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ABSTRACT

Due to their superior results, Transformer-based models such as BERT have
become de facto standards in many Natural Language Processing (NLP) ap-
plications. However, the intensive use of complex non-linear functions within
the Transformer architecture impairs its computing efficiency and complicates
corresponding accelerator designs, because non-linear functions are generally
computation-intensive and require special hardware support. In light of this,
we propose MA-BERT, which allows matrix arithmetic-only operations in
Transformer-based NLP models and achieves efficient inference with negligible
accuracy loss. Specifically, we propose four correlated techniques that include
approximating softmax with a two-layer neural network, replacing GELU with
ReLU, fusing normalization layers with adjacent linear layers, and leveraging
knowledge transfer from baseline models. Through these techniques, we are able
to eliminate the major non-linear functions in Transformer-based models and ob-
tain MA-BERT with only matrix arithmetic and trivial ReLU operations without
compromising on accuracy. With mainly regular matrix arithmetic operations,
MA-BERT enables hardware-friendly processing on various computing engines,
including CPUs, GPUs, and customized neural network accelerators. Our exper-
imental results on CPUs show that MA-BERT achieves up to 27% reduction in
inference time with comparable accuracy on many downstream tasks compared to
the baseline BERT models.

1 INTRODUCTION

Recently, pretrained Transformer-based models such as GPT (Radford et al., 2018) and BERT (De-
vlin et al., 2018), have consistently dominated the leaderboards for a variety of NLP tasks and even
surpassed the human baseline. Consequently, there has been a strong push for these models to be
used in many NLP applications. At the same time, they have become a popular research topic in
academia and industry. This in turn led to the creation of even better models such as GPT3 (Brown
et al., 2020), RoBERTa (Liu et al., 2019), and DeBERTa (He et al., 2020), which further stretched
the limits of what such models can achieve. Clearly, the advent of Transformer-based models has
brought about a paradigm shift in the NLP field from the pre-Transformer era when recurrent neural
networks and their variants used to dominate.

Nonetheless, the exceptional performance of these Transformer-based models partly stems from
their deep structure which involves a huge number of parameters and operations during a single
forward propagation. These characteristics make it challenging to meet timing requirements and
implement on devices with limited memory and computational power. Consequently, many notable
works have been proposed to improve their inference performance. In particular to BERT, some
works seek to compress the model by reducing the number of encoder layers via knowledge distilla-
tion (Sanh et al., 2019; Aguilar et al., 2020; Sun et al., 2020; 2019; Jiao et al., 2019; Xu et al., 2020)
with a minor accuracy penalty. Other works focus on model pruning (Gao et al., 2021; Gordon
et al., 2020; Voita et al., 2019; Wang et al., 2021), which involves eliminating unessential weights
or attention heads, leading to sparser models with a reduced number of parameters and computing
operations. Additionally, several works leverage quantization (Kim et al., 2021; Bhandare et al.,
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2019; Zafrir et al., 2019) to reduce the precision of weights and computing operations, which lowers
memory demands and speeds up inference.

Despite these works, one non-negligible overhead in Transformer-based models is often overlooked
– the intensive use of complex non-linear functions. In BERT, these non-linear functions include the
softmax operation, Gaussian Error Linear Unit (GELU) activation function (Hendrycks & Gimpel,
2016), and Layer Normalization (LayerNorm) (Ba et al., 2016). Although these functions undeni-
ably play a role in helping the model to learn better during training time, they become a considerable
bottleneck during inference as they are not straightforward to evaluate. Furthermore, in hardware
accelerator designs, these non-linear functions typically require a separate hardware for accelera-
tion (Liu et al., 2021; Khan et al., 2021), which makes it challenging to be deployed on resource-
constrained computing platforms. In Figure 1 and Table 1, we show the breakdown of cycle budget
for the BERTbase model. For non-linear operations, the cycle budget is defined as the equivalent
number of cycles that the matrix multiply takes to process, given the matrix multiply dimensions
and the number of multiplications per cycle (Khan et al., 2021). From the figure, we can see that
those non-linear operations take around 44% of the processing time. The computation efficiency of
BERT has a huge potential to improve if we can optimize these non-linear operations.
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Figure 1: Breakdown of cycle budget

