; Roberts022

et al., 2020), often referred to as parametric knowl-023

edge. These models demonstrate exceptional profi-024

ciency in knowledge-intensive tasks including QA025

(Petroni et al., 2019), fact-checking (Gao et al.,026

2023a), knowledge generation (Chen et al., 2023c),027

inter alia. Concurrently, LLMs continue to en-028

gage with external contextual knowledge in their029

applications (Pan et al., 2022). This external knowl-030

edge may originate from various sources, including031

user prompts (Liu et al., 2023a), interactive dia-032

logues (Zhang et al., 2020), or retrieved documents033

from the Web (Lewis et al., 2020; Shi et al., 2023c),034

and tools (Schick et al., 2023; Zhuang et al., 2023).035

While integrating contextual information is in-036

tended to augment LLMs, enabling them to keep037

abreast of current events (Kasai et al., 2022) and038

generate more accurate responses (Shuster et al.,039

2021), it can also pose challenges. This integration040

Brazil holds the 
record for the 

most FIFA World 
Cup wins…

…I think Argentina
has won the most
championships.

As of my last update in April 2023, the
national team with the most FIFA World
Cup championships is Brazil. They have

won the tournament a total of five times.

Italy the most successful national teams
in the history of the World Cup, having

won four titles (1934, 1938, 1982, 2006).

I. Contextual Knowledge

II. Parametric Knowledge

Retrieved Documents User Prompt Dialogue

Question: Which team has won the most FIFA World Cup championships?

…, Germany has 
officially claimed

the title of the
most successful
national team…

With a staggering
total of five
World Cup 

triumphs, the
Brazilian…

Inter-context conflict

Intra-memory conflict
Context-memory conflict

Figure 1: LLMs can encounter three distinct types of
knowledge conflicts, which depend on the sources of
knowledge — whether provided in the context (the
yellow chatboxes) or parametric (the blue chatboxes)
within the LLM itself. In the given example, the LLM
is presented with a complex scenario involving rich con-
flicts about the knowledge related to a user’s question
(the purple chatbox). This scenario requires the LLM to
resolve the conflicts to provide accurate responses.

may lead to interference with the LLM’s paramet- 041

ric knowledge. Furthermore, in real-world scenar- 042

ios, the context provided to these models might 043

be fraught with noise (Zhang and Choi, 2021) or 044

even deliberately crafted misinformation (Du et al., 045

2022b; Pan et al., 2023a), complicating their abil- 046

ity to process and respond accurately (Chen et al., 047

2022). The discrepancies among the contexts 048

and the model’s parametric knowledge are re- 049

ferred to as knowledge conflicts. 050

Knowledge conflict is rooted in open-domain 051

QA research. The concept gained attention in Long- 052

pre et al. (2021) that focused on the entity-based 053

conflicts between parametric knowledge and exter- 054

nal passages. Concurrently, discrepancies among 055

multiple passages were also scrutinized in the same 056

year (Chen et al., 2022). Knowledge conflicts at- 057

tract significant attention with the recent advent of 058

LLMs. For instance, recent studies find that LLMs 059
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exhibit both adherence to parametric knowledge060

