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Abstract

When humans play virtual racing games, they use visual environmental information1

on the game screen to understand the rules within the environments. In contrast,2

a state-of-the-art realistic racing game AI agent that outperforms human players3

does not use image-based environmental information but the compact and precise4

measurements provided by the environment. In this paper, a vision-based control5

algorithm is proposed and compared with human player performances under the6

same conditions in realistic racing scenarios using Gran Turismo Sport (GTS),7

which is known as a high-fidelity realistic racing simulator. In the proposed method,8

the environmental information that constitutes part of the observations in conven-9

tional state-of-the-art methods is replaced with feature representations extracted10

from game screen images. We demonstrate that the proposed method performs11

expert human-level vehicle control under high-speed driving scenarios even with12

game screen images as high-dimensional inputs. Additionally, it outperforms the13

built-in AI in GTS in a time trial task, and its score places it among the top 10%14

approximately 28,000 human players.15

1 Introduction16

Recently, super-human performance was demonstrated in a time trial setting in Gran Turismo Sport17

(GTS) [1], a realistic racing simulator based on real-world dynamics. The result was achieved using a18

neural network-based controller that has learned policies for vehicle control through reinforcement19

learning. This state-of-the-art method formulates the minimum-time race problem by maximizing20

course progression and uses a multi-layer perceptron to learn the mapping from low-dimensional21

observations to control commands without relying on human intervention, expert data, or explicit22

path planning. The controller observes all the necessary information for control, such as speed,23

acceleration, course curvatures, and distance to the edge of the racetrack, directly from the simulator.24

In contrast, when human players play a racing game, they decide on their next action based on the25

environmental information obtained from the game screen, heads-up display (HUD) information on26

the screen, and the feedback vibration to their hand. This implies that the game screen provides enough27

information to control the vehicle and suggests that it is not necessary to use precise observations28

provided by the environment (hereinafter referred to as dedicated observation) as in conventional29

methods to achieve human-level performance.30

A lot of research has been conducted on vehicle control using images of a road in the front of a car as31

observations [2, 3, 4]. In the context of racing games, end-to-end vehicle control has been achieved32

by direct perception in TORCS [5], which is an open-source racing simulator. However, to the best33

of our knowledge, there are few reports on the performance of vehicle control under high-speed34
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driving conditions in a high-fidelity realistic driving simulator. Jaritz et al. [3] have worked on35

learning policies for end-to-end vehicle control using photorealistic game screen images and the car’s36

velocity as observations; however, the reward design was based on the distance from the center of37

the track and did not consider shortest path planning. Therefore, it is still unclear whether expert38

human-level performance can be achieved using high-dimensional environmental observations such39

as high-resolution photorealistic game screen images in a time trial task that requires learning and40

control to always take the shortest path.41

This study aims to train the controller for the time trial task in GTS using game screen images42

and standard sensor information, such as the car’s velocity and acceleration, as observations. The43

approach is to first learn the feature representations from the game screen images for control, and44

then learn the vehicle control using the representations, instead of end-to-end learning with images as45

observations.46

In this paper, we experimented with the proposed controller to measure lap time in the time trial task47

in GTS and compare it with the scores of the built-in AI and human players. The controller not only48

outperformed the built-in AI but also performed within the top 10% of the approximately 28,00049

human players. Furthermore, we confirmed that the controller learned to drive on trajectories that just50

barely avoided contact with the inner wall in most corners, recognizing the position of the vehicle in51

relation to the track from the game screen images. This is the first vision-based control approach that52

has been shown, using quantitative comparison, to achieve expert human-level performance for the53

problem of controlling a high-speed vehicle in realistic racing scenarios.54

2 Related Work55

Autonomous Driving in Realistic Environments56

CARLA [6] is one of the most popular simulators for evaluating autonomous driving systems in57

realistic environments. It provides the necessary observations for driving operations, such as cameras,58

distance sensors, and location information. In addition, it is open source. Such well-equipped59

simulators have contributed to research on autonomous driving systems [7, 8, 9]. However, the60

dynamics of CARLA are not realistic enough for racing; therefore, it can be used for trajectory61

planning simulations, but not for motion control simulations.62

In this study, we tackle a task that requires more precise control, which is driving in racing scenarios.63

