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Abstract

To enable large-scale machine learning in bandwidth-hungry environments such1

as wireless networks, significant progress has been made recently in designing2

communication-efficient federated learning algorithms with the aid of communi-3

cation compression. On the other end, privacy-preserving, especially at the client4

level, is another important desideratum that has not been addressed simultaneously5

in the presence of advanced communication compression techniques yet. In this6

paper, we propose a unified framework that enhances the communication efficiency7

of private federated learning with communication compression. Exploiting both8

general compression operators and local differential privacy, we first examine a sim-9

ple algorithm that applies compression directly to differentially-private stochastic10

gradient descent, and identify its limitations. We then propose a unified framework11

SoteriaFL for private federated learning, which accommodates a general family12

of local gradient estimators including popular stochastic variance-reduced gradi-13

ent methods and the state-of-the-art shifted compression scheme. We provide a14

comprehensive characterization of its performance trade-offs in terms of privacy,15

utility, and communication complexity, where SoteriaFL is shown to achieve better16

communication complexity without sacrificing privacy nor utility than other private17

federated learning algorithms without communication compression.18

1 Introduction19

With the proliferation of mobile and edge devices, federated learning (FL) [35, 41] has recently20

emerged as a disruptive paradigm for training large-scale machine learning models over a vast amount21

of geographically distributed and heterogeneous devices. For instance, Google uses FL in the Gboard22

mobile keyboard for next word predictions [23]. FL is often modeled as a distributed optimization23

problem [34, 35, 41, 29, 52], aiming to solve24

min
x∈Rd

{
f(x;D) :=

1

n

n∑
i=1

f(x;Di)

}
, where f(x;Di) :=

1

m

m∑
j=1

f(x; di,j). (1)

Here, D denotes the entire dataset distributed across all n clients, where each client i has a local25

dataset Di = {di,j}mj=1 of equal size m,1 x ∈ Rd denotes the model parameters, f(x;D), f(x;Di),26

and f(x; di,j) denote the nonconvex loss function of the current model x on the entire dataset D, the27

local dataset Di, and a single data sample di,j , respectively. For simplicity, we use f(x), fi(x) and28

fi,j(x) to denote f(x;D), f(x;Di) and f(x; di,j), respectively.29

1This is without loss of generality, since otherwise one can simply adjust the weights of the loss function.
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1.1 Motivation: privacy-utility-communication trade-offs30

To unleash the full potential of FL, it is extremely important that the algorithm designed to solve (1)31

needs to meet several competing desiderata.32

Communication efficiency Communication between the server and clients is well recognized as33

the main bottleneck for optimizing the latency of FL systems, especially when the clients—such as34

mobile devices—have limited bandwidth, the number of clients is large, and/or the machine learning35

model has a lot of parameters—for example, the language model GPT-3 [6] has billions of parameters36

and therefore cumbersome to share directly.37

Therefore, it is very important to design FL algorithms to reduce the overall communication cost,38

which takes into account both the number of communication rounds and the communication cost39

per communication round for reaching a desired accuracy. With these two quantities in mind, there40

are two principal approaches for communication-efficient FL: 1) local methods, where in each41

communication round, clients run multiple local update steps before communicating with the server,42

in the hope of reducing the number of communication rounds, e.g., FedAvg [41], Local-SVRG [21],43

SCAFFOLD [32], FedPAGE [57], and ProxSkip [43]; 2) compression methods, where clients send44

compressed communication message to the server, in the hope of reducing the communication cost45

per communication round, e.g., [3, 33, 51, 25, 31, 42, 44, 22, 38, 45, 37]. While both categories46

have garnered significant attention in recent years, we will focus on the second approach based on47

communication compression to enhance communication efficiency.48

Privacy preserving While FL holds great promise of harnessing the inferential power of private data49

stored on a large number of distributed clients, these local data at clients often contain sensitive or50

proprietary information without consent to share. Although FL may appear to protect the data privacy51

via storing data locally and only sharing the model updates (e.g., gradient information), the training52

process can nonetheless reveal sensitive information as demonstrated by, e.g., Zhu et al. [59]. It is53

thus desirable for FL to preserve privacy in a guaranteed manner [19, 29, 46, 52].54