and susceptibility to contextual influences (Xie061

et al., 2023), which can be problematic when this062

external knowledge is factually incorrect (Pan et al.,063

2023b). Given the implications for the trustworthi-064

ness (Du et al., 2022b), real-time accuracy (Kasai065

et al., 2022), and robustness of LLMs (Ying et al.,066

2023), it is imperative to delve deeper into under-067

standing and resolving knowledge conflicts (Xie068

et al., 2023; Wang et al., 2023g).069

As of the time of writing, to the best of our070

knowledge, there is no systematic survey dedicated071

to the investigation of knowledge conflicts. Ex-072

isting reviews (Zhang et al., 2023b; Wang et al.,073

2023a; Feng et al., 2023) touch upon knowledge074

conflicts as a subtopic within their broader contexts.075

To fill the gap, we aim to provide a comprehensive076

review encompassing the categorization, cause and077

behavior analysis, and mitigation strategies for ad-078

dressing various forms of knowledge conflicts.079

2 The Problem080

2.1 Background081

There are three kinds of knowledge conflicts, as il-082

lustrated in Figure 1. Considering a user’s question,083

the LLM’s provided context (which may include084

retrieved documents, user prompts, dialogue his-085

tory, inter alia) and its parameterized information086

can lead to conflicting answers. The three types087

of conflicts can occur simultaneously, presenting088

significant challenges for LLMs in deriving fac-089

tually accurate responses. The typical one is the090

discrepancies between contextual information and091

the models’ parameterized knowledge (Longpre092

et al., 2021; Li et al., 2022a; Xie et al., 2023). This093

phenomenon, dubbed as as context-memory con-094

flict (CM), is detailed in § 3. Following Chen et al.095

(2022) and Feng et al. (2023), we also recognize096

the importance of conflicts within the contextual097

information itself. This is particularly relevant in098

the era of retrieval-augmented language models099

(RALMs) (Lewis et al., 2020), and is referred to as100

inter-context conflict (IC, see § 4). Furthermore,101

we consider intra-memory conflict (IM), which102

occurs when an LLM’s internal memorized knowl-103

edge is in contradiction (deferred to § A for space104

limitations).105

2.2 Problem Formulation106

A knowledge conflict can be formally represented107

using a pair of knowledge statements (x, x′), where108

x and x′ are distinct pieces of information about 109

the same subject. The conflict arises when these 110

statements are contradictory or incompatible with 111

each other, i.e., 112

KC(x, x′) =

{
True, if x ∧ x′ = False
False, otherwise,

(1) 113

where x ∧ x′ denotes two statements are true si- 114

multaneously. Please note that knowledge conflicts 115

can also be generalized to more than 2 statements. 116

In the context of large language models, we use 117

G ∼ LLM(·|C) to denote the generation process, 118

where G is the generation and C is the given con- 119

text. If KC(x, x′) = True, then the LLM is en- 120

countered with a knowledge conflict. Depending 121

on the origins of (x, x′), we categorize knowledge 122

conflicts to three types: 123

• Context-memory conflict: Using a probe 124

prompt pprobe to elicit the memorized (para- 125

metric) knowledge Mem ∼ LLM(·|pprobe), 126

where Mem ⊢ x1. The LLM is provided with 127

a context C, where C ⊢ x′. 128

• Inter-context conflict: The LLM is provided 129

with a context C, where C ⊢ x ∧ C ⊢ x′. 130

• Intra-memory conflict: Given two probes 131

pprobe, p′probe. Mem ∼ LLM(·|pprobe) and 132

Mem′ ∼ LLM(·|p′probe), where Mem ⊢ 133

x ∧Mem′ ⊢ x′. 134

Note that the probe prompt query the LLM in a 135

closed-book QA setting (Roberts et al., 2020), i.e., 136

it does not involve the direct knowledge about the 137

subject, i.e., pprobe ⊬ x ∧ pprobe ⊬ x′. 138

2.3 Our Philosophy 139

As illustrated in Figure 2, we conceptualize lifecy- 140

cle of knowledge conflicts as both an effect, orig- 141

inating from various causes, and as a cause lead- 142

ing to various behaviors in the model. Knowledge 143

conflicts serve as a crucial intermediary between 144

causes and effects. For instance, they are a signif- 145

icant factor that can cause the model to produce 146

factually incorrect information, a.k.a., hallucina- 147

tions (Ji et al., 2023; Zhang et al., 2023b). Our 148

research, in a manner akin to Freudian psychoanal- 149

ysis, underscores the significance of understanding 150

the origins of these conflicts. Although some ex- 151

isting analyses (Chen et al., 2022; Xie et al., 2023; 152

1x ⊢ y denotes y is entailed by x.
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Figure 2: We view knowledge conflict not only as a standalone phenomenon but also as a nexus that connects
various causal triggers (causes) with the behaviors of LLMs. While existing (research) literature mainly focus on II.
Analysis, our survey involves systematically observing these conflicts, offering insights into their emergence and
impact on LLM behavior, along with the desirable behaviors and related mitigation strategies.

Wang et al., 2023g) tend to construct such conflicts153

artificially, we posit that these analyses do not suffi-154

ciently address the interconnectedness of the issue.155

Going beyond reviewing and analyzing causes156

and effects, we delve deeper to provide a system-157

atic review of mitigation strategies, which are em-158

ployed to minimize the undesirable consequences159

of knowledge conflicts, i.e., to encourage the model160

to exhibit desired behaviors that conform to specific161

objectives (it should be noted that these objectives162

may differ based on the particular scenario). Based163

on the timing relative to potential conflicts, strate-164

gies are divided into two primary categories: pre-165

hoc and post-hoc strategies. The key distinction166

between pre-hoc and post-hoc approaches lies in167

whether adjustments are made before or after poten-168

tial conflicts arise2. The taxonomy of knowledge169

conflicts is outlined in Figure 3. We sequentially170

discuss the three kinds of knowledge conflicts, de-171

tailing for each the causes, analysis, and available172

mitigation strategies, which are organized accord-173

ing to their respective objectives.174

3 Context-Memory Conflict175

Context-memory conflict is the most extensively176

studied one among the three types of conflict.177

LLMs often have fixed parametric knowledge178

due to the prohibitive costs of training (Sharir179

et al., 2020; Hoffmann et al., 2022; Smith, 2023),180

while external information continues to evolve181

rapidly (De Cao et al., 2021; Kasai et al., 2022).182

2Another interpretation is that pre-hoc strategy is proactive
while post-hoc is reactive.

3.1 Causes 183

The ultimate reason for context-memory conflict 184

is the knowledge disparity between the context 185

and parametric knowledge. We consider two main 186

causes: temporal misalignment (Lazaridou et al., 187

2021; Luu et al., 2021; Dhingra et al., 2022) and 188

misinformation pollution (Du et al., 2022b; Pan 189

et al., 2023a). 190

Temporal Misalignment. Temporal misalignment 191

is natural since a model trained on data collected 192

in the past may not accurately reflect current or 193

future states (i.e., the contextual knowledge after 194

the deployment) (Luu et al., 2021; Lazaridou et al., 195

2021; Liska et al., 2022). Such misalignment can 196

lead to decreased performance and relevancy of 197

the model’s outputs over time, as it may not ac- 198

count for new trends, changes in language use, cul- 199

tural shifts, or updates in knowledge. Researchers 200

have observed that temporal misalignment rele- 201

gates the model’s performance on various NLP 202

tasks (Luu et al., 2021; Zhang and Choi, 2021; 203

Dhingra et al., 2022; Kasai et al., 2022; Cheang 204

et al., 2023). Temporal Misalignment only seems 205

to get worse in the future due to the paradigm of 206

pre-training and the increased training costs that 207

accompany model enlargement (Chowdhery et al., 208

2023; OpenAI, 2023b). 209

Prior work tries to address temporal misalign- 210

ment by focusing on three lines: Knowledge editing 211

(KE) focuses on updating the parametric knowledge 212

of an existing pre-trained model directly (Sinitsin 213

et al., 2019; De Cao et al., 2021; Mitchell et al., 214

2021; Onoe et al., 2023). Retrieval-augmented 215

generation (RAG) leverages a retrieval model to 216

fetch relevant documents from external sources 217
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Context-Memory
Conflict (§ 3)

Causes
(§ 3.1)

Temporal Misalignment
Lazaridou et al. (2021), Luu et al. (2021), Jang et al. (2021),
Jang et al. (2022a), Liska et al. (2022), Dhingra et al. (2022),
Kasai et al. (2022), Margatina et al. (2023), Cheang et al. (2023)

Misinformation Pollution Du et al. (2022b), Pan et al. (2023a), Pan et al. (2023b),
Xu et al. (2023), Weller et al. (2022)

Analysis
(§ 3.2)

Open-domain QA Longpre et al. (2021), Chen et al. (2022), Tan et al. (2024)

General Xie et al. (2023), Wang et al. (2023g), Ying et al. (2023),
Qian et al. (2023), Xu et al. (2023)

Mitigation
(§ 3.3)

Faithful to Context

Fine-tuning
KAFT (Li et al., 2022a) ,
TrueTeacher (Gekhman et al., 2023) ,
K-DIAL (Xue et al., 2023)

Prompting OPIN (Zhou et al., 2023c)

Decoding CAD (Shi et al., 2023a)

Knowledge Plug-in CuQA (Lee et al., 2022a)

Pre-training ICLM (Shi et al., 2023b)

Predict Fact Validity Zhang and Choi (2023)

Discriminating Misinformation
(Faithful to Memory)

Prompting Pan et al. (2023b) , Xu et al. (2023)

Query Augmentation Weller et al. (2022)

Training Discriminator Hong et al. (2023)

Disentangling Sources DisentQA (Neeman et al., 2022) ,
Wang et al. (2023g)