For control in racing scenarios, several works have reported that reinforcement learning-based64

approaches can perform as well as or better than humans. Fuchs et al. [1] introduced course-progress65

proxy rewards to replace the trajectory minimization problem with the progress maximization problem66

and achieved superhuman performance in the GTS. Song et al. [10] proposed the application of67

curriculum learning to the task of high-speed autonomous overtaking and achieved performance68

comparable to that of experienced humans. Cai et al. [11] formulated drift control under high-speed69

driving using CARLA as a trajectory-following task using data collected from experienced drivers70

and achieved high generalization performance even when using various vehicle types with different71

physical characteristics. These studies show that state-of-the-art reinforcement learning algorithms72

can match or outperform humans in high-speed driving control tasks that require more precise control73

than urban driving tasks.74

The aforementioned studies used dedicated observations to observe various measurements about75

the car (speedometer and distance sensor values) and the shape of the racetrack. This implies that76

the controller needed to observe accurate values for precise control to achieve expert human-level77

performance. Therefore, the controller can still be considered as having some advantage over humans.78

Aiming to control in the same way that humans grasp the situation from a game screen and feed it79

back to the operation, research has been conducted using images rather than dedicated observations80

for control [12, 13]. CARLA provides images from in-vehicle cameras and is therefore often used in81

simulations for image-based autonomous driving control in urban areas using reinforcement learning82

[14, 15]. Li et al. [4] proposed a control method using TORCS based on track features extracted83

from driver-view. Jaritz et al. [3] proposed end-to-end image-based control learning for World Rally84

Championship 6, a realistic racing game. Although these image-based control methods have been85

proposed in racing scenarios with realistic physical characteristics, they have not been quantitatively86

compared to control methods for human players in time trial tasks. To the best of our knowledge,87
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Figure 1: (Left) System overview of our proposed vision-based controller for the time trial in Gran
Turismo Sport. Dedicated features containing standard sensor information such as a car’s velocity
and acceleration from the simulator on PS4 and embedded environmental representation extracted
from captured game screen images are fed to the policy network to determine output signal. (Right)
A visual illustration of objective variables in Phase 1.

none have been compared with the performance of a large number of human players under the same88

conditions.89

Representation Learning in Reinforcement Learning90

Recently, several approaches have been proposed that explicitly separate the training of environmental91

features from the training of control policies [16, 17]. These approaches have been demonstrated to92

perform as well as or better than conventional end-to-end approaches.93

One non-end-to-end image-based approach is to use many pre-collected observation images to train a94

network offline to map the input image to a lower-dimensional feature vector than the raw image. Lee95

et al. [2] trained a network to estimate the heading angle, distances to preceding cars, and distance to96

the centerline from images and used the output values of the network for vehicle control. Li et al.97

[4] proposed a control method that outperforms existing controllers by using features learned from98

images as observations for reinforcement learning. Inspired by the success of these approaches, we99

employ representation learning on game screen images.100

3 Methodology101

The goal of this study is to establish precise vehicle control under high-speed driving using features102

extracted from game screen images as environmental observations. In previous research [1], [10], the103

angle to the racetrack, the distance from the edge and center of the racetrack, and curvature values104

measured by in-vehicle sensors were used as environmental observations. A vision-based control105

algorithm is created by replacing these observations with embedded representations extracted from106

game screen images.107

Figure 1 (Left) shows an overview of our method. The screen output from PS4 at 60Hz has been108

captured using an HDMI capture device, and the embedded representation is obtained using it as109

input to the feature extraction network. Simultaneously, standard sensor information, such as a car’s110

velocity and acceleration, is directly obtained from the PS4 as dedicated features at 60Hz. The111

embedded representation and the dedicated features are fed to the policy network as observations,112

and the output action signals are fed to the PS4 to control the vehicle.113

The approach comprises a training network to acquire embedded representation from images (Phase114

1) and a training policy network using standard sensor information such as a car’s velocity and115

acceleration from the simulator and environmental representations extracted from the trained network116

