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Abstract

Masked AutoEncoder (MAE) based on a reconstruction task has risen to be a1

promising paradigm for self-supervised learning and achieves state-of-the-art per-2

formance across different benchmark datasets. However, despite its impressive3

empirical success, a theoretical analysis of it is still limited. In this paper, we4

propose a new theoretical understanding of how MAE works and why the choice5

of mask ratio is so important for MAE from a graph perspective. Based on the6

analysis of the MAE loss, we prove that the MAE loss can be upper bounded by an7

implicit alignment loss and propose an insight that MAE bridges different samples8

in the same class with an aggressive mask ratio. Then, we establish a guarantee for9

the downstream performance of MAE and analyze the trade-off on choosing the10

mask ratio. Motivated by our theory, we propose a Uniformity-promoting MAE11

(U-MAE) loss and find it can significantly improve the downstream performance12

of MAE on real-world datasets, including CIFAR-10 and ImageNet-100.13

1 Introduction14

Recently, self-supervised learning has been proposed as an effective framework to learn meaningful15

representations without access to labels. There are lots of works raising different surrogate objectives16

to improve the performance of the learned representation on downstream tasks. Among them, masked17

autoencoding defines self-supervised signals by masking some patches of samples and learns a18

surrogate loss based on the reconstruction task of the missing message. Bert [6] is a popular self-19

supervised framework based on masked autoencoding in natural language process and achieves20

impressive performance. Recently, a paradigm of masked autoencoding named Masked Autoencoder21

(MAE) [11] obtains empirical breakthroughs on various computer vision tasks and achieves state-of-22

the-art performance. However, despite its promising empirical success, a theoretical understanding of23

why MAE can learn representations that can improve the performance of downstream tasks is still24

limited.25

The basic idea of MAE is quite simple, which masks several patches of an image and encodes the26

unmasked patches with the Vision Transformer (ViT) [7], then tries to reconstruct the missing patches27

with a decoder via a training objective of mean square error. Intuitively, the reconstruction task is28

an instance-level task instead of a class-level task. However, the empirical success of MAE claims29

that the reconstruction target can learn helpful representations for downstream classification tasks.30

So how to understand the training process of MAE can bridge the samples in the same class is quite31

important.32

[2] is the first theoretical work to understand MAE, which explains MAE from a perspective of33

an integral kernel. However, there still exists a vacancy in their analysis. For example, their work34

doesn’t analyze the core component of MAE, i.e., the masking technique. In this paper, we try to35

further understand the training process of MAE and its components. We prove that MAE loss is36
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Figure 1: For each input x, Masked Autoencoder (MAE) first draws a random patchwise mask
m, and obtain two complementary views x1, x2. Afterward, MAE utilizes an encoder-decoder
architecture to reconstruct x2 from x1.

upper bounded by an implicit alignment loss and the reconstruction target aligns the features of the37

masked view and the unmasked view of the same image. Intuitively, some masked views of different38

images in the same class can be very similar, which means different images can be bridged by these39

similar overlapped views.40

With the analysis of the MAE loss, we propose a guarantee for MAE training process and it will41

converge with some practical assumptions. Based on our analysis of MAE training process, we42

propose a Uniformity-promoting MAE (U-MAE) loss, which adds a regularizer term to the original43

MAE loss. Empirically, we find our proposed loss can significantly improve the performance of MAE44

on different benchmark datasets (CIFAR-10, ImageNet-100) with different backbones (ViT-Base,45

ViT-Large). We summarize our contributions as follows:46

• We prove that MAE loss is upper bounded by an implicit alignment loss and develop a new47

understanding of how MAE bridges the samples in the same class. Based on our analysis,48

we propose a new U-MAE loss.49

• We establish a guarantee for the downstream performance of MAE with practical assump-50

tions and compare the training process of contrastive learning and MAE.51

• We empirically verify that our proposed U-MAE loss can significantly improve the perfor-52

mance of MAE across different real-world datasets, including CIFAR-10 and ImaegNet-100.53

2 Related work54

Self-Supervised Learning. With meaningful surrogate objectives, self-supervised learning has55

gradually closed the performance gap between supervised and unsupervised learning without access56

to expensive supervised information. For example, contrastive learning designs appropriate data57

augmentations to draw together the semantically similar samples and obtain impressive downstream58

performance on various datasets [3, 10, 8]. Masked Image Modeling (MIM) is another surrogate59

task to learn meaning representations, which masks some patches of samples and trains the encoder60

based on the comparison between the masked and unmasked patches. Masked Autoencoder (MAE)61