To ensure the training process does not accidentally leak private information, advanced privacy-55

preserving tools such as differential privacy (DP) [16] have been widely integrated into training56

algorithms [14, 8, 15, 1, 50, 26, 11, 18]. A notable example is DP-SGD [1], which developed a57

differentially-private stochastic gradient descent (SGD) algorithm in the centralized (single-node)58

setting. More recently, several differentially-private algorithms [27, 53, 47, 40] are proposed for59

the more general distributed (n-node) setting suitable for FL. In this paper, we also follow the DP60

approach to preserve privacy. In particular, we adopt local differential privacy (LDP) to respect the61

privacy of each client, which is critical in FL.62

Encouraged by recent advances in communication compression techniques, and the widespread63

success of differentially-private methods, a natural question is64

Can we develop a unified framework for private federated learning with communication compression,65

and understand the trade-offs between privacy, utility, and communication?66

Note that there have been a handful of works that simultaneously address compression and privacy67

in FL. Unfortunately, they only provide partial answers to the above question. Most of the existing68

works only consider specific, elementary or tailored compression schemes that are applied directly to69

the gradient messages in DP-SGD [2, 54, 20, 60, 56, 13]. A number of works [48, 9, 10, 30, 17, 49]70

extended and considered different compression schemes, but did not provide concrete trade-offs71

in terms of privacy, utility and communication. Furthermore, existing theoretical analyses can be72

limited only to convex problems [20], lacking in some aspects such as utility [60], or delivering73

pessimistic guarantees on utility and / or communication due to strong assumptions [56, 13]. Finally,74

existing work only studied the DP framework for direct compression, while it is known that the75

recently developed shifted compression scheme [42, 24] achieves much better convergence. Due to76

noise injection for privacy-preserving, it is a priori unclear if the shifted compression scheme is also77

compatible with privacy.78

1.2 Our contributions79

In this paper, we answer the above question by providing a general approach that enhances the80

communication efficiency of private federated learning in the nonconvex setting, through a unified81

framework called SoteriaFL (see Algorithm 2). Specifically, we have the following contributions.82
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Table 1: Comparisons among (local) differentially-private algorithms for the nonconvex problem (1)
in both central (single-node) and distributed (n-node) settings. Here, m denotes the number of data
stored on a single client, n is the number of clients, d is the dimension, and ω is the parameter for the
compression operator (cf. Definition 1). The communication complexity is computed by ndT/(1+ω),
where T is the total number of communication rounds, and nd/(1 +ω) is the communication cost per
round. The utility / accuracy measures the average squared gradient norm of the objective function
after T rounds. Note that the algorithm is better when the utility / accuracy and the communication
complexity are small under the same privacy guarantee.

Algorithm Privacy Utility / Accuracy Communication Complexity Remark

RPPSGD [55] (ε, δ)-DP
√
d log(m/δ) log(1/δ)

mε — single node

DP-GD/SGD
[1, 50] (ε, δ)-DP

√
d log(1/δ)

mε — single node

DP-SRM [53] (ε, δ)-DP
√
d log(1/δ)

mε — single node

Distributed
DP-SRM [53]

(1) (ε, δ)-DP
√
d log(1/δ)

nmε
n2mε

√
d√

log(1/δ)

n nodes,
no comp.

LDP SVRG [40] (ε, δ)-LDP
√
d log(1/δ)
√
nmε

n3/2mε
√
d√

log(1/δ)

n nodes,
no comp.

LDP SPIDER [40] (ε, δ)-LDP
√
d log(1/δ)
√
nmε

n3/2mε
√
d√

log(1/δ)

n nodes,
no comp.

Q-DPSGD-1 [13](2) (ε, δ)-LDP σ̃2ε2/3

n +
d log(1/δ)

m2ε10/3
+ ε2/3

m
nd
ε2σ̃2

n nodes,
direct comp.

SDM-DSGD [56](3) (ε, δ)-LDP Õ

(√
d log(1/δ)
√
nmε

)
n7/2mε

√
d

(1+ω)3/2
√

log(1/δ)
+ nm2ε2

(1+ω) log(1/δ)

n nodes,
direct comp.

CDP-SGD
(Theorem 1) (ε, δ)-LDP

√
(1+ω)d log(1/δ)

√
nmε

n3/2mε
√
d

(1+ω)3/2
√

log(1/δ)
+ nm2ε2

(1+ω) log(1/δ)
n nodes,

direct comp.

SoteriaFL-GD
SoteriaFL-SGD

(Corollary 1)

(4) (ε, δ)-LDP
√

(1+ω)d log(1/δ)
√
nmε

(1 +
√
τ) n3/2mε

√
d

(1+ω)3/2
√

log(1/δ)
(1 +

√
τ)

n nodes,
shifted comp.