Combining Sources COMBO (Zhang et al., 2023c)

Inter-Context
Conflict (§ 4)

Causes
(§ 4.1)

Misinformation Chen and Shu (2023b), Vergho et al. (2024), Chen et al. (2023b)

Outdated Information Zhang and Choi (2021), Kasai et al. (2022)

Analysis
(§ 4.2)

Performance Impact Chen et al. (2022), Xie et al. (2023), Pan et al. (2023a),
Zhang and Choi (2021), Du et al. (2022b),

Detection Ability Li et al. (2023a), Zheng et al. (2022)

Mitigation
(§ 4.3)

Eliminating Conflict

Specialized Models PCNN (Hsu et al., 2021) , Pielka et al. (2022) ,
Wu et al. (2022)

General Models Leite et al. (2023) , Cheung and Lam (2023) ,
Leite et al. (2023)

Improving Robustness
Training Approach Hong et al. (2023)

Query Augmentation CAR (Weller et al., 2022)

Intra-Memory
Conflict (§ A)

Causes
(§ A.1)

Bias in Training Corpora Wang et al. (2023d), Xu et al. (2022),

Decoding Strategy Lee et al. (2022b), Huang et al. (2023)

Knowledge Editing Yao et al. (2023), Li et al. (2023d)

Analysis
(§ A.2)

Self-Inconsistency
Dong et al. (2023), Zhao et al. (2023b), Manakul et al. (2023),
Dhuliawala et al. (2023), Zhang et al. (2023a), Mündler et al. (2023),
Agrawal et al. (2023), Hase et al. (2023)

Latent Representation
of Knowledge Chuang et al. (2023), Li et al. (2023b)

Cross-lingual Inconsistency Wang et al. (2023e), Qi et al. (2023)

Mitigation
(§ A.3)

Improving Consistency

Fine-tuning Elazar et al. (2021) , Li et al. (2023c)

Plug-in CRM (Jang and Lukasiewicz, 2023)

Output Ensemble ConCoRD (Mitchell et al., 2022) ,
Zhao et al. (2023b)

Improving Factuality ITI (Li et al., 2023b) , Dola (Chuang et al., 2023)

Figure 3: Taxonomy of knowledge conflicts. We mainly list works in the era of large language models. denotes
pre-hoc mitigation strategy and denotes post-hoc mitigation strategy.

(e.g., database, Internet) to aid the model and main-218

tains its parameters unchanged (Karpukhin et al.,219

2020; Guu et al., 2020; Lewis et al., 2020; Lazari-220

dou et al., 2022; Borgeaud et al., 2022; Peng et al.,221

2023; Vu et al., 2023). Continue learning (CL)222

aims to update the internal knowledge through con-223

tinual pre-training on new and updated data (Lazari-224

dou et al., 2021; Jang et al., 2021, 2022a).225

However, these methods on mitigating tempo-226

ral misalignment are not magic bullets. KE can227

bring in side effects of knowledge conflict, leading 228

to knowledge inconsistency (i.e., a sort of intra- 229

memory conflict) and may even enhance the hal- 230

lucination of LLMs (Li et al., 2023d; Pinter and 231

Elhadad, 2023). CL suffers from catastrophic 232

forgetting issues and also is computationally- 233

intensive (De Lange et al., 2021; He et al., 2021; 234

Wang et al., 2023f). For RAG, it is inevitable to 235

encounter knowledge conflicts since the model’s pa- 236

rameters are not updated (Chen et al., 2021; Zhang 237
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and Choi, 2021).238