Table 1: Cycle budget for BERTbase with se-
quence length of 512 and 2048 multiplica-
tions per cycle (Khan et al. (2021))

Functions Cycle Budget Percentage

Softmax 8,192 2.9%
Layer Norm A 147,456 4.3%
GELU 589,824 17.4%
Layer Norm B 589,824 17.4%
Linear Layer 1,966,080 58%

In view of this, we introduce an efficient BERT, termed MA-BERT, which makes a novel attempt
to completely eliminate the complex non-linear functions in BERT by substituting them with sim-
pler functions. In MA-BERT, four correlated techniques are applied: (1) approximating softmax
with a two-layer neural network, (2) replacing GELU with ReLU, (3) fusing normalization layers
with adjacent linear layers, and (4) leveraging knowledge transfer from pretrained baseline models.
Through these techniques, MA-BERT achieves matrix arithmetic-only and trivial ReLU operations
with negligible accuracy loss.

Our experiments show that the performance of MA-BERT on downstream tasks is on par with the
corresponding BERT baseline and yet achieves up to 27% performance improvement on general
CPUs. By eliminating the complex non-linear functions, the majority of the processing in MA-
BERT becomes regular matrix-matrix arithmetic and can be potentially deployed on various com-
puting engines including CPUs, GPUs, and neural network processing units (NPUs) without any
hardware modification.

2 RELATED WORK

While so many works focus on model compression techniques, only some paid attention to the op-
timization of non-linear functions in BERT and other variants of Transformer-based models. For
instance, in MobileBERT, Sun et al. (2020) proposed a thin version of BERTlarge with reduced hid-
den dimensions. As part of their operational optimization, they replaced GELU with ReLU and
removed LayerNorm to further reduce MobileBERT’s latency. However, their results showed that
the inclusion of these optimizations degrades the model’s performance. Kim et al. (2021), on the
other hand, quantized the non-linear functions in BERT to 32-bit integer precision, allowing these
non-linear functions to be computed using faster integer arithmetic.

Specific to tackling the latency overhead of LayerNorm, Zhang & Sennrich (2019) proposed root
mean square layer normalization which reduces the amount of computation compared to LayerNorm
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by only using root mean square statistics to normalize inputs. In the field of computer vision, Yao
et al. (2021) reintroduced Batch Normalization (BatchNorm) (Ioffe & Szegedy, 2015) as a replace-
ment for LayerNorm (Ba et al., 2016) into vision Transformers and demonstrated that the resulting
architecture performs on par with its LayerNorm-based counterpart. Similarly, Shen et al. (2020)
proposed PowerNorm as a replacement for LayerNorm in Transformers and demonstrated that Pow-
erNorm can outperform LayerNorm in neural machine translation and language modelling tasks.
Due to its proven performance and use of batch statistics, we have decided to adopt PowerNorm
in our paper to minimize the overhead introduced by the normalization operations in BERT during
inference.

Leaning onto the hardware side, Yu et al. (2022) proposed a general approximation framework which
enabled them to convert all the non-linear operations into table look-ups. This helped to reduce the
cost of non-linear functions but incur new type of operations and corresponding hardware.

Different from these works, our work strives to completely eliminate the complex non-linear func-
tions in BERT and achieve matrix arithmetic-only operations with trivial ReLU, which could benefit
inference on both general computing units and accelerator designs for edge applications.

3 METHOD

This section gives a brief overview of the non-linear functions that exist in BERT and highlights their
computation inefficiency during inference. Following that, more efficient methods are proposed.