SoteriaFL-SVRG
SoteriaFL-SAGA

(Corollary 2)

(4) (ε, δ)-LDP
√

(1+ω)d log(1/δ)
√
nmε

n3/2mε
√
d

(1+ω)3/2
√

log(1/δ)
(1 + τ)

n nodes,
shifted comp.

(1) Wang et al. [53] considered the “global” (ε, δ)-DP (which only protects the privacy for entire dataset D, i.e.,
the local dataset Di on node i may leak to other nodes j 6= i) without communication compression. However,
we consider the “local” (ε, δ)-LDP which can protect the local datasets Di’s at the client level.

(2) Ding et al. [13] adopted a slightly different compression assumption E[‖C(x)− x‖2] ≤ σ̃2, with σ̃2 playing
a similar role as (1 + ω) in ours. It only works for small ε = 1/

√
T , which leads to an accuracy no better than

σ̃2ε2/3

n
+ d log(1/δ)

m2ε10/3
≥ 2

√
σ̃2d log(1/δ)
√
nmε

· ε−1/3 ε=1/
√
T

= 2

√
σ̃2d log(1/δ)
√
nmε

· T 1/6, a factor of T 1/6 worse than the
utility of the other algorithms including ours.

(3) Zhang et al. [56] only considered random-k sparsification, which is a special case of our general compression
operator. Moreover, it requires 1 + ω � log T , i.e., at least k � d

log T
out of d coordinates need to be

communicated, and its utility hides logarithmic factors larger than 1 + ω. The communication complexity
n7/2 is due to their convergence condition T > n5.

(4) Here, τ := (1+ω)3/2

n1/2 . If n ≥ (1 + ω)3 (which is typical in FL), then τ < 1, and we can drop the terms
involving τ from SoteriaFL.

1. We first present a simple CDP-SGD (Algorithm 1) that directly combines communication83

compression and DP-SGD. We provide theoretical analysis for CDP-SGD in Theorem 184

and show its limitations in communication efficiency.85

2. We then propose a general framework SoteriaFL for private FL, which accommodates a86

general family of local gradient estimators including popular stochastic variance-reduced87

gradient methods and the state-of-the-art shifted compression scheme. We provide a unified88

characterization of its performance trade-offs in terms of privacy, utility (convergence89

accuracy), and communication complexity.90

3. We apply our unified analysis for SoteriaFL and obtain theoretical guarantees for several91

new private FL algorithms, including SoteriaFL-GD, SoteriaFL-SGD, SoteriaFL-SVRG,92

and SoteriaFL-SAGA. All of these algorithms are shown to perform better than the plain93

CDP-SGD (Algorithm 1), and have lower communication complexity compared with other94

private FL algorithms without compression.95
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We provide detailed comparisons between the proposed approach and prior arts in Table 1. To the96

best of our knowledge, SoteriaFL is the first unified framework that simultaneously enables local97

differential privacy and shifted compression, and allows flexible local computation protocols at the98

client level.99

2 Preliminaries100

Let [n] denote the set {1, 2, · · · , n} and ‖·‖ denote the Euclidean norm of a vector and the spectral101

norm of a matrix. Let 〈u,v〉 denote the standard Euclidean inner product of two vectors u and v.102

Let f∗ := minx f(x) denote the optimal value of problem (1). In addition, we use the standard103

order notation O(·) to hide absolute constants. We now introduce the definitions of the compression104

operator and local differential privacy, and some assumptions for the objective functions.105

Compression operator We introduce the notion of a randomized compression operator, which106

is used to compress the gradients to save communication. The following definition of unbiased107

compressors is standard and has been used in many distributed/federated learning algorithms [3, 33,108

42, 24, 39, 22, 38].109

Definition 1 (Compression operator) A randomized map C : Rd 7→ Rd is an ω-compression110

operator if for all x ∈ Rd, it satisfies111

E[C(x)] = x, E
[
‖C(x)− x‖2

]
≤ ω ‖x‖2 . (2)

In particular, no compression (C(x) ≡ x) implies ω = 0.112

Note that the conditions (2) are satisfied by many practically useful compression operators, e.g.,113

random sparsification and random quantization [3, 39, 38]. A useful rule of thumb is that the114

communication cost is often reduced by a factor of 1
1+ω due to compression [3]. Next, we briefly115

discuss an example called random sparsification to provide more intuition.116

Example 1 (Random sparsification). Given x ∈ Rd, the random-k sparsification operator is defined117

by C(x) := d
k · (ξk�x), where� denotes the Hadamard (element-wise) product and ξk ∈ {0, 1}d is118

a uniformly random binary vector with k nonzero entries (‖ξk‖0 = k). This random-k sparsification119

operator C satisfies (2) with ω = d
k − 1, and the communication cost is reduced by a factor of 1