Misinformation Pollution. Misinformation pol-239

lution emerges as another contributor to context-240

memory conflict, particularly for time-invariant241

knowledge (Jang et al., 2021) that the model has242

learned accurately. Adversaries exploit this vul-243

nerability by injecting false or misleading infor-244

mation into both the Web corpus of retrieved doc-245

uments (Pan et al., 2023a,b; Weller et al., 2022)246

and user conversations (Xu et al., 2023). The latter247

poses a practical threat, as adversaries can leverage248

techniques such as prompt injection attacks (Liu249

et al., 2023b; Greshake et al., 2023; Yi et al., 2023).250

In these adversarial contexts, where the information251

is factually incorrect, the model may face severe252

consequences if it unquestioningly accepts opin-253

ions present in the context (Xie et al., 2023; Pan254

et al., 2023b; Xu et al., 2023).255

Researchers observe that fabricated, malicious256

misinformation can markedly decrease the accu-257

racy of automated fact checkers (Du et al., 2022b)258

and ODQA models (Pan et al., 2023a,b). Recent259

studies also highlight the model’s tendency to align260

with user opinions, a.k.a., sycophancy, further exac-261

erbating the issue (Perez et al., 2022; Turpin et al.,262

2023; Wei et al., 2023; Sharma et al., 2023).263

Furthermore, in the current landscape of LLMs,264

there is growing apprehension in the NLP com-265

munity regarding the potential generation of mis-266

information by LLMs (Ayoobi et al., 2023; Kidd267

and Birhane, 2023; Carlini et al., 2023; Zhou et al.,268

2023b; Spitale et al., 2023; Chen and Shu, 2023b).269

Researchers acknowledge the challenges associ-270

ated with detecting misinformation generated by271

LLMs (Tang et al., 2023; Chen and Shu, 2023a;272

Jiang et al., 2023). This underscores the urgency of273

addressing the nuanced challenges posed by LLMs274

in the context of contextual misinformation.275

3.2 Analysis276

How do LLMs navigate context-memory conflicts?277

This section will detail the relevant research, al-278

though they present quite different answers. De-279

pending on the scenario, we first introduce the280

Open-domain question answering (ODQA) setup281

and then focus on general setups.282

ODQA. In earlier ODQA literature, Longpre et al.283

(2021) explore how QA models act when the284

provided contextual information contradicts the285

learned information. The authors create an auto-286

mated framework that identifies QA instances with287

named entity answers, then substitutes mentions 288

of the entity in the gold document with an alter- 289

nate entity, thus creating the conflict context. This 290

study reveals a tendency of these models to over- 291

rely on parametric knowledge. Chen et al. (2022) 292

revisits this setup while reporting differing obser- 293

vations, they note that models predominantly rely 294

on contextual knowledge in their best-performing 295

settings. They attribute this divergence in findings 296

to two factors. Firstly, the entity substitution ap- 297

proach used by Longpre et al. (2021) potentially 298

reduces the semantic coherence of the perturbed 299

passages. Secondly, Longpre et al. (2021) based 300

their research on single evidence passages, as op- 301

posed to Chen et al. (2022), who utilize multiple 302

ones. Recently, with the emergence of really “large” 303

language models such as ChatGPT (Ouyang et al., 304

2022; OpenAI, 2023a) and Llama (Touvron et al., 305

2023), inter alia, researchers re-examined this is- 306

sue. Tan et al. (2024) examine how LLMs blend 307

retrieved context with generated knowledge in the 308

ODQA setup, and discover models tend to favor the 309

parametric knowledge, influenced by the greater re- 310

semblance of these generated contexts to the input 311

questions and the often incomplete nature of the 312

retrieved information, especially within the scope 313

of conflicting sources. 314

General. Xie et al. (2023) leverage LLMs to gen- 315

erate conflicting context alongside the memorized 316

knowledge. They find that LLMs are highly recep- 317

tive to external evidence, even when it conflicts 318

with their parametric, provided that the external 319

knowledge is coherent and convincing. Meanwhile, 320

they also identify a strong confirmation bias (Nick- 321

erson, 1998) in LLMs, i.e., the models tend to favor 322

information consistent with their internal memory, 323

even when confronted with conflicting external evi- 324

dence. Wang et al. (2023g) posit that the desired be- 325

haviors when an LLM encounters conflicts should 326

be to pinpoint the conflicts and provide distinct an- 327

swers. They find while LLMs perform well in iden- 328

tifying the existence of knowledge conflicts, they 329

struggle to determine the specific conflicting seg- 330

ments and produce a response with distinct answers 331

amidst conflicting information. Ying et al. (2023) 332

analyze the robustness of LLMs under conflicts 333

with a focus on two perspectives: factual robustness 334

(the ability to identify correct facts from prompts 335

or memory) and decision style (categorizing LLMs’ 336

behavior as intuitive, dependent, or rational-based 337

on cognitive theory). The study finds that LLMs 338
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are highly susceptible to misleading prompts, espe-339

cially in the context of commonsense knowledge.340

Qian et al. (2023) evaluate the potential interaction341

between parametric and external knowledge more342

systematically, cooperating knowledge graph (KG).343

They reveal that LLMs often deviate from their344

parametric knowledge when presented with direct345

conflicts or detailed contextual changes. Xu et al.346

(2023) study how large language models (LLMs)347

respond to knowledge conflicts during interactive348

sessions. Their findings suggest LLMs tend to fa-349

vor logically structured knowledge, even when it350

contradicts factual accuracy.351

3.3 Mitigation352

Mitigation strategies are organized according to353

their objectives, i.e., the desired behaviors we ex-354

pect from an LLM when it encounters conflicts.355

Strategies are categorized to the following objec-356

tives: Faithful to context strategies aim to align357

with contextual knowledge, focusing on context pri-358

oritization. Discriminating misinformation strate-359

gies encourage skepticism towards dubious context360

in favor of parametric knowledge. Disentangling361

sources strategies treat context and knowledge sep-362

arately. Combining sources strategies aim for an363

integrated response leveraging both context and364

parametric knowledge.365

Faithful to Context. Fine-tuning. Li et al.366

(2022a) argues that an LLM should prioritize con-367

text for task-relevant information and rely on in-368

ternal knowledge when the context is unrelated.369

They name the two properties controllability and ro-370

bustness. They introduce Knowledge Aware Fine-371

Tuning (KAFT) to strengthen the two properties372

by incorporating counterfactual and irrelevant con-373

texts to standard training datasets. Gekhman et al.374

(2023) introduce TrueTeacher, which focuses on375

improving factual consistency in summarization376

by annotating model-generated summaries with377

LLMs. This approach helps in maintaining faith-378

fulness to the context of the original documents,379

ensuring that generated summaries remain accu-380

rate without being misled by irrelevant or incorrect381

details. DIAL (Xue et al., 2023) focuses on im-382

proving factual consistency in dialogue systems383

via direct knowledge enhancement and RLFC for384

aligning responses accurately with provided factual385

knowledge.386

Prompting. Zhou et al. (2023c) explores enhancing387

LLMs’ adherence to context through specialized388

prompting strategies, specifically opinion-based 389

prompts and counterfactual demonstrations. These 390

techniques are shown to significantly improve 391

LLMs’ performance in context-sensitive tasks by 392

ensuring they remain faithful to relevant context, 393

without additional training. 394

Decoding. Shi et al. (2023a) introduces Context- 395

aware Decoding (CAD) to reduce hallucinations 396

by amplifying the difference in output probabilities 397

with and without context. CAD enhances faithful- 398

ness in LLMs by effectively prioritizing relevant 399

context over the model’s prior knowledge, espe- 400

cially in tasks with conflicting information. 401

Knowledge Plug-in. Lee et al. (2022a) proposes 402

Continuously-updated QA (CuQA) for improving 403

LMs’ ability to integrate new knowledge. Their 404

approach uses plug-and-play modules to store up- 405

dated knowledge, ensuring the original model re- 406

mains unaffected. Unlike traditional continue pre- 407

training or fine-tuning approaches, CuQA can solve 408

knowledge conflicts. 409

Pre-training. ICLM (Shi et al., 2023b) is a new 410

pre-training method that extends LLMs’ ability to 411

handle long and varied contexts across multiple 412

documents. This approach could potentially aid in 413

resolving knowledge conflicts by enabling models 414

to synthesize information from broader contexts, 415

thus improving their understanding and application 416

of relevant knowledge. 417

Predict Fact Validity. Zhang and Choi (2023) ad- 418

dresses knowledge conflict by introducing fact du- 419

ration prediction to identify and discard outdated 420

facts in LLMs. This approach improves model 421

performance on tasks like ODQA by ensuring ad- 422

herence to up-to-date contextual information. 423

Discriminating Misinformation (Faithful to 424

Memory). Prompting. To address misinforma- 425

tion pollution, Pan et al. (2023b) proposes defense 426

strategies such as misinformation detection and 427

vigilant prompting, aiming to enhance the model’s 428

ability to remain faithful to factual, parametric in- 429

formation amidst potential misinformation. Simi- 430

larly, Xu et al. (2023) utilizes a system prompt to 431

remind the LLM to be cautious about potential mis- 432

information and to verify its memorized knowledge 433

before responding. This approach aims to enhance 434

the LLM’s ability to maintain faithfulness. 435

Query Augmentation. Weller et al. (2022) leverages 436

the redundancy of information in large corpora to 437

defend misinformation pollution. Their method in- 438

volves query augmentation to find a diverse set of 439
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less likely poisoned passages, coupled with a confi-440