[11] is a representative work of MIM and obtains state-of-the-art performance on various large-scale62

datasets like ImageNet. The core task of MAE is to reconstruct masked images with an asymmetric63

Vision Transformer architecture64

The Theory of Self-supervised Learning. Inspired by the empirical success of self-supervised65

learning, many researches try to establish theoretical analysis on self-supervised learning. [15]66

establishes the bound between supervised learning and unsupervised learning. [16] understands67

contrastive learning from a mutual information perspective. Analyzing self-supervised learning from68

a graph perspective has been proved to be feasible in contrastive learning. [9] analyzes contrastive69

learning with the spectral graph theory and gives a bound for the downstream performance related70

to the spectral properties of the augmentation graph. [18] constructs an augmentation graph and71

analyzes the gap between contrastive learning and supervised learning with it. In this paper, we also72

try to understand the training process of MAE from the graph perspective, as we find that contrastive73
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learning and MAE share a significant similarity, i.e., the samples in the same class could generate74

quite similar views with transformations, including data augmentations used in contrastive learning75

and mask used in MAE. However, the analysis in this paper is not a trivial solution and there exist76

some significant differences between contrastive learning and MAE. For example, the existing theory77

can’t explain the relationship between the mask ratio and downstream performance, and the graph of78

MAE is a directed graph instead of an undirected graph as analyzed in contrastive learning.79

Understanding MAE Training Process. Despite the impressive success of MAE, the theoretical80

understanding of it is still underexplored. [2] is the first work to understand MAE through a81

mathematical viewpoint, which explains the success of MAE from a perspective of an integral kernel.82

They analyze the optimizing process of MAE and show the importance of patchifying and the decoder.83

However, some designs and properties of MAE are still not fully understood. For example, why MAE84

can learn meaningful representation for downstream tasks with an instance-level reconstruction task85

and why the mask ratio needs to be set to 0.75? In this paper, we try to further explain this powerful86

self-supervised training framework from a different perspective, i.e., graph perspective, and answer87

these questions.88

3 Masked AutoEncoding as Implicit Contrastive Learning89

3.1 Problem Formulation90

We begin by introducing the basic notations and common process of MAE, which consists of two91

stages, i.e., MAE pretraining and supervised finetuning. In the first stage, we pretrain an encoder-92

decoder architecture to reconstruct the masked images. In the second stage, we evaluate the quality93

of the learned representations with labeled dataset Dl = {(xi, yi)|xi ∈ Rd, 0 ≤ y ≤ k} with a94

classification task.95

3.1.1 MAE Pretraining96

Assuming access to an unlabeled dataset of natural images Du = {x̄i|x̄i ∈ Rd}, we denote the97

natural data distribution as Pd(x̄). Masked Autoencoders (MAE) [11] learn data representations with98

the following procedures.99

Pretext Generation - Random Patch-wise Masking. First, for a random image x̄∈Du, it could be100

(equivalently) patchified as a matrix, denoted as ˆ̄x ∈ Rn×p, where n denotes the number of patches,101

and p denotes the patch size, e.g., 4× 4. Second, according to a certain masking ratio ρ ∈ [0, 1], we102

randomly draw a binary mask m ∈ {0, 1}n for each patch. Denote the number of non-zero elements103

of m as |m|. and selecting patches according to the mask m leads to two complementary views,104

x1 = ˆ̄x[m] ∈ R|m|×p, x2 = ˆ̄x[1−m] ∈ R(n−|m|)×p, (1)

where [·] denote the index selection function. Overall, we denote this random masking process for105

generating x1, x2 from x as M(x1, x2|x̄), and their marginal distribution as M1(x1|x̄) and M2(x2|x̄),106

respectively. Here M,M1,M2 refer to the probability density functions of the corresponding107

distributions. As long as ρ ̸= 0.5, the two distributions are different, i.e., ∃ x, s.t. M1(x|x̄) ̸=108