1+ω120

since we transmit k = d
1+ω (due to its ω = d

k − 1) coordinates rather than d coordinates.121

Local differential privacy We not only want to train the machine learning model using fewer122

communication bits, but also want to maintain each client’s local privacy, which is a key component123

for FL applications. We follow the framework of (local) differential privacy [4, 7, 58]. We say that124

two datasets D and D′ are neighbors if they differ by only one entry. We have the following definition125

for local differential privacy (LDP).126

Definition 2 (Local differential privacy (LDP)) A randomized mechanism M : D → R with127

domain D and range R is (ε, δ)-locally differentially private for client i if for all neighboring128

datasets Di, D
′
i ∈ D on client i and for all events S ∈ R in the output space ofM, we have129

Pr{M(Di) ∈ S} ≤ eε Pr{M(D′i) ∈ S}+ δ.

The definition of LDP (Definition 2) is very similar to the original definition of (ε, δ)-DP [16, 15],130

except that now in the FL setting, each client protects its own privacy by encoding and processing its131

sensitive data locally, and then transmitting the encoded information to the server without coordination132

and information sharing between the clients.133

Assumptions about the functions Recalling (1), we consider the nonconvex FL setting, where the134

functions {fi,j} are arbitrary functions satisfying the following standard smoothness assumption135

(Assumption 1) and bounded gradient assumption (Assumption 2).136

Assumption 1 (Smoothness) There exists some L ≥ 0, such that for all i ∈ [n], j ∈ [m], the137

function fi,j is L-smooth,138

‖∇fi,j(x1)−∇fi,j(x2)‖ ≤ L ‖x1 − x2‖ , ∀x1,x2 ∈ Rd.
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Assumption 2 (Bounded gradient) There exists some G ≥ 0, such that for all i ∈ [n], j ∈ [m] and139

x ∈ Rd, we have ‖∇fi,j(x)‖ ≤ G.140

The smoothness assumption is very standard for the convergence analysis, and the bounded gradient141

assumption is also standard for the differential privacy analysis [5, 50, 26, 18].142

3 Warm-up: Plain Compressed Differentially-Private SGD143

There are two methods to combine privacy and compression: (1) first perturb and then compress,144

and (2) first compress and then perturb. The advantage of the first method is that it is very simple145

and general, since compression will preserve the differential privacy and work seamlessly with146

any previous existing privacy mechanisms. However, the second method needs to design careful147

perturbation mechanisms (otherwise the perturbation might diminish the communication saving of148

compression), e.g., binomial perturbation [2] or discrete Gaussian perturbation [30]. In addition,149

it is observed that the first method achieves better utility compared with the second one in some150

settings [13]. Thus, we also apply the first method in this paper: first perturb then compress.151

As a warm-up, we first introduce a simple algorithm CDP-SGD (described in Algorithm 1), which152

subsumes some existing algorithms as special cases (e.g., [56, 13, 60]) for private FL with better153

theoretical guarantees. The procedure for CDP-SGD is very simple: at each round t, each client first154

computes a local stochastic gradient g̃ti using its local dataset Di (Line 3 in Algorithm 1). Then, it155

uses Gaussian mechanism [1] to achieve LDP (Line 4 in Algorithm 1) and transfers the compressed156

perturbed private gradient information to the server (Line 5 in Algorithm 1). Finally, the server157

aggregates the compressed information and update the model parameters (Line 7–8 in Algorithm 1).158

Algorithm 1 Compressed Differentially-Private Stochastic Gradient Descent (CDP-SGD)
Input: initial point x0, stepsize ηt, variance σ2

p, minibatch size b
1: for t = 0, 1, 2, . . . , T do
2: for each node i ∈ [n] do in parallel
3: Compute local stochastic gradient g̃ti = 1

b

∑
j∈Ib ∇fi,j(x

t) // all nodes use SGD method

4: Privacy: gti = g̃ti + ξti , where ξit ∼ N (0, σ2
pI)

5: Compression: let vti = Cti (gti) and send to the server // direct compression
6: end each node
7: Server aggregates compressed information vt = 1

n

∑n
i=1 v

t
i

8: xt+1 = xt − ηtvt
9: end for

Now we present the theoretical guarantees for CDP-SGD in the following theorem.159

Theorem 1 (Utility and communication for CDP-SGD) Suppose that Assumptions 1 and 2 hold.160