dence method named Confidence from Answer Re-441

dundancy (CAR), which compares the predicted an-442

swer’s consistency across retrieved contexts. This443

strategy mitigates knowledge conflicts by ensuring444

the model’s faithfulness through cross-verification445

of answers in multiple sources.446

Training Discriminator. Hong et al. (2023) fine-447

tune a smaller LM as discriminator and combine448

prompting techniques to develop the model’s abil-449

ity to discriminate between reliable and unreliable450

information, helping the model remain faithful451

when confronted with misleading context.452

Disentangling Sources. DisentQA (Neeman et al.,453

2022) trains a model that predicts two types of454

answers for a given question: one based on con-455

textual knowledge and one on parametric knowl-456

edge. Wang et al. (2023g) introduce a method to457

improve Large Language Models’ (LLMs) han-458

dling of knowledge conflicts. Their approach is a459

three-step process designed to help LLMs detect460

conflicts, accurately identify the conflicting seg-461

ments, and generate distinct, informed responses462

based on the conflicting data, aiming for more pre-463

cise and nuanced model outputs.464

Combining Sources. Zhang et al. (2023c) propose465

COMBO, a framework that pairs compatible gen-466

erated and retrieved passages to resolve discrepan-467

cies. It uses discriminators trained on silver labels468

to assess passage compatibility, improving ODQA469

performance by leveraging both LLM-generated470

(parametric) and external retrieved knowledge.471

4 Inter-Context Conflict472

4.1 Causes473

Misinformation. Misinformation has long been a474

significant concern in the modern digital age (Shu475

et al., 2017; Zubiaga et al., 2018; Kumar and Shah,476

2018; Meel and Vishwakarma, 2020; Fung et al.,477

2022; Wang et al., 2023b). Currently, the use of re-478

trieve augment generate (RAG) LLMs has emerged479

as a novel paradigm in the field. However, the480

incorporation of retrieved documents as external481

knowledge introduces a noteworthy concern – the482

potential for misinformation like fake news within483

these retrieved documents (Chen et al., 2023b). In484

the past, there have been instances of AI being uti-485

lized for the generation of misinformation (Zhou486

et al., 2023b; Vergho et al., 2024; Weidinger et al.,487

2021). With the formidable generative capabilities488

of LLMs, this issue has been further exacerbated,489

contributing to a significant surge in misinforma- 490

tion generated by LLMs (Chen and Shu, 2023b; 491

Menczer et al., 2023; Barrett et al., 2023; Bengio 492

et al., 2023; Wang et al., 2023c; Solaiman et al., 493

2023; Weidinger et al., 2023; Ferrara, 2023; Gold- 494

stein et al., 2023). 495

Outdated Information. In addition to the chal- 496

lenge of misinformation, it is important to recog- 497

nize that facts can evolve over time. The retrieved 498

documents may contain updated and outdated in- 499

formation from the network simultaneously (Chen 500

et al., 2021; Liska et al., 2022; Zhang and Choi, 501

2021; Kasai et al., 2022). 502

4.2 Analysis 503

Performance Impact. Previous research has em- 504

pirically demonstrated that the performance of a 505

pre-trained language model can be significantly in- 506

fluenced by the presence of misinformation (Zhang 507

and Choi, 2021) or outdated information (Du et al., 508

2022b) within a specific context. In a recent study, 509

Pan et al. (2023a) introduced a misinformation at- 510

tack strategy involving the creation of fabricated 511

versions of Wikipedia articles, which are subse- 512

quently inserted into the authentic Wikipedia cor- 513

pus. Their research findings revealed that existing 514

language models are susceptible to misinformation 515

attacks, irrespective of whether the fake articles 516

are manually crafted or generated by models. No- 517

tably, when the retrieval dataset includes 4% of 518

misinformation, the model’s Exact Match (EM) 519

performance drops by approximately 10%. To 520

gain a deeper understanding of how LLMs behave 521

when encountering contradictory contexts, Chen 522

et al. (2022) primarily conducted experiments using 523

Fusion-in-Decoder on the NQ-Open (Kwiatkowski 524

et al., 2019) and TriviaQA (Joshi et al., 2017). 525

They found that contradictions within knowledge 526

sources have a marginal impact on models’ con- 527

fidence and models tend to prioritize context that 528

is more relevant to the query and context that con- 529

tains answers consistent with the model’s paramet- 530

ric knowledge. Xie et al. (2023) conducted ex- 531

periments on both closed-source LLMs and open- 532

source LLMs in POPQA (Mallen et al., 2022) and 533

StrategyQA (Geva et al., 2021). The results ob- 534

tained were in line with those of Chen et al. (2022), 535

indicating that LLMs exhibit a significant bias to 536

evidence that aligns with the model’s parametric 537

memory. They also found that LLMs tend to place 538

stronger emphasis on facts related to more popular 539
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entities and answers supported by more documents540