3.1 SOFTMAX: APPROXIMATING WITH A 2-LAYER NEURAL NETWORK

Every encoder layer in BERT contains a multi-head self-attention (MHA) sublayer followed by a
feed forward network (FFN) sublayer. The MHA sublayer endows the model the ability to capture
various dependencies between different parts of an input sequence (Vaswani et al., 2017) and is
defined as follows:

MultiHead(X) = Concat(head1, ..., headh)WO (1)

where headi = softmax(
XWQi

WT
Ki
XT

√
d

)XWVi
(2)

In each self-attention head, a s×s scaled dot product of the query and key matrices is passed through
a softmax function to obtain the weights on the value matrix. Here, s denotes the sequence length.
The softmax function is computed as:

softmax(xi) =
exp(xi)∑s
j=1 exp(xj)

(3)

From Eq. 3 it is clear that all inputs along the sequence dimension have to be processed before the
softmax value of a particular input can be computed. This becomes prohibitively expensive as the
input sequence length increases (Du et al., 2019; Stevens et al., 2021). Moreover, the softmax func-
tion contains expensive exponentiation and division operations which further complicate accelerator
designs (Hu et al., 2018). In view of this, we decided to find an alternative for the softmax function.

The universal approximation theorem (Hornik et al., 1989) states that a neural network with a single
hidden layer and non-linear activation function can approximate any function, given sufficient hid-
den neurons. As such, we propose to substitute the softmax function in each layer of BERT with a
simple 2-layer neural network. ReLU is chosen as the activation function of the hidden layer with
hardware reuse in mind since we will also be adopting it in the FFN sublayer. Note that this mod-
ification will inevitably fix the maximum input sequence length of our modified model to the input
layer size of the neural network. To eliminate the effects of any padding tokens in an input sequence,
we multiplied the scaled dot product of the query and key matrices with the input attention mask
before feeding it as an input to the neural network.

Given that the same softmax function is being approximated, it should also be possible to approx-
imate softmax using the same neural network across the encoder layers, allowing us to reduce the
parameters introduced.
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3.2 GELU: REPLACING WITH RELU

Unlike the original Transformer architecture proposed by Vaswani et al. (2017), many Transformer-
based NLP models such as BERT use the GELU activation function instead of ReLU in their FFN
layers to enhance their learning capability. GELU is defined as follows:

GELU(x) = x · Φ(x), whereΦ(x) =
1 + 2√

π

∫ x√
2

0 exp(−t2) dt
2

(4)

According to Eq. 4, it is clear that the GELU involves complex operations such as exponentiation and
integration which are computation-intensive and hard to be implemented efficiently in accelerator
designs. One possible way is to employ a look up table to simplify the operations, but doing so
entails a trade-off between accuracy and hardware utilization. Other implementations involving
function approximations (Hendrycks & Gimpel, 2016; Kim et al., 2021) also exist, but they often
involve multiple operations which ends up consuming a notable portion of inference time (Pati et al.,
2021). In contrast, ReLU simply outputs zero or the input value depending on the input’s sign, and
can be implemented easily in hardware using a single multiplexer. With the potential simplification
in hardware and speed-up during inference (Sun et al., 2020), we propose to bring ReLU back as a
replacement for GELU.

3.3 LAYERNORM: FUSING NORMALIZATION LAYERS WITH ADJACENT LINEAR LAYERS

Every encoder layer in BERT involves two LayerNorm sublayers – one after the MHA sublayer and
another after the FFN sublayer. LayerNorm involves the calculation of the mean µ and standard
deviation σ statistics along the feature dimension of size K, followed by an affine transformation:

x̄i = γ · xi − µ

σ
+ β, where µ =

1

K

K∑
i=1

xi, σ =

√√√√ 1

K

K∑
i=1

(xi − µ)2 (5)

This remains true even during inference and demands the need to wait for all features of an input
token to be processed before these statistics can be computed. It would be ideal if some form of
batch statistics can be used as an alternative to normalize the inputs. Doing so will eliminate the
need to compute these statistics and present us the opportunity to fuse with adjacent linear layers in
BERT during inference.