By choosing the algorithm parameters properly and letting the total number of communication rounds161

T = O
( √

nLmε

G
√

(1+ω)d log(1/δ)
+ m2ε2

d log(1/δ)

)
, CDP-SGD (Algorithm 1) satisfies (ε, δ)-LDP and the162

utility 1
T

∑T−1
t=0 E‖∇f(xt)‖2 ≤ O

(
G
√

(1+ω)Ld log(1/δ)√
nmε

)
.163

The proposed CDP-SGD (Algorithm 1) is simple but effective. When the compression parameter ω164

is a constant (i.e., constant compression ratio), CDP-SGD achieves the same utility O
(√

d log(1/δ)

mε

)
165

as DP-SGD in the single-node case n = 1. Our utility is better than [13] by a factor of T 1/6, and our166

communication complexity is much better than [56] (see Table 1).167

However, the communication complexity of CDP-SGD still has room for improvements due to direct168

compression (Line 5 in Algorithm 1). In particular, if the local dataset size m stored on clients is169

dominating, then CDP-SGD (even if we compute local full gradients as CDP-GD) requires O(m2)170

communication rounds (see Theorem 1), while previous distributed differentially-private algorithms171

without communication compression (Distributed DP-SRM [53], LDP SVRG and LDP SPIDER [40])172

only need O(m) communication rounds (see Table 1).173
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4 SoteriaFL: Unified Private FL Framework with Shifted Compression174

Due to the limitations of plain CDP-SGD, we now present an advanced and unified private FL175

framework called SoteriaFL in this section, which allows a large family of local gradient estimators176

(Line 3 in Algorithm 2 and Line 3–11 in Algorithm 3). Via adopting the advanced shifted compression177

(Line 5 in Algorithm 2), SoteriaFL reduces the total number of communication rounds O(m2) of178

CDP-SGD toO(m), which matches previous uncompressed DP algorithms (see Table 1), and further179

reduces the total communication complexity due to less communication cost per round.180

We first introduce our unified SoteriaFL framework in Section 4.1 and then provide a generic181

assumption and a unified analysis that covers privacy, utility, and communication for SoteriaFL in182

Section 4.2.183

4.1 Unified SoteriaFL framework184

Our SoteriaFL framework is described in Algorithm 2. At each round t, each client will compute a185

local (stochastic) gradient estimator g̃ti using its local dataset Di (Line 3 in Algorithm 2). One can186

choose several optimization methods for computing this local gradient estimator such as standard187

gradient descent (GD), stochastic GD (SGD), stochastic variance-reduced gradient (SVRG) [28, 36],188

and SAGA [12] (see e.g., Line 3–11 in Algorithm 3). Then, each client adds a Gaussian perturbation189

ξti on its gradient estimate g̃ti to provide LDP (Line 4 in Algorithm 2). However, different from190

CDP-SGD (Algorithm 1) where we directly compress the perturbed stochastic gradients, now each191

client maintains a reference sti and compress the shifted message g̃ti − sti (Line 5 in Algorithm 2).192

This extra shift operation achieves much better convergence behavior (fewer communication rounds)193

than CDP-SGD, and thus can achieve lower communication complexity.194

Algorithm 2 SoteriaFL (a unified framework for compressed private FL)
Input: initial point x0, stepsize ηt, shift stepsize γt, variance σ2

p
1: for t = 0, 1, 2, . . . , T do
2: for each node i ∈ [n] do in parallel
3: Compute local gradient estimator g̃ti // it allows many methods, e.g., SGD, SVRG, and SAGA
4: Privacy: gti = g̃ti + ξti , where ξti ∼ N (0, σ2

pI)

5: Compression: let vti = Cti (gti − sti) and send to the server // shifted compression
6: Update shift st+1

i = sti + γtCti (gti − sti)
7: end each node
8: Server aggregates compressed information vt = st + 1

n

∑n
i=1 v

t
i

9: xt+1 = xt − ηtvt
10: st+1 = st + γt

1
n

∑n
i=1 v

t
i

11: end for

4.2 Generic assumption and unified theory195

We provide a generic Assumption 3 which is very flexible to capture the behavior of several existing196