in the context, and are highly sensitive to the order541

in which information is presented.542

Detection Ability. In addition to assessing the543

performance of LLMs when confronted with con-544

tradictory contexts, several studies also investi-545

gate their capacity to identify such contradictions.546

Zheng et al. (2022) examines the performance of547

various models including BERT, RoBERTa, and548

ERNIE in detecting the contradiction within Chi-549

nese conversations. Their experimental findings550

reveal that identifying contradictory statements551

within a conversation is a significant challenge552

for these models. Li et al. (2023a) analyse the553

performance of GPT-4, ChatGPT, PaLM-2, and554

LLaMAv2 in identifying contradictory documents555

within news articles (Hermann et al., 2015), sto-556

ries (Kočiskỳ et al., 2018), and wikipedia (Merity557

et al., 2016). The authors found that, even for GPT-558

4, the average detection accuracy remains at around559

70%. The study also revealed that LLMs encounter560

particular challenges when dealing with specific561

types of contradiction, notably those related to sub-562

jective emotions or perspectives and the length of563

the documents and the range of self-contradictions564

have a slight impact on the detection performance.565

4.3 Mitigation566

Eliminating Conflict. Specialized Models. Hsu567

et al. (2021) develop a model named Pairwise Con-568

tradiction Neural Network (PCNN), which gen-569

erates contradiction probabilities based on sen-570

tence representations obtained through fine-tuned571

Sentence-BERT. They conducted on Wikipedia var-572

ious proportions of misinformation to demonstrate573

the effectiveness of their approach. Pielka et al.574

(2022) discovered that XLM-RoBERTa struggles575

to effectively grasp the syntactic and semantic fea-576

tures that contribute to incorrect contradiction de-577

tection. They suggested incorporating linguistic578

knowledge into the learning process. Wu et al.579

(2022) developed a novel approach that integrates580

topological representations of text into deep learn-581

ing models. They performed experiments using582

three widely-used models including BERT, ESIM,583

and CBOW on MultiNLI dataset (Williams et al.,584

2017). The results provide compelling evidence585

that their approach is effective.586

General Models. Chern et al. (2023) proposed a587

fact-checking framework that integrates LLMs in-588

cluding GPT4, GPT3.5 and FLAN-T5-XXL with589

various tools, such as Google Search, Google 590

Scholar, code interpreters, and Python, for detect- 591

ing factual errors in texts. The authors conducted 592

experiments using RoSE (Liu et al., 2022) and Fact- 593

Prompts. Cheung and Lam (2023) combined the 594

search engine with Llama to predict the veracity 595

of claims. They conducted experiments using two 596

datasets, RAWFC and LIAR. Leite et al. (2023) 597

employ LLMs to produce weak labels associated 598

with 18 credibility signals for the input text and 599

aggregate these labels through weak supervision 600

techniques to make predictions regarding the verac- 601

ity of the input. Effectiveness of their method on 602

the FA-KES and EUvsDisinfo datasets. 603

Improving Robustness. Training Approach. Hong 604

et al. (2023) presents a novel fine-tuning method 605

that involves training a discriminator alongside the 606

decoder using the same encoder of FiD. Addition- 607

ally, the author introduces two other methods to im- 608

prove the robustness of the model including prompt- 609

ing GPT-3 to identify perturbed documents before 610

generating responses and integrating the discrimi- 611

nator’s output into the prompt for GPT-3. They con- 612

duct experiments on NQ-Open with entity replace- 613

ment operations (Longpre et al., 2021) and their 614

experimental results indicate that the fine-tuning 615

method yields the most promising results. 616

Query Augmentation. Weller et al. (2022) first 617

prompt GPT-3 to generate new questions based 618

on the original question and then measure the con- 619

fidence for each query and its corresponding re- 620

trieved passages. This confidence is used to de- 621

termine whether to use the original question’s pre- 622

diction or to opt for a majority vote based on the 623

predictions obtained from the augmented questions 624

that exhibit a high degree of confidence. They ver- 625

ify the effectiveness of their method on Natural 626

Questions and TriviaQA. 627

5 Conclusion 628

Through this survey, we have highlighted the im- 629

portance of investigating knowledge conflicts, shed- 630

ding light on their categorization, causes, behav- 631

ioral patterns, and potential mitigation approaches. 632

We have observed that existing studies have started 633

to recognize the significance of knowledge con- 634

flicts but lack a systematic exploration dedicated 635

solely to this topic. Our survey aims to fill this gap 636

by providing a comprehensive review, synthesizing 637

relevant literature, and offering insights into poten- 638

tial avenues for further research and resolution. 639
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Limitations640

Given the rapid growth of research in the field of641

knowledge conflict and the abundance of research642

literature, it is inevitable that we may overlook643

some most recent or less relative findings. However,644

we have included all the most essential materials in645

our survey.646

Ethics Statement647
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et al., 2023c). The deployment of LLMs securely 1613

and dependably hinges upon ensuring the consis- 1614

tency of their outputs when presented with expres- 1615

sions conveying similar meanings or intents. How- 1616

ever, a significant challenge emerges in the form of 1617

intra-memory conflict within LLMs. Intra-memory 1618

conflict pertains to the phenomenon wherein the 1619
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Datasets Approach1 Base2 Size Conflict

Xie et al. (2023) Gen PopQA (2023), STRATEGYQA ((Geva et al., 2021)) 20,091 CM3

KC (2023g) Sub N/A (LLM generated) 9,803 CM
KRE (2023) Gen MuSiQue (2022), SQuAD2.0 (2018), ECQA (2021), e-CARE (2022a) 11,684 CM
Farm (2023) Gen BoolQ (2019), NQ (2019), TruthfulQA (2022) 1,952 CM

Tan et al. (2024) Gen NQ (2019), TriviaQA (2017) 14,923 CM
Pan et al. (2023a) Gen,Sub SQuAD 1.1 (2016) 52,189 IC

CONTRADOC (2023a) Gen CNN-DailyMail (2015), NarrativeQA (2018) WikiText (2016) 449 IC
ClaimDiff (2022) Hum N/A 2,941 IC

WikiContradiction (2021)Hum Wikipedia 2,210 IC
PARAREL (2021) Hum T-REx (2018) 328 IM
1. Approach refers to how the conflicts are crafted, including entity-level substitution (Sub), generative approaches
employing an LLM (Gen), human annotation (Hum).
2. Base refers to the base dataset(s) that serve as the foundation for generating conflicts, if applicable.
3. For CM datasets, conflicts are derived from a certain model’s parametric knowledge, which can vary between
models. Therefore, application requires selecting a subset of the dataset that aligns with the tested model’s knowledge.

Table 1: Datasets on evaluating a large language model’s behavior when encounter knowledge conflicts.