M2(x|x̄). And we denote px ∈ Rnx×s as the position information of the view x ∈ Rnx×p with nx109

patches, typically represented as Position Encodings (PE).110

Reconstruction-based Pretraining. According to He et al. [11], the MAE framework is as follows:111

an encoder f first maps (x1, px1
) to a latent feature z = f(x1, px1

) ∈ R|m|×q. Afterwards, a112

decoder g takes z1 and px2
as the input, and maps to the sample space to get an estimation of x2,113

i.e., x̂2 = g(z1, px2) = g(f(x1, px1), px2) ∈ R(n−|m|)×p. At last, the encoder-decoder architecture114

of MAE is learned with a simple ℓ2 reconstruction loss,115

min
f,g

Lrec(Du; f, g); Lrec(Du; f, g) = EPd(x)EM(x1,x2|x) ∥g(f(x1, px1), px2)− x2∥2 . (2)

3.1.2 Linear Evaluation116

After pretraining, we can evaluate the quality of the extracted data representations via a linear117

classification task. Specifically, assuming access to the labeled dataset Dl = {(xi, yi)|xi ∈ Rd, y ∈118
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[k]}, we train a linear classifier l : Rq → Rk with the encoder held fixed119

min
l

Lcls(Dl; f, l); Lcls(Dl; f, l) = EPd(x,y)ℓce(l(f(x)), y), (3)

where ℓce denotes the cross entropy loss.120

3.2 MAE Loss is upper bounded by an Implicit Alignment Loss121

Reconstruction Loss is upper bounded by an Implicit Alignment Loss. We begin with an122

analysis on the reconstruction loss used in the training process of MAE. From its form, we can find123

that it is a common autoencoding loss that tries to reconstruct samples with an encoder-decoder124

architecture. As MAE uses the transformer network as the encoder and the decoder, so we can obtain125

some properties to simplify our subsequent analysis on the training process of MAE. [20] analyzes126

the universal approximation of the transformer and proposes the following results,127

Lemma 3.1 (Theorem 3 [20]). We denote FCD as the set of all continuous functions that map a128

compact domain. Let 1 ≤ p < ∞ and ε > 0, then for any given f ∈ FCD, there exists a Transformer129

network g ∈ T 2,1,4
P such that we have dp(f, g) ≤ ε.130

Combined with the universal approximation property of the transformer network and the encoder-131

decoder architecture, we propose the following assumption which states there exists a pseudo-inverse132

encoder of the decoder, which maps from the complementary view (x2, px2) back to the representation133

space of the encoder.134

Assumption 3.2. For the decoder function g : R|m|×q × R(n−|m|)×s → R(n−|m|)×p, we denote the135

pseudo-inverse encoder of it as fg : R(n−|m|)×p × R(n−|m|)×s → R|m|×q , satisfying136

∀ (x, px) ∈ X × PX , ∥g(fg(x, px), px)− x∥2 ≤ ε. (4)

137 Assumption 3.2 characterizes the reconstruction ability of an encoder-decoder architecture. As it does138

not involve the mask technique, it amounts to a simple autoencoding model, whose reconstruction139

error can be bounded theoretically and empirically with powerful neural networks [20, 13]. Thus,140

this assumption is likely to hold. However, we notice that a trivial autoencoding loss can not learn141

meaningful representations for downstream performance. To verify that MAE reconstruction loss is142

not only a simple autoencoding loss, we set the mask ratio to 0 and find that the linear accuracy of143

learned representation on ImageNet-100 decreases to 13.8%. Then we further explore the properties144

of MAE loss with the above practical assumption,145

Lrec(f, g) = Ex1,x2∥g(f(x1, px1), px2)− x2∥2

=Ex1,x2
∥g(f(x1, px1

), px2
)− g(fg(x2, px2

), px2
) + g(fg(x2, px2

), px2
)− x2∥2

≤ 2Ex1,x2
∥g(f(x1, px1

), px2
)− g(fg(x2, px2

), px2
)∥2 + 2ε.

(5)

From Equation (5), we find the reconstruction loss used in MAE is upper bounded by an implicit146

alignment loss which pulls in the distance of different masked views encoded by the encoder-decoder147

architecture. Note that MAE only uses the encoder for downstream tasks, so then we consider the148

smoothness of the decoder to analyze whether reconstruction loss aligns the different views in the149

encoder feature space. [12] analyzes the Lipschitz continuity of a transformer network and prove150

that a transformer network is Lipschitz continuous when we give constraints to the architecture. We151

also empirically analyze the Lipschitz constant in the input domain of the decoder during the training152

process of MAE, i.e., min
x1,x2∈Du

∥g(f(x1,px1 ),px2 )−g(fg(x2,px2 ),px2 )∥
2

∥f(x1,px1
)−fg(x2,px2

)∥2 and we find it keepes smaller153

than 1.42. More details about the empirical verification can be found in Appendix B.1. Combined154

with the empirical verification, it’s practical to assume that the decoder g is L-Lipschitz, i.e.,155