Recently, Shen et al. (2020) proposed PowerNorm as a replacement for LayerNorm in Transformers
and demonstrated that PowerNorm can outperform LayerNorm in neural machine translation and
language modelling tasks. Similar to BatchNorm, PowerNorm normalizes the inputs along the batch
dimension of size B and uses running statistics during inference. However, it enforces only unit
quadratic mean:

x̄i = γ · xi
ψ

+ β, where ψ2 =
1

B

B∑
i=1

x2i (6)

During inference, the parameters γ, ψ, and β become constants which can be merged with the
parameters in the adjacent linear layers. Specifically, if we were to replace LayerNorm with Power-
Norm, the PowerNorm after the MHA sublayer can be fused with either the linear projection after
the concatenation operation in Eq. 1 or the linear projection from the input layer to the intermediate
layer of the following FFN. Similarly, the PowerNorm after the FFN sublayer can be fused with
either the linear projection from the intermediate layer to the output layer of the FFN or with the
computation of the key, query, and value matrices in the next encoder layer. That said, due to the
post-normalization architecture of BERT, it is not possible to do a complete fusion. Nonetheless, we
can still reduce the two PowerNorm operations in every MA-BERT encoder layer to a single scaling
operation during inference, which offers us considerable reduction in computation.

Given the prospect of minimizing the overhead of the normalization operation during inference,
we propose to substitute LayerNorm in BERT with PowerNorm. Note that, unlike their work, we
did not include a layer-scale operation before PowerNorm to prevent any additional overhead from
being introduced.
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3.4 KNOWLEDGE TRANSFER

With the three optimization techniques proposed in the previous subsections, we successfully
achieve a BERT model with only matrix arithmetic and trivial ReLU operations. However, as a
result of the modifications, a large accuracy gap exists between the untrained MA-BERT and the
baseline. In order to bridge this gap, we propose to leverage knowledge transfer.

Many studies have demonstrated the effectiveness of knowledge distillation (Hinton et al., 2015) in
bridging the performance gap between a student model and a teacher model. The student model is
trained to mimic the behaviour of a teacher model using a well-designed cost function that takes into
account of the differences between the student output and the teacher output. Unlike many studies
which used knowledge distillation to compress BERT into smaller models, we leverage knowledge
transfer with the intention to train a model of the same depth and hidden dimensions with a more
efficient and hardware-friendly architecture. Note that we are using the term knowledge transfer
rather than knowledge distillation, given that the latter is often associated with a smaller model
learning from a larger model. The following describes our procedure to transfer knowledge from an
existing pretrained BERTbase model to our modified model, MA-BERTbase.

3.4.1 TEACHER MODEL

We used the pretrained BERTbase model from HuggingFace as our teacher model. All parameters of
the teacher model were frozen to prevent the student model from chasing a moving target.

3.4.2 STUDENT MODEL

For the student model (MA-BERTbase), we aggregated and implemented the three modifications
described in the previous subsections on a BERTbase model and initialized it with its pretrained
parameters, wherever possible. Furthermore, the newly added 2-layer neural network was pretrained
in advance to approximate the softmax function. For simplicity, the hidden layer size of the 2-layer
neural network was set to be the same as the input sequence length. The proposed modifications
were only applied on the embedding and encoder layers of BERT, and all parameters in these layers
were left unfrozen, except for the position and token type embeddings.

3.4.3 KNOWLEDGE TRANSFER OBJECTIVE

In order for the student to replicate the teacher’s behaviour as closely as possible, we adopted a
similar layer-wise knowledge transfer technique proposed by Jiao et al. (2019).

First of all, we used the cross entropy (CE) between the student’s logits zS and the actual labels y to
penalize any wrong classification:

Lhard = CE(zS , y) (7)

Next, we considered the cross entropy between the student’s logits and the teacher’s logits, zT:

Lsoft = CE(zS/t, zT /t) (8)

Compared to the actual labels, the teacher’s logits provide much more information for the student
to learn. A higher temperature t smoothens the probability distribution, which allows the student to
better learn the intricacies of the teacher model.