model’s parameters encompass multiple, poten-1620

tially conflicting versions of knowledge. As a re-1621

sult, the model may exhibit unpredictable behavior1622

and different outputs for inputs that, while syntac-1623

tically varied, convey the same semantic informa-1624

tion (Chang and Bergen, 2023; Chen et al., 2023a;1625

Raj et al., 2023; Rabinovich et al., 2023; Raj et al.,1626

2022; Bartsch et al., 2023). Intra-memory conflict1627

substantially diminishes the practicality and effi-1628

cacy of LLMs.1629

A.1 Causes1630

Intra-memory conflicts within LLMs can be at-1631

tributed to three primary factors: training corpus1632

bias (Wang et al., 2023d; Xu et al., 2022), decoding1633

strategies Lee et al. (2022b); Huang et al. (2023),1634

and knowledge editing (Yao et al., 2023; Li et al.,1635

2023d). These factors respectively pertain to the1636

training phase, the inference phase, and subsequent1637

knowledge refinement.1638

Bias in Training Corpora. Recent research1639

demonstrates that the primary phase for knowledge1640

acquisition in LLMs predominantly occurs in the1641

pre-training stage (Zhou et al., 2023a; Kaddour1642

et al., 2023; Naveed et al., 2023; Akyürek et al.,1643

2022; Singhal et al., 2022). Pre-training data is1644

primarily crawled from the internet, which exhibits1645

a diverse range of data quality, potentially includ-1646

ing inaccurate or misleading information (Bender1647

et al., 2021; Weidinger et al., 2021). When LLMs1648

are trained on data containing incorrect knowl-1649

edge, they may memorize and inadvertently am-1650

plify these inaccuracies (Lin et al., 2022; Elazar1651

et al., 2022; Lam et al., 2022; Grosse et al., 2023),1652

leading to a situation where conflicting knowledge1653

coexists within the parameters of LLMs concur- 1654

rently. 1655

Moreover, prior works indicate that LLMs may 1656

possess a propensity for encoding superficial as- 1657

sociations prevalent within their training data, as 1658

opposed to genuinely comprehending the underly- 1659

ing knowledge contained therein (Li et al., 2022b; 1660

Kang and Choi, 2023; Zhao et al., 2023a; Kand- 1661

pal et al., 2023). Consequently, when the train- 1662

ing dataset exhibits a bias towards spurious cor- 1663

relations, it can result in the LLMs displaying a 1664

propensity to generate predetermined responses 1665

rooted in those spurious correlations. Due to the 1666

dependency of spurious correlations, LLMs may 1667

provide divergent answers when presented with 1668

prompts exhibiting distinct syntactic structures but 1669

conveying equivalent semantic meaning, thereby 1670

leading to instances of intra-memory conflicts. 1671

Decoding Strategy. The direct output of LLMs is 1672

a probability distribution representing the possible 1673

next tokens. Sampling is a crucial step in determin- 1674

ing the generated content from this distribution. 1675

Currently, there are various proposed sampling 1676

techniques, including greedy sampling, top-p sam- 1677

pling, top-k sampling, and others (Jawahar et al., 1678

2020; Massarelli et al., 2019). These techniques 1679

can be categorized into two main groups: determin- 1680

istic sampling and stochastic sampling. Stochastic 1681

sampling stands as the prevailing decoding strategy 1682

employed by LLMs (Fan et al., 2018; Holtzman 1683

et al., 2019). However, the stochastic nature of 1684

sampling introduces uncertainty into the generated 1685

content. Furthermore, due to the intrinsic left-to- 1686

right generation pattern of LLMs, the selection of 1687

the sampling token can wield a significant influ- 1688
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ence over the content of subsequent generations.1689