Assumption 3.3. For the decoder function g, we assume there exists a constant L, satisfying156

∀ (x1, x2), ∥g(x1)− g(x2)∥2 ≤ L∥x1 − x2∥2. (6)

157 Theorem 3.4. Under Assumptions 3.2 & 3.3, the MAE reconstruction loss can be upper bounded by158

the alignment loss between x̃1 and x̃2, where x̃ = [x, px] denotes the position-augmented input:159

Lrec(f, g) ≤ −2L · Ex̃1,x̃2
∥f(x̃1)

⊤fg(x̃2)∥2 + 2ε+ C. (7)

Here ε is the approximation error of fg and C is a constant.160
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Figure 2: Appropriate mask ratio can generate similar views from different samples in the same class.

Intuitively, Theorem 3.4 shows that the reconstruction loss of MAE implicitly minimizes the distance161

of different masked views of the same sample in the encoder features space. It can be seen that this is162

similar to the alignment objective that appears in contrastive (as well as non-contrastive) methods,163

i.e., L(f, g) = −2Ex1,x2f(x1)
⊤g(x2). However, there exist obvious differences as the views used164

in MAE is asymmetric with different mask ratio while the views in canonical contrastive learning165

are symmetric with data augmentations. Meanwhile, MAE could avoid latent collapse because fg is166

always a nontrivial target.167

Suggested Uniformity-promoting MAE Loss. With the proof above, we can find that the MAE loss168

is upper bounded by an implicit alignment loss, which aligns features of the masked and unmasked169

views. [17] understands the alignment loss from two properties, i.e., alignment and uniformity. As170

proposed in [17], without keeping the uniformity of the features, the cluster performance of the same171

class will be significantly hurt. So we add a regularizer term to ensure the uniformity of the encoder to172

improve the performance of MAE and propose our suggested Uniformity-promoting MAE (U-MAE)173

loss,174

LU-MAE(f, g) = Ex̃1,x̃2
∥g(f(x1, px1

), px2
)− x2∥2 − λ · Ex̃1,x̃

−
2
∥f(x̃1)− fg(x̃

−
2 )∥2, (8)

where x̃1, x̃2 is the unmasked and masked views of the same sample, i.e., the positive samples, and175

x̃−
2 is the masked view of an independently drawn sample, i.e., the negative sample. As the implicit176

reverse encoder fg is a hypothetical function and hard to obtain, we replace it with the encoder f ,177

and obtain the following practical U-MAE loss with symmetric uniformity regularizer:178

Lsym
U-MAE(f, g) = Ex̃1,x̃2

∥g(f(x1, px1
), px2

)− x2∥2 − λ · Ex̃1,x̃
−
1
∥f(x̃1)− f(x̃−

1 )∥2, (9)

where x̃−
1 is an independently drawn unmasked view. Intuitively, a large distance between encoder179

outputs can also effectively promote feature diversity.180

4 Generalization Theory181

4.1 Spectral Formulation182

Based on our above analysis of MAE loss, we know that MAE loss is upper bounded by an im-183

plicit alignment loss. In this section, we revisit the training process of MAE from a spectral graph184

perspective and find that MAE reconstruction loss is closely related to an asymmetric matrix factor-185

ization problem. Built upon this connection, we establish theoretical guarantees on the downstream186

performance and characterize its influencing factors.187

Constructing the Directed Augmentation Graph. Following [9], we define the population aug-188

mentation graph G(X , A), where X denotes all masked views of size N = |X |, and A = (wxx′) ∈189

RN×N denotes the adjacency matrix filling with edge weight wxx′ for two masked views x, x′ ∈ X .190

Specifically, we define the weight wxx′ as the marginal probability of generating the pair x and x′191

from the random natural data192

wxx′ = Ex̄∼Pd
[M1(x|x̄)M2(x

′|x̄)]. (10)
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Intuitively, the population augmentation graph formalizes the process of how mask technique bridges193

different samples in the same ground-truth class. For example, the tires of two different cars could194

be quite similar and can be seen as generated from the same sample, then some masked views of195

these two cars will have large weights between them. Obviously, the samples of the same class will196

have larger weights then the samples of different classes. Note that different from the undirected197

augmentation graph considered in [9], the graph G(X , w) is directed, i.e.,198

Ex̄∼Pd
[A1(x|x̄)A2(x

′|x̄)] = wxx′ ̸= wx′x = Ex̄∼Pd
[A1(x

′|x̄)A2(x|x̄)]. (11)