Thirdly, to ensure each layer of our student model, including the embedding layer, learns from
the corresponding layer of teacher model, we included the following mean-squared error (MSE)
objective:

Lhidn =

l∑
i=0

MSE(HS
i ,H

T
i ) (9)

HS
i and HT

i are the hidden states of the student and teacher models, respectively, and l is the number
of layers in the model.
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Lastly, given that we are replacing the softmax function in the MHA sublayer, we also penalized the
discrepancy between the student’s attention outputs AS

i and teacher’s attention outputs AT
i using:

Lattn =

l∑
i=1

MSE(AS
i ,A

T
i ) (10)

Altogether, the overall objective function for knowledge transfer can be summarized as follows:
Lnet = (1− α) ∗ Lhard + α ∗ Lsoft + β (Lhidn + γ ∗ Lattn) (11)

α is used to balance the importance of following the actual hard target and the teacher’s soft target,
β is used to balance the importance of mimicking the teacher’s internal layer outputs relative to
mimicking the final output, and γ is a factor to scale Lattn to a similar magnitude as Lhidn. With
this overall objective, the student is compelled to not only mimic the final output of the teacher, but
also from its hidden layer and attention outputs. Throughout our study, we kept t = 15, α = 0.9,
β = 1, and γ = 100.

4 EXPERIMENTS

In this section, we detail our pretraining setup and evaluate the performance of MA-BERTbase on
several downstream tasks. We also describe the details of additional studies that we have conducted
which attempt to highlight and exploit the benefits of our approach. Throughout this section, all
results pertain to a model input sequence length of 128 tokens.

4.1 PRETRAINING SETUP

We pretrained MA-BERTbase via knowledge transfer on a concatenation of BookCorpus (Zhu et al.,
2015) and English Wikipedia using only the Masked Language Modelling objective (Devlin et al.,
2018) with masking probability of 15%. We used AdamW optimizer with learning rate of 2e−5,
10,000 warm-up steps from a base learning rate of 5e−7, and a linear decay of learning rate. Training
was done with a batch size of 256 over 3 epochs, with each epoch using a differently masked dataset,
on a single NVIDIA GeForce RTX 3090 for a total of 3.5 days.

4.2 EVALUATION ON DOWNSTREAM TASKS

To evaluate the performance of MA-BERTbase, we used the GLUE benchmark (Wang et al., 2018),
which consists of nine natural language understanding tasks, and the IMDb sentiment classification
task (Maas et al., 2011). Following many studies, we excluded WNLI given its small dataset. For
each task, we applied task-specific knowledge transfer by having MA-BERTbase learn from a fine-
tuned BERTbase. The same knowledge transfer objective and hyperparameter settings outlined in
section 3.4.3 were used. As our goal is to replicate the performance of the teacher, our baseline for
comparison is simply the teacher, which is BERTbase in this case.

For smaller datasets (CoLA, MRPC, RTE and STS-B), we used a batch size of 16 and fine-tuned for
10 epochs, and for the remaining datasets, we used a batch size of 32 and fine-tuned for 5 epochs.
The same learning rate of 2e−5 was used across all tasks and the sequence length was fixed at
128. To account for the variance of different runs, we report the median of 5 runs with different
random initialization seeds for each task. The results are shown in Table 2 and 3. Note that the
teacher with the best performance among the 5 runs was used to finetune the student during task-
specific knowledge transfer. The best performance of both the teacher and student is reported under
Appendix A.1.

On average, despite the modifications, MA-BERTbase was able to achieve similar performance on
the downstream tasks as compared to BERTbase. In fact, for several tasks, MA-BERTbase managed to
outperform its teacher. This demonstrates that adopting our approach does not lead to a degradation
in the average performance of the model.

4.3 HYPERPARAMETER TUNING OF α AND β

Prior to the collection of results in Table 2 and 3, we conducted a simple hyperparameter study to
assess the impact of our choices for α and β in our knowledge transfer objective during task-specific
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knowledge transfer. We varied α and β, which effectively control how strictly the student should
replicate the teacher’s final and hidden layer outputs, and evaluated MA-BERTbase on the 4 smaller
datasets of the GLUE benchmark. The results are shown in Table 4. Empirically, we found that MA-
BERTbase performs the best on downstream tasks under the strict guidance of the finetuned BERTbase
model with the optimal hyperparameter values of α = 0.9 and β = 1.0.

Table 2: Median performance on the development set of GLUE benchmark. Matthews correlation
is reported for CoLA while Pearson correlation is reported for STS-B. Accuracy is reported for the
remaining tasks. MNLI is the average of matched and mismatched sets. AVG denotes the average
of the 8 GLUE tasks.

Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B AVG

BERTbase 58.8 84.5 86.3 91.4 91.2 69.3 92.8 89.3 83.0
MA-BERTbase 59.8 84.8 87.5 91.0 91.2 68.6 92.5 87.8 82.9

(▲1.0) (▲0.3) (▲1.2) (▼0.4) (0.0) (▼0.7) (▼0.3) (▼1.5) (▼0.2)
MA-BERTbase 59.0 84.7 87.0 91.1 91.1 70.0 92.4 87.3 82.8
(Shared Softmax) (▲0.2) (▲0.2) (▲0.7) (▼0.3) (▼0.1) (▲0.7) (▼0.4) (▼2.0) (▼0.3)

DistilBERT 55.1 82.3 85.0 88.4 90.3 62.5 90.8 87.1 80.2
MA-DistilBERT 51.3 82.3 86.7 88.4 90.3 65.3 90.8 87.5 80.3

(▼3.8) (0.0) (▲1.7) (0.0) (0.0) (▲2.8) (0.0) (▲0.4) (▲0.1)

DistilRoBERTa 58.3 84.3 85.8 91.2 90.9 69.3 92.9 88.4 82.6
MA-DistilRoBERTa 51.7 83.8 86.0 90.8 90.7 67.5 91.6 87.8 81.2

(▼6.6) (▼0.5) (▲0.2) (▼0.4) (▼0.2) (▼1.8) (▼1.3) (▼0.6) (▼1.4)
MA-DistilRoBERTa 47.6 83.2 83.8 90.5 90.5 65.7 90.8 87.1 79.9
(Linear Attention) (▼10.7) (▼1.1) (▼2.0) (▼0.7) (▼0.4) (▼3.6) (▼2.1) (▼1.3) (▼2.7)

Table 3: Accuracy on IMDb test set.

Model IMDb

BERTbase 89.3
MA-BERTbase 89.6 (▲0.3)
MA-BERTbase 89.6 (▲0.3)
(Shared Softmax)

DistilBERT 88.1
MA-DistilBERT 88.2 (▲0.1)

DistilRoBERTa 89.9
MA-DistilRoBERTa 89.8 (▼0.1)
MA-DistilRoBERTa 89.6 (▼0.3)
(Linear Attention)

Table 4: α and β hyperparameter tuning results on
selected GLUE tasks for MA-BERTbase. AVG denotes
the average of the 4 selected GLUE tasks.

α, β CoLA MRPC RTE STS-B AVG
0.3, 0.3 58.3 84.3 61.0 86.6 72.6
0.6, 0.6 59.9 86.5 64.6 86.7 74.4
0.9, 0.9 60.4 87.0 68.2 87.7 75.8

0.3, 1.0 60.0 86.8 65.0 87.1 74.7
0.6, 1.0 59.8 86.5 65.3 87.1 74.7
0.9, 1.0 59.8 87.5 68.6 87.8 75.9

4.4 SHARING SOFTMAX APPROXIMATION NEURAL NETWORK ACROSS LAYERS

In the previous subsection, the softmax function for each encoder layer of MA-BERTbase were ap-
proximated using a different 2-layer neural network. However, given that it is the same softmax
function, it would make sense if we can share the same 2-layer neural network across all layers.
This would help us reduce the additional parameters that our approach introduced. We attempted
to retrain MA-BERTbase with parameter sharing in the softmax approximation neural network us-
ing the same training procedure. Empirically, we found that sharing the 2-layer neural network to
approximate softmax preserves the performance of the modified model.

4.5 VERSATILITY STUDY

To evaluate the versatility of our approach, we also attempted our modifications and training
procedure on HuggingFace’s distilBERT (Sanh et al., 2019) and distilRoBERTa to produce MA-
distilBERT and MA-distilRoBERTa, respectively. Following distilRoBERTa’s training procedure,
MA-distilRoBERTA was instead pretrained on the OpenWebText (Gokaslan & Cohen, 2019)
dataset. The remaining training procedure was kept unchanged. We observed that both MA-
distilBERT and MA-distilRoBERTa suffered a significant drop in performance on the CoLA task.
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Nonethless, in terms of average performance, MA-distilBERT managed to slightly outperform its
teacher, distilBERT. On the other hand, although MA-distilRoBERTa was not able to achieve simi-
lar average performance as distilRoBERTa, it was still able to outperform distilBERT, which has the
same hidden dimensions and depth.