(and potentially new) gradient estimators, while simultaneously maintaining the tractability to enable197

a unified and sharp theoretical analysis.198

Assumption 3 (Generic assumption of local gradient estimator for SoteriaFL) The gradient es-199

timator g̃ti (Line 3 of Algorithm 2) is unbiased Et[g̃ti ] = ∇fi(xt) for i ∈ [n], where Et takes the200

expectation over all randomness before round t. Moreover, it can be decomposed as two terms201

g̃ti := Ati + Bti and there exist constants GA, GB , C1, C2, C3, C4, θ and a random sequence {∆t}202

such that203

Ati =
1

b

∑
j∈Ib

ϕti,j , Bti =
1

m

m∑
j=1

ψti,j , (3a)

Et
[ 1

n

n∑
i=1

‖g̃ti −∇fi(xt)‖2
]
≤ C1∆t + C2, (3b)

Et
[
∆t+1

]
≤ (1− θ)∆t + C3‖∇f(xt)‖2 + C4Et‖xt+1 − xt‖2, (3c)
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where ϕti,j and ψti,j are bounded by GA and GB respectively, Ib usually denotes a random minibatch204

with size b, and Et takes the expectation conditioned on all history before round t. Here, ϕti,j and205

ψti,j should be viewed as functions related to the j-th sample di,j stored on client i.206

A few comments are in order. Concretely, the decomposition (3a) is used for our unified privacy207

analysis (i.e., Theorem 2). We can let one of them be 0 if the gradient estimator only contains one208

term or is not decomposable. The parameters C1 and C2 in (3b) capture the variance of the gradient209

estimators, e.g., C1 = C2 = 0 if the client computes local full gradient g̃ti = ∇fi(xt), and C1 6= 0210

(note that ∆t will shrink in (3c)) and C2 = 0 if the client uses variance-reduced gradient estimators211

such as SVRG / SAGA. Finally, the parameters θ, C3 and C4 in (3c) capture the shrinking behavior212

of the variance (incurred by the gradient estimators), where different variance-reduced gradient213

methods usually have different shrinking behaviors. More concrete examples to follow in Lemma 1214

in Section 5.215

Unified theory for privacy-utility-communication trade-offs Given our generic Assumption 3,216

we can obtain a unified analysis for SoteriaFL framework. The following Theorem 2 unifies the217

privacy analysis and Theorem 3 unifies the utility and communication complexity analysis.218

Theorem 2 (Privacy for SoteriaFL) Suppose that Assumption 3 holds. There exist constants c and219

c′, for any ε < c′b2T/m2 and δ ∈ (0, 1), SoteriaFL (Algorithm 2) is (ε, δ)-LDP if we choose220

σ2
p = c

(G2
A +G2

B)T log(1/δ)

m2ε2
. (4)

Theorem 3 (Utility and communication for SoteriaFL) Suppose that Assumptions 1 and 3 hold,221

and the compression operator Cti (used in Line 5 of Algorithm 2) satisfies (2). Set the stepsize as222

ηt ≡ η ≤ min

{
1

(1 + 2αC4 + 2β(1 + 2ω) + 2αC3/η2)L
,

√
βn√

1 + 2αC4 + 2β(1 + 2ω)(1 + ω)L

}
,

where α = 3βC1

2(1+ω)θL2 , ∀β > 0, the shift stepsize as γt ≡ 1
1+ω , and the privacy variance σ2

p according223

to Theorem 2. Then, SoteriaFL (Algorithm 2) satisfies (ε, δ)-LDP and the following224

1

T

T−1∑
t=0

E‖∇f(xt)‖2 ≤ 2Φ0

ηT
+

3β

2(1 + ω)Lη

(
C2 +

c(G2
A +G2

B)dT log(1/δ)

m2ε2

)
,

where Φ0 := f(x0) − f∗ + αL∆0 + β
Ln

∑n
i=1 ‖∇fi(x0) − s0i ‖2. By further choosing the total225

number of communication rounds T as226

T = max

{
mε
√

2(1 + ω)LΦ0√
3βd(G2

A +G2
B) log(1/δ)

,
C2m

2ε2

cd(G2
A +G2

B) log(1/δ)

}
, (5)

SoteriaFL has the following utility (accuracy) guarantee:227

1

T

T−1∑
t=0

E‖∇f(xt)‖2 ≤ O

(
max

{√
βd(G2

A +G2
B) log(1/δ)

ηmε
√

(1 + ω)L
,

βC2

(1 + ω)Lη

})
. (6)

Theorem 3 is a unified theorem for our SoteriaFL framework, which covers a large family of local228

stochastic gradient methods under the generic Assumption 3. In the next Section 5, we will show that229

many popular local gradient estimators (GD, SGD, SVRG, and SAGA) satisfy Assumption 3, and thus230

can be captured by our unified analysis.231

5 Some Algorithms within SoteriaFL Framework232

In this section, we propose several new algorithms (SoteriaFL-GD, SoteriaFL-SGD, SoteriaFL-233