Accordingly, we can normalize the directed adjacency matrix A as Ā := D
−1/2
row AD

−1/2
col , where199

Drow, Dcol are diagonal matrices with ∀x ∈ X , (Drow)xx = wx· :=
∑

x′ wxx′ , (Dcol)xx =200

w·x :=
∑

x′ wx′x. Because Ā is asymmetric, generally wx· ̸= w·x.201

Asymmetric Matrix Factorization. With the directed augmentation graph, we revisit our U-MAE202

loss and find it can be upper bounded by an Asymmetric Matrix Factorization loss.203

Theorem 4.1. For the augmentation graph adjacency matrix A, we consider two matrices U ∈ Rn×k204

and V ∈ Rk×n, and a decomposition objective Lmf (U, V ) = ∥Ā− UV ⊤∥2F . We have205

LU−MAE(f, g) ≤ 2Lmf (f, fg) + 2ε+ C, (12)

where ε is the approximation error of the transformer network.206

Built upon this connection, in the next step, we will discuss the downstream performance by analyzing207

the asymmetric matrix decomposition objective. To achieve this, we first introduce two common208

assumptions adopted in previous work [9, 18], one on the label consistency of masking and one on209

the expressivity of the hypothesis class. Both are likely to hold in practice as long as we choose210

proper mask ratio and architecture for MAE.211

Assumption 4.2 (Labels are recoverable from masked views). Let x̄ ∈ Du be a sample and y(x̄) be212

its label. For a masked view x1 of x, we assume there exists a classifier f that can predict y(x̄) given213

x with error at most α. That is, f(x1) = y(x̄) with probability at least 1− α.214

Assumption 4.3 (Expressivity of the hypothesis class). Let F ,G be the hypothesis classes of the215

encoder f and the decoder g, respectively. We assume that at least one of the global minima of216

LU-MAE(f, g) belongs to F and G.217

In the following, combined with our analysis on Theorem 4.1, we establish a bound between the218

downstream performance of MAE and the spectral property of the augmentation graph. The details219

of the proof can be found in Appendix A.3.220

Theorem 4.4. Under Assumptions 3.2, 3.3, 4.2 & 4.3, let L be the Laplacian matrix of the adjacent221

matrix A and λ1, λ2, · · · , λk, λk+1 be be the k + 1 smallest eigenvalues of L. ζ(f⋆
U-MAE) is denoted222

as the downstream error for the minimizer of MAE loss f⋆
U-MAE, we have223

ζ(f⋆
U-MAE) ≤ O(L

√
2α/λk+1) + 2ε. (13)

224
From Theorem 4.4, we can conclude that the downstream performance can be minimized with a225

small Lipschitz constant L, a small decoder inversion error ε, a small the labeling error α, and a large226

k + 1-th eigenvalue of the augmentation graph λk+1. In other words, MAE with better landscape227

smoothness and invertible decoder will be likely to have a smaller downstream error, and in the228

meantime the masking ratio ρ should be properly chosen such that the labeling error α is small and229

λk+1 is large. The last condition seems less intuitive. In fact, according to spectral graph theory [4],230

a large eigenvalue λk+1 stems from a strong connectivity of the augmentation graph G. Thus, MAE231

often requires a large masking ratio to bridge different samples together. Meanwhile, as illustrated232

in Figure 2, a too large mask ratio, e.g., ρ = 0.95, could make it hard to recover the label from233

the masked views, which results in a large α. As a result, Theorem 4.4 suggests that there exists a234

tradeoff in the mask ratio ρ, and we should choose a properly large one, e.g., ρ = 0.75.235

4.2 Empirical Investigation of the Directed Augmentation Graph of MAE236

Properties. As discussed in [18], contrastive learning bridges the samples in the same class by the237

similar views generated by appropriate data augmentations, comparing to the augmentation graph238
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Figure 3: The influence of mask ratio on the average L2 distance on ImageNet-100 between (a)
intra-class samples (b) The inter-class samples (c) intra-class samples, and the relative distance
between intra and inter-class samples.