This versatility study also illustrates that our approach is orthogonal to model compression via
knowledge distillation. We can first distil a model into a shallower version, then apply our mod-
ifications to make it even more efficient and hardware friendly for inference.

4.6 ADOPTING LINEAR SELF-ATTENTION

With the use of a neural network to approximate the softmax operation, we have inevitably intro-
duced additional matrix multiplication operations. The increase in matrix multiplication scales in
O(s3) if the hidden layer size of the neural network follows the input sequence length s. That said,
for relatively short sequence lengths, the increase is marginal. For s = 128, the increase in the total
number of matrix multiplication compared to the baseline is around 5.4% (Figure 2). Nonetheless,
the issue of scalability comes to light.

For longer sequence lengths, we suggest a possible solution that can reduce this overhead. Recently,
Wang et al. (2020) proposed self-attention with linear complexity. This is achieved by projecting the
key and value matrices from dimensions Rs×d into smaller dimensions of Rk×d using the projection
matrices E,F ∈ Rk×s and setting k ≪ s:

headi = softmax(
XWQiW

T
Ki
XTET

√
d

)FXWVi
(12)

Here, d denotes the hidden dimension of the model while k denotes the new projected dimension.
By adopting linear self-attention, softmax has to be computed only along the reduced dimension k,
which enables us to use a smaller 2-layer neural network to replace softmax. This not only helps
to reduce the overheads introduced by the additional neural network to approximate softmax, but
also allows us to leverage the speedup offered by the linear self-attention. For instance, by letting
k = 0.5s, significant savings can be achieved as illustrated in Figure 2. To take this even further,
we can also fuse the linear operations in the softmax approximation neural network with both the
projection of the key and value matrices during inference, hiding the overhead introduced.

To test this out, we trained MA-DistilRoBERTa with linear attention by setting k = 64 using the
same procedure. The loss term Lattn was removed from the knowledge transfer objective due to
the different attention output dimensions of the modified model and DistilRoBERTa. The results are
reported in Table 2 and 3. We noticed a 3.3% drop in performance of the modified model compared
with the baseline DistilRoBERTa. Nonetheless, it was still able to achieve comparable average
performance (0.37% drop) as baseline DistilBERT. A revision on the training procedure might be
necessary to further improve its performance and we will leave this to future studies.
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Figure 2: Percentage increase in matrix multiplication in an encoder layer of MA-BERT with and
without linear self-attention compared to BERT against input sequence length
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4.7 EVALUATION ON COMPUTATIONAL EFFICIENCY

To evaluate the time efficiency of MA-BERT during inference, we implemented a single encoder
layer of BERT and MA-BERT in C++ using the Eigen3 library. All weights, biases, and calculations
were in 32-bit floating-point precision. We ran the code recursively for 12 times, simulating an
inference made by an encoder block of a BERTbase model, and measured the time taken for 10
such consecutive inferences. We then computed the average time taken for a single layer inference.
The C++ code was executed on both Intel’s i7-6500U and i7-1260P CPUs and was compiled using
TDM-GCC compiler with various levels of optimization. To account for the variance in the time
taken, we report the median of 5 different runs. The results are summarized in Table 5. Despite
the higher number of matrix multiplications involved, MA-BERT is able to offer an inference time
speedup of as much as 1.27 times compared to BERT on general CPUs.

Table 5: Forward propagation time of a single encoder layer in BERT and MA-BERT with various
levels of compiler optimization (O1, O2, O3) on Intel’s i7-6500U and i7-1260P CPUs.

i7-6500U i7-1260P
-O1 -O2 -O3 -O1 -O2 -O3

BERT 137 ms 135 ms 129 ms 93 ms 93 ms 89 ms
MA-BERT 101 ms 100 ms 100 ms 68 ms 68 ms 67 ms

Speedup 1.26× 1.26× 1.22× 1.27× 1.27× 1.25×

5 ABLATION STUDY

In this last section, we highlight the importance of having the baseline teacher’s guidance during
MA-BERT’s finetuning phase.