SVRG and SoteriaFL-SAGA) captured by our SoteriaFL framework. We give a detailed Algo-234

rithm 3 which describes all these four SoteriaFL-type algorithms in a nutshell.235

To begin, we show that these local gradient estimators (GD, SGD, SVRG, and SAGA) satisfy As-236

sumption 3 in the following main lemma, by detailing the corresponding parameter values (i.e.,237

GA, GB , C1, C2, C3, C4, and θ).238
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Algorithm 3 SoteriaFL-SGD, SoteriaFL-SVRG, and SoteriaFL-SAGA
Input: initial point x0, stepsize ηt, shift stepsize γt, variance σ2

p, minibatch size b, probability p
1: for t = 0, 1, 2, . . . , T do
2: for each node i ∈ [n] do in parallel
3: Option I: SGD
4: Compute local SGD estimator g̃ti = 1

b

∑
j∈Ib ∇fi,j(x

t) // GD if choose b = m

5: Option II: SVRG
6: Compute local SVRG estimator g̃ti = 1

b

∑
j∈Ib(∇fi,j(x

t)−∇fi,j(wt)) +∇fi(wt)

7: Update SVRG snapshot point wt+1 =

{
xt, with probability p
wt, with probability 1− p

8: Option III: SAGA
9: Compute local SAGA estimator:

g̃ti = 1
b

∑
j∈Ib(∇fi,j(x

t)−∇fi,j(wt
i,j)) + 1

m

∑m
j=1∇fi,j(wt

i,j)

10: Update SAGA variables wt+1
i,j =

{
xt, for j ∈ Ib
wt
i,j , for j /∈ Ib

11: End Options
12: Privacy: gti = g̃ti + ξti , where ξti ∼ N (0, σ2

pI)

13: Compression: let vti = Cti (gti − sti) and send to the server
14: Update shift st+1

i = sti + γtCti (gti − sti)
15: end each node
16: Server aggregates compressed information vt = st + 1

n

∑n
i=1 v

t
i

17: xt+1 = xt − ηtvt
18: st+1 = st + γt

1
n

∑n
i=1 v

t
i

19: end for

Lemma 1 (SGD/SVRG/SAGA estimators satisfy Assumption 3) Suppose that Assumptions 1239

and 2 hold. The local SGD estimator g̃ti (Option I in Algorithm 3) satisfies Assumption 3 with240

GA = G, GB = C1 = C3 = C4 = 0, C2 =
(m− b)G2

mb
, θ = 1, ∆t ≡ 0.

The local SVRG estimator g̃ti (Option II in Algorithm 3) satisfies Assumption 3 with241

GA = 2G, GB = G, C1 =
L2

b
, C2 = 0, C3 =

2(1− p)η2

p
, C4 = 1, θ =

p

2
, ∆t = ‖xt −wt‖2.

The local SAGA estimator g̃ti (Option III in Algorithm 3) satisfies Assumption 3 with242

GA = 2G, GB = G, C1 =
L2

b
, C2 = 0, C3 =

2(m− b)η2

b
, C4 = 1,

θ =
b

2m
, ∆t =

1

nm

n∑
i=1

m∑
j=1

‖xt −wt
i,j‖2.

With Lemma 1 in hand, we can plug their corresponding parameters into the unified Theo-243

rem 3 to obtain detailed utility and communication bounds for the resulting methods (SoteriaFL-244

SGD/SoteriaFL-GD, SoteriaFL-SVRG, and SoteriaFL-SAGA). Formally, we have the following245

corollaries.246

Corollary 1 (SoteriaFL-SGD/SoteriaFL-GD) Suppose that Assumption 1 and 2 hold and we com-247

bine Theorem 3 and Lemma 1, i.e., choosing stepsize ηt ≡ η ≤ 1

(1+
√

(1+ω)3/n)L
, where we set β =248

(1+ω)2

n(1+
√

(1+ω)3/n)
, shift stepsize γt ≡ 1

1+ω , and privacy variance σ2
p = cG

2T log(1/δ)
m2ε2 . If we further set249

the minibatch size b = min
{

mεG
√
β√

(1+ω)Ld log(1/δ)
,m
}

and the total number of communication rounds250

T = O
( √

nLmε

G
√

(1+ω)d log(1/δ)
(1 +

√
τ)
)
, where τ := (1+ω)3/2

n1/2 , then SoteriaFL-SGD satisfies (ε, δ)-251

LDP and the following utility grarantee 1
T

∑T−1
t=0 E‖∇f(xt)‖2 ≤ O

(
G
√

(1+ω)Ld log(1/δ)√
nmε

(1+
√
τ)
)
.252
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Table 2: Gradient complexity for our proposed SoteriaFL-style algorithms, which is computed as the
product of the total number of communication rounds T and the minibatch size b. Here, for notation
simplicity, K :=

√
nLmε

G
√

(1+ω)d log(1/δ)
and τ := (1+ω)3/2

n1/2 .