used in MAE, we can find that both of them align the intra-class samples by transforming different239

anchor samples into similar views. However, although they have a lot in common, there exist obvious240

differences between contrastive learning and MAE. Firstly, as the mask ratio is not equal to 0.5,241

the two views of an anchor sample in MAE are asymmetric, which means the augmentation graph242

changes from an undirected graph in contrastive learning into a directed graph in MAE. So we can not243

directly use the theoretical framework designed for analyzing the undirected augmentation graph in244

contrastive learning and we find it can be analyzed with an Asymmetric Matrix Factorization objective.245

And as the mask ratio of similar views of different anchors should be equal, the augmentation graph246

of MAE becomes a bipartite graph, which means views of different samples with the same mask247

ratio can’t be connected directly and they need a middleman between them. What’s more, the two248

views of the same anchor in contrastive learning is independent while the two views in MAE loss are249

dependent and contain the whole anchor, which means the two views in MAE training can represent250

most of the features of the sample.251

The Necessity of High Mask Ratio. There exists a difficulty in understanding why the training252

process of MAE needs a high mask ratio. We find that a major reason is that the higher mask ratio253

will generate more similar views of intra-class samples. For example, in Figure 2, we can find that254

when the mask ratio increases to 75%, the views of two different cars can be concentrated on the255

features of similar tires. To verify our perspective, we conduct an experiment on images of CIFAR-10256

with different masked ratios. We evaluate the distance between two images by calculating the l2257

distance between the patches of them. As shown in Figure 3(a), we can find that the average distance258

of intra-class images decreases with the enhancement of mask ratio, which means a higher mask ratio259

leads to generating more edges between intra-class samples.260

Drawbacks of Too High Mask Ratio. On the other hand, as the highest mask ratio can not lead261

to the highest downstream performance of MAE, we find it is related to the decreased size of the262

support set of an anchor, i.e., some transformed views of an anchor will be very similar. Indeed,263

as shown in Figures 3(b) & 3(c), the average L2 distance between inter-class samples and overall264

samples decreases as the mask ratio increases, which means when we take an excessive mask ratio,265

numerous views will be merged and the support set of the anchors will become smaller. And the266

views with an extremely high mask ratio will lose the feature of their class. For example, as shown in267

Figure 2, we can find that when the mask ratio arrives at 95%, the features of the car disappear.268

The Sweet Spot for Mask Ratio. The discussion above reveals that either too small or too high269

mask ratios can result in bad features, and a good mask ratio should be selected such that intra-class270

distance is relatively high while inter-class distance is relatively low. Motivated by this, we plot the271

relative distance (intra-class over inter-class) in Figure 3(d), and we can find that the relative distance272

decreases first with larger mask ratio, showing that the intra-class distance decreases faster than the273

inter-class distance under small mask ratio. When ρ > 0.7, the relative distance becomes larger274

again, indicating that the difference between intra-class and inter-class edges disappears under too275

large mask ratio. The sweet spot lies in ρ = 0.7, which is pretty close to the optimal masking rate of276

MAE is ρ = 0.75 [11]. This shows that our theoretical analysis of the effect of MAE ratio agrees277

surprisingly well with the practice of MAE.278
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Table 1: Linear evaluation accuracy and finetune accuracy on CIFAR-10 and ImageNet-100 pretrained
with MAE loss and U-MAE loss with different ViT backbones. The uniformity regularizer term
significantly improves the linear evaluation performance of MAE loss with different backbones across
different real-world datasets without hurting the performance of finetune accuracy.

Objective CIFAR-10 ImageNet-100
BackBone ViT-Tiny ViT-Base ViT-Base ViT-Large

Linear Evaluation MAE 52.0 59.9 37.5 39.5
U-MAE 69.4 72.0 56.3 61.4

Finetune Results MAE 89.6 90.7 86.9 87.3
U-MAE 89.4 90.8 86.8 87.3

5 Experiments279

5.1 Evaluation on Benchmark Datasets280

We conduct experiments of our U-MAE loss on various real-world datasets, including CIFAR-10281

[14] and ImageNet-100 [5]. In the following, we introduce our empirical setup on CIFAR-10 and282

ImageNet-100.283

Setup. As our proposed loss is a promoting MAE loss, we mainly follow the basic setup of MAE.284

We use ViT as the encoder and use the flexible decoder as proposed in MAE. To further present the285

performance of our loss, we carry out our experiment on different variants of ViT, i.e., ViT-Tiny,286