The use of stochastic sampling may lead LLMs to1690

produce entirely different content, even when pro-1691

vided with the same context, causing intra-memory1692

conflict (Lee et al., 2022b; Huang et al., 2023; Dziri1693

et al., 2021).1694

Knowledge Editing. With the dramatic increase1695

of model parameters, fine-tuning LLMs become1696

increasingly challenging and resource-intensive. In1697

response to this challenge, researchers have turned1698

to knowledge editing techniques as a means to1699

efficiently modify the small scope of knowledge1700

learned of LLMs (Meng et al., 2022; Ilharco et al.,1701

2022; Zhong et al., 2023). Ensuring the consis-1702

tency of modifications poses a significant challenge.1703

Due to the potential defects inherent in the editing1704

method, the modified knowledge cannot be general-1705

ized effectively. Consequently, the model exhibits1706

variations in its responses across different contexts.1707

It may adapt its knowledge to specific situations1708

while maintaining consistency in others (Li et al.,1709

2023d; Yao et al., 2023). Intra-memory conflict is1710

primarily considered a side effect in the context of1711

knowledge editing.1712

A.2 Analysis1713

Self-Inconsistency. Elazar et al. (2021) developed1714

a method for assessing the knowledge consistency1715

of a model, focusing specifically on knowledge1716

triples. The authors primarily conducted experi-1717

ments using BERT, RoBERTa, and ALBERT, and1718

their findings indicate that these models exhibit1719

poor consistency, with guaranteed accuracy ranging1720

from only 50% to 60% on the test data. Hase et al.1721

(2023) employed the same indicators of Elazar et al.1722

(2021), but they utilized a more diverse dataset.1723

Their study also revealed that the consistency of1724

RoBERTa-base and BART-base within the para-1725

phrase context was lacking. Zhao et al. (2023b)1726

first reformulated the questions and then assessed1727

the consistency of the LLM’s responses to these1728

reformulated questions. The findings of their re-1729

search revealed that even GPT-4 exhibits a notable1730

inconsistency rate of 13% when applied to Com-1731

monsense Question-Answering tasks. They further1732

found that LLMs are more likely to produce in-1733

consistencies in the face of uncommon knowledge.1734

Dong et al. (2023) conducted experiments on 201735

open-source LLMs and found that all of these mod-1736

els exhibit strong inconsistencies. The authors also1737

found that fine-tuning LLMs on data collected from1738

a more knowledgeable model could augment its 1739

knowledge. Li et al. (2023c) explored an additional 1740

aspect of inconsistency that LLMs can give an ini- 1741

tial answer to a question, but it may subsequently 1742

contradict that answer when asked if it’s correct. 1743

The authors conducted experiments focusing on 1744

Close-Book Question Answering and revealed that 1745

GPT-4 is consistent on 95% of cases, while Alpaca- 1746

30B only displays consistency in 50% of cases. 1747

To further analyze the inconsistency exhibited 1748

by LLMs, a study conducted by Li et al. (2022b) re- 1749

vealed that encoder-based models tend to generate 1750

missing factual words more relying on positionally 1751

close and highly co-occurring words, rather than 1752

knowledge-dependent words. This phenomenon 1753

arises due to these models’ tendency to overlearn 1754

inappropriate associations from the training dataset. 1755

Kang and Choi (2023) demonstrated that LLMs 1756

are prone to co-occurrence bias, where they favor 1757

frequently co-occurring words over the correct an- 1758

swer. Furthermore, their research highlighted that 1759

LLMs face challenges in recalling facts in cases 1760

where the subject and object rarely appear together 1761

in the pre-training dataset, even though these facts 1762

are encountered during fine-tuning. 1763

Latent Representation of Knowledge. Contem- 1764

porary large language models all employ a multi- 1765

layer transformer structure, giving rise to a unique 1766

form of inter-memory conflict, i.e.the presence of 1767

distinct knowledge representations across differ- 1768

ent layers of a model. In the past, numerous re- 1769

searchers have proposed that a language model 1770

would store low-level information at a shallow 1771

level, and semantic information at a high level (Ten- 1772

ney et al., 2019; Rogers et al., 2021; Jawahar et al., 1773

2019; Cui et al., 2020). Chuang et al. (2023) ex- 1774

plored this aspect within the context of LLMs and 1775

discovered that factual knowledge in LLMs is typi- 1776

cally concentrated within specific transformer lay- 1777

ers and different layers of inconsistent knowledge. 1778

Moreover, Li et al. (2023b) discovered that the 1779

correct knowledge is indeed stored within the pa- 1780

rameters of the large model, but it may not be accu- 1781

rately expressed during the generation process. The 1782

authors conducted two experiments on the same 1783

LLaMa 7B, one focused on the generation accu- 1784

racy, and the other utilizing a knowledge probe to 1785

examine the knowledge containment. The results 1786

of these experiments revealed a substantial 40% 1787

disparity between the knowledge probe accuracy 1788

and the generation accuracy. 1789
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Cross-lingual Inconsistency. The meaning of1790

true knowledge is not influenced by surface1791

form (Ohmer et al., 2023). Knowledge held by1792

LLMs should also possess this characteristic. How-1793

ever, unlike humans, LLMs maintain distinct sets1794

of knowledge for various languages (Ji et al.,1795

2023), leading to potential inconsistencies in their1796

knowledge across different languages. Wang et al.1797

(2023e) analyzed LLMs’ knowledge expressed in1798

one language after implementing knowledge edit-1799

ing on this knowledge expressed in another lan-1800

guage. Their findings suggest that LLMs face diffi-1801

culties when attempting to extend the edited knowl-1802

edge to other languages and exhibit inconsistent1803

behaviors. These findings indicate that knowledge1804

related to different languages is stored separately1805

within the model parameters, introducing a risk of1806

intra-memory conflict of the model. Qi et al. (2023)1807

conducted a more direct study. They propose a met-1808

ric named RankC for evaluating the cross-lingual1809

consistency of factual knowledge of LLMs. They1810

employed this metric for analyzing multiple mod-1811

els and revealed that the knowledge learned by1812

LLMs is not language-agnostic. Instead, a strong1813

language dependence exists in the knowledge of1814

LLMs. Additionally, they found that increasing1815

the model size does not lead to an improvement in1816

cross-lingual consistency.1817

A.3 Mitigation1818

A.3.1 Improving Consistency1819

Fine-tuning. Elazar et al. (2021) introduces a new1820

benchmark called PARALLEL, which consists of1821

328 paraphrases that describe 38 binary relation-1822

ships. The author proposed the consistency loss1823

function and leveraged both T-REx (Elsahar et al.,1824

2018) and PARAREL to train BERT with the con-1825

sistency loss and standard MLM loss. The fine-1826

tuned BERT yielded impressive results when eval-1827

uated on the corresponding test dataset. However,1828

it is worth noting that when applying the same fine-1829

tuning approach to the SQuAD dataset (Gan and1830

Ng, 2019), no significant impact was observed. Li1831

et al. (2023c) initially employ the model as both a1832

generator and a validator and queries the generator1833

to acquire a response, following which the valida-1834

tor is consulted to assess the accuracy of the gen-1835

erated response. The paired responses from both1836

the generator and the validator are filtered, retain-1837

ing only those pairs that exhibit consistency, which1838

is used to fine-tune the same model to enhance1839

the likelihood of consistent pairs. They use their 1840

method to finetune Alpaca-30B with TriviaQA and 1841

demonstrate significant consistency enhancement 1842

in TriviaQA and natural questions. 1843

Plug-in. Jang and Lukasiewicz (2023) first em- 1844

ploy the intermediate training technique to retrain 1845

PLMs with word definition pairs in a dictionary 1846

to enhance the models’ understanding of symbol 1847

meanings. They then introduce a training-efficient 1848

parameter integration method that merges the ac- 1849

quired parameters with those of other existing 1850

PLMs. They conduct experiments using RoBERTa 1851

as the backbone model and evaluate the effective- 1852

ness of their method in BECEL (Jang et al., 2022b). 1853

Output Ensemble. Mitchell et al. (2022) propose a 1854

method to mitigate the inconsistency of LMs. They 1855

use a base model to create possible answers and a 1856

relation model to assess the logical relationships 1857

between these answers. The final answer is se- 1858

lected by considering both the base model’s and 1859

the relation model’s beliefs. The effectiveness of 1860

this approach on the language model is primarily 1861

demonstrated through experiments conducted on 1862

the BeliefBank QA dataset (Kassner et al., 2021). 1863

Instead, Zhao et al. (2023b) introduces a method 1864

to detect whether a question may cause inconsis- 1865

tency for LLMs. Specifically, they first use LLMs 1866

to rephrase the original question and obtain corre- 1867

sponding answers. They then cluster these answers 1868

and examine the divergence. The detection is deter- 1869

mined based on the divergence level. They conduct 1870

comprehensive experiments using open-source and 1871

closed-source LLMs to validate the effectiveness 1872

of their proposed method on datasets including 1873

FaVI (Park et al., 2021) and ComQA (Abujabal 1874

et al., 2018). 1875

A.3.2 Improving Factuality 1876

Chuang et al. (2023) proposed a novel contrastive 1877

decoding approach named Dola. Specifically, the 1878

author initially developed a dynamic layer selection 1879

strategy, choosing the appropriate premature layers 1880

and mature layers. The next word’s output probabil- 1881

ity is then determined by computing the difference 1882

in log probabilities of the premature layers and 1883

the mature layers. The author primarily conducted 1884

experiments on LLaMa in Truthful QA, Strategy 1885

QA, GSM8K, and FACTOR. The experiments pro- 1886

vided substantial evidence that Dola consistently 1887

enhances the truthfulness of models and mitigates 1888

inconsistency issues. Li et al. (2023b) proposed 1889

a similar method named ITI. ITI first identifies a 1890

20



sparse set of attention heads that exhibit high linear1891

probing accuracy for truthfulness, as measured by1892

the TruthfulQA (Lin et al., 2022). During the infer-1893

ence phase, ITI shifts activations along the truth-1894

correlated direction, obtained through knowledge1895

probing. This intervention is repeated autoregres-1896

sively for every token. The authors also verified1897

their method using LLaMA-7B on TruthfulQA and1898

found that ITI achieves a significant improvement1899

in the factual knowledge accuracy of LLMs.1900
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