Algorithms
SoteriaFL-GD

(Option I in Algorithm 3
with b = m)

SoteriaFL-SGD
(Option I in Algorithm 3)

SoteriaFL-SVRG
SoteriaFL-SAGA

(Option II, III in Algorithm 3)

Gradient
Complexity K(1 +

√
τ)m K(1 +

√
τ) mεG

√
β√

(1+ω)Ld log(1/δ)
K(1 + τ)m2/3

If we choose a minibatch size b = m (local full gradient) in SoteriaFL-SGD, the result of SoteriaFL-253

SGD leads to that of SoteriaFL-GD.254

Corollary 2 (SoteriaFL-SVRG) Suppose that Assumption 1 and 2 hold and we combine Theorem 3255

and Lemma 1, i.e., choosing stepsize ηt ≡ η ≤ p2/3b1/3min{1,
√
n/(1+ω)3}

L , where we set β =256

p4/3b2/3(1+ω)2 min{1,n/(1+ω)3}
n and p2/3b1/3 ≤ 1, shift stepsize γt ≡ 1

1+ω , and privacy variance257

σ2
p = c 5G

2T log(1/δ)
m2ε2 . If we further let the minibatch size b = m2/3, the probability p = b/m,258

and the total number of communication rounds T = O
( √

nLmε

G
√

(1+ω)d log(1/δ)
max

{
1, τ
})
, where259

τ := (1+ω)3/2

n1/2 , then SoteriaFL-SVRG satisfies (ε, δ)-LDP and the following utility guarantee260

1
T

∑T−1
t=0 E‖∇f(xt)‖2 ≤ O

(
G
√

(1+ω)Ld log(1/δ)√
nmε

)
.261

The utility and communication complexity for SoteriaFL-SAGA are the same as SoteriaFL-SVRG,262

and we defer its detailed corollary to the Appendix.263

Interestingly, SoteriaFL-style algorithms are more communication-efficient than CDP-SGD when264

the local dataset size m is large, with a communication complexity of O(m), in contrast to O(m2)265

for CDP-SGD. In terms of utility, SoteriaFL-SVRG and SoteriaFL-SAGA can achieve the same266

utility as CDP-SGD, while SoteriaFL-GD and SoteriaFL-SGD achieve a slightly worse guarantee267

than that of CDP-SGD by a factor of 1 +
√
τ , where τ := (1+ω)3/2

n1/2 is small when the number of268

clients n is large.269

Gradient complexity of SoteriaFL-style algorithms Although the utility and the communication270

complexity are the most important considerations in private FL, another worth-noting criterion is271

the gradient complexity, which is defined as the total number of stochastic gradients computed by272

each client. Although SoteriaFL-GD, SoteriaFL-SGD, SoteriaFL-SVRG and SoteriaFL-SAGA273

have similar communication complexity (see Table 1), they actually have very different gradient274

complexities—summarized in Table 2—since the minibatch sizes and gradient update rules for275

these algorithms vary a lot. The gradient complexity of SoteriaFL-SVRG/SoteriaFL-SAGA is276

usually smaller than SoteriaFL-SGD, and all of them are smaller than SoteriaFL-GD. In sum, we277

recommend SoteriaFL-SVRG/SoteriaFL-SAGA due to its superior utility and gradient complexity278

while maintaining almost the same communication complexity as SoteriaFL-SGD/SoteriaFL-GD.279

6 Conclusion280

We propose SoteriaFL, a unified framework for private FL, which accommodates a general family of281

local gradient estimators including popular stochastic variance-reduced gradient methods and the282

state-of-the-art shifted compression scheme. A unified characterization of its performance trade-offs283

in terms of privacy, utility (convergence accuracy), and communication complexity is presented,284

which is then instantiated to arrive at several new private FL algorithms. All of these algorithms are285

shown to perform better than the plain CDP-SGD algorithm especially when the local dataset size is286

large, and have lower communication complexity compared with other private FL algorithms without287

compression.288
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