5.1 REMOVAL OF TEACHER’S GUIDANCE

To demonstrate the importance of task-specific knowledge transfer during finetuning, we repeated
our finetuning procedure on the GLUE tasks by replacing the knowledge transfer objective with only
the hard target loss for our student model to optimize. The results are reported in Table 6. We found
that without any guidance from the teacher, the finetuning process is often unstable with the student
model ending up performing worse in all tasks. Clearly, knowledge transfer plays a significant role
in the success of our approach.

Table 6: Effects of removing the teacher’s guidance during finetuning on the GLUE tasks.

Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

MA-BERTbase
- With Knowledge Transfer 59.8 84.8 87.5 91.0 91.2 68.6 92.5 87.8
- No Knowledge Transfer 31.5 35.3 80.9 50.5 63.2 61.4 86.8 81.6

MA-DistilBERT
- With Knowledge Transfer 51.3 82.3 86.7 88.4 90.3 65.3 90.8 87.5
- No Knowledge Transfer 1.8 35.3 68.4 50.7 63.2 53.1 85.6 85.3

6 CONCLUSION

In this paper, we introduced MA-BERT, an efficient and hardware-friendly version of BERT with
all its complex non-linear functions eliminated. Through knowledge transfer during pretraining and
finetuning, MA-BERT was able to attain comparable performance as BERT. Yet, compared to BERT,
MA-BERT offers as much as 27% reduction in inference time with potential savings in hardware
resources, making it a suitable solution for applications on edge devices. In the future, it would be
interesting to study the applicability of our approach on other transformer-based models.
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A APPENDIX

A.1 PERFORMANCE OF BEST PERFORMING TEACHER AND STUDENT MODELS

During task-specific knowledge transfer, the best-performing finetuned teacher was used as the
teacher for the pretrained student model. Table 7 shows the best performance achieved by the base-
line teacher models and the modified student models among the 5 runs for each task.

Table 7: Best performance on the dev set of GLUE benchmark and test set of IMDb. Matthews cor-
relation is reported for CoLA while Pearson correlation is reported for STS-B. Accuracy is reported
for the remaining tasks. MNLI is the average of matched and mismatched sets

Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B IMDb

BERTbase 59.4 84.9 87.5 91.5 91.4 69.7 93.0 89.5 89.5
MA-BERTbase 61.3 84.9 88.0 91.1 91.3 70.8 92.7 88.1 89.8

(▲1.9) (0.0) (▲0.5) (▼0.4) (▼0.1) (▲1.1) (▼0.3) (▼1.4) (▲0.3)
MA-BERTbase 62.1 85.0 87.3 91.3 91.2 70.4 92.8 87.6 89.7
(Shared Softmax) (▲2.7) (▲0.1) (▼0.2) (▼0.2) (▼0.2) (▲0.7) (▼0.2) (▼1.9) (▲0.2)

DistilBERT 55.5 82.5 86.0 88.7 90.4 64.3 91.4 87.4 88.2
MA-DistilBERT 52.4 82.4 87.0 88.7 90.4 66.4 91.4 87.7 88.3

(▼3.1) (▼0.1) (▲1.0) (0.0) (0.0) (▲2.1) (0.0) (▲0.3) (▲0.1)

DistilRoBERTa 59.8 84.5 86.3 91.3 91.0 71.8 93.0 88.8 90.2
MA-DistilRoBERTa 51.8 83.9 86.8 91.1 90.8 68.2 92.0 87.9 89.8

(▼8.0) (▼0.9) (▲0.5) (▼0.2) (▼0.2) (▼3.6) (▼1.0) (▼0.9) (▼0.4)
MA-DistilRoBERTa 49.7 83.4 85.8 90.6 90.5 66.4 91.1 87.5 89.7
(Linear Attention) (▼10.1) (▼1.1) (▼0.5) (▼0.7) (▼0.5) (▼5.4) (▼1.9) (▼1.3) (▼0.5)
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