ViT-Base and ViT-Large. We follow the default setting as proposed in [11]. We use the recommended287

mask ratio, 75%. For the uniformity term of our proposed loss, we set the coefficient of the uniformity288

term to 0.001. For ImageNet-100, we pretrain the model for 200 epochs with batch size 256 and289

weight decay 0.05. And for CIFAR-10, we pretrain the model for 2000 epochs with batch size 4096290

and weight decay 0.05. On the stage of supervised finetuning, we train a supervised classifier on the291

pretrained encoder. We conduct both linear evaluation and non-linear finetuning on the unsupervised292

pretrained encoder. For linear evaluation, we train a linear classifier on the frozen pretrained encoder.293

As for non-linear finetuning, we train both the pretrained encoder and the linear classifier with Cross294

Entropy loss.295

Results. In Table 1, we compare the linear evaluation results between original MAE loss and U-296

MAE loss on different benchmarks, including CIFAR-10 and ImageNet-100, and different backbones,297

including ViT-Tiny, ViT-Base and ViT-Large. We find that our promoting loss increases 14.71%298

for linear evaluation results on CIFAR-10 with two different backbones and increases 20.35 % on299

ImageNet-100 with two different backbones. And in Table 1, we also present the comparison of300

finetuning results. We find that our proposed loss will not hurt the performance of finetuning results301

of MAE. Our results empirically verify the effectiveness of our loss and show that the U-MAE302

loss achieves better performance than the original MAE loss across different datasets and different303

backbones.304

5.2 Empirical Understanding and Ablation Study.305

Visualization of Representations. To intuitively understand the improvement of our U-MAE306

loss on clustering intra-class samples, we use t-SNE to visualize the representations trained with307

MAE loss and our proposed loss on ten random class of ImageNet-100 datasets detailed classes are308

introduced in Appendix B.4. We find that with our uniformity regularizer term, the samples are much309

better-clustered corresponding to their ground-truth labels. To be specific, the red class (representing310

for hens) and the gray class (representing for indigo birds) are separated from others. We note most311

of other classes are the animals living in the oceans) while these two types are more like the birds312

(living on the land or the sky). So these two classes are more easier to be distinguished, especially313

with our uniformity regularizer term.314

Different Coefficients of the Regularizer Term. The most important hyper-parameter of our315

proposed loss is the coefficient of the uniformity regularizer term. In Figure 5, we present the results316

of linear evaluation on ImageNet-100 trained with the U-MAE loss with different coefficients of the317
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MAE Loss U-MAE Loss

Linear Accuracy : 37.46 Linear Accuracy : 56.26

Figure 4: Visualization of representations on random 10 classes of ImageNet (0-9 classes described
in Appendix B.4) trained with MAE loss and our U-MAE loss. Our loss significantly improves the
class-clustering performance of the encoder.
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(b) Comparison between original MAE
and our U-MAE along training.

Figure 5: (a) The linear evaluation results trained with different coefficients of the uniformity
regularizer term of our U-MAE loss. It shows that an appropriate coefficient is important for our
proposed loss. (b) The linear evaluation results during the training process. It shows that our proposed
loss improve the downstream performance of MAE with different training time.

regularizer term. We can find that when the coefficient is 0, our proposed loss is an original MAE loss.318

The downstream performance increases when the coefficient increases from 0 to 0.001. However, the319

overlarge coefficient will also hurt the performance of our proposed loss as the task of MAE will be320

overlooked.321

Training process. To further compare the performance between the original MAE loss and our322

U-MAE loss, we report the linear evaluation accuracy on ImageNet-100 during the training process.323

In Figure 5, we show the linear evaluation results during the training process. We can observe that our324

proposed loss improves the performance of MAE with all different training epochs, which verifies325

that our proposed loss is a promoting loss of MAE for both short and long time learning.326

6 Conclusion327

In this paper, we propose a new theoretical understanding of MAE. With the analysis of MAE loss,328

we find that MAE loss is upper bounded by an implicit alignment loss. Then we explain the training329

process of MAE from a graph perspective and establish a guarantee for its downstream performance.330

Based on our theory, we propose an Uniformity-promoting MAE (U-MAE) loss and verify that it331

can significantly improve the downstream performance of MAE across different benchmark datasets,332

including CIFAR-10 and ImageNet-100.333
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