(Phase 2). They are detailed in this section.117

Phase 1: Image-Based Representation Learning118

The environmental observation space required for the control to outperform humans has already been119

narrowed down in [1] as follows: the distance from the center of the car body to the edge of the120
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racetrack (in 15-degree increments over a range of 180 degrees in front), the minimum distance from121

the center of the car body to the left and right race track edges, the distance from the center of the car122

body to the centerline of the race track, the angle of the car body with respect to the centerline of the123

race track, the curvature of the race track at 10 points in front of the car, 3D linear velocity, 3D linear124

acceleration, angular velocity in the roll/pitch/yaw directions, a binary flag indicating contact with a125

wall, and the previous steering command.126

Based on the results, a network that has explicitly learned to represent specific information is127

obtained by regression learning. As a preliminary study, we attempted to extract all of the above128

information from multiple consecutive game screen images, but we found it difficult to obtain129

differential information such as the speed and angular velocity of the car. In contrast, we found that130

environmental information, such as the distance from the car to the edge of the racetrack and the131

curvature of the racetrack, could be estimated well from a single image. It can be assumed that the132

screen image contains sufficient information necessary for estimating such environmental information,133

but intuitively, it is difficult to estimate very minute differential information such as the acceleration134

and angular velocity of the car based on pixel-by-pixel differences between multiple images. We135

distinguish between observations that can and cannot be estimated from the screen images and employ136

the following 27 pieces of information as objective variables for regression learning: the distance137

from the center of the car body to the edge of the racetrack (in 15-degree increments over a range of138

180 degrees in front), the minimum distance from the center of the car body to the left and right race139

track edges, the distance from the center of the car body to the centerline of the race track, the angle140

of the car body with respect to the centerline of the race track, and the curvature of the race track at141

10 points in front of the car. Figure 1 (Right) illustrates these objective variables.142

For this regression task, we trained with the following loss function to obtain a network that acquires143

embedded environmental representations for the images,144

lrep = ‖oenv − φreg(φrep(I))‖22, (1)

where I ∈ RH×W×C represents the input game screen image, with H , W , and C being the height,145

width, and number of channels of the image, respectively; oenv ∈ RDenv represents the environmental146

observation vector corresponding to the input image; andDenv is the number of elements in the vector.147

φreg(φrep(·)) represents the entire network to be trained for this regression task. For convenience,148

φrep : RH×W×C → RDrep represents the layers up to the layer that outputs the Drep-dimensional149

embedded environmental representations, and φreg : RDrep → RDenv represents the subsequent150

layers.151

We use the output of the φrep for the policy network rather than directly using the final output of the152

φreg, i.e., the vector with the value of each element that is the target of regression learning, such as153

distance information. This is because the high-dimensional embedded representation immediately154

before the final output contains richer features than the final output, where each element is explicitly155

defined.156

The dataset for regression learning is collected offline. By adding a fixed number of random values157

sampled from a uniform distribution to the operations of the built-in GTS AI to disrupt the operations,158

the game screen images from various points where the car could drive on the track are collected.159

Simultaneously, observations of the estimation target are collected at the same time as capturing the160

game screen image.161

Using the collected data set, the network is trained by offline regression learning as described above.162

In the proposed method, the network using high-resolution images of various points on the track by163

offline regression learning can be trained. By separating the learning for representation acquisition164

from the online learning for control, the resolution of the input image can be increased, which may165

enable capturing of more detailed information in the image. In addition, the training to extract166

environmental features can be omitted during control learning, which is expected to reduce the167

training time of the policy.168

Because the frame rate of GTS is 60 fps, the total inference time including subsequent processing169

must be within 16 ms as measured on the GPU. To satisfy this strict speed requirement, a lightweight170

architecture consisting of space2depth, which is a downsampling process based on the idea of sub-171

pixel convolution [18], and depth-wise separable convolution [19] for the feature extraction network172

were adopted. By reshaping the input image using space2depth, the inference is accelerated without173

losing the detail of high-resolution screen images. By replacing all convolutional operations with174
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depth-wise separable convolution, the parameter size of the network is drastically reduced. The175

inference speed of this network averages around 8ms on the GPU, which satisfies the strict speed176

requirements for the subsequent training and inference tasks.177

Phase 2: Reinforcement Learning using Learned Representation178

In addition to the embedded representation of the network that learned to estimate environmental179

information described in the previous section, the policy network observes 11 pieces of information180

needed to control the car directly from the simulator as dedicated features, including 3D linear181

velocity, 3D linear acceleration, angular velocity in the roll/pitch/yaw directions, a binary flag182

indicating contact with a wall, and the previous steering command. The policy network outputs the183

throttle/brake and steering values based on these inputs. Representing throttle and brake commands as184

a single scalar value, the output of the policy network is a 2-dimensional vector. Therefore, assuming185

that the command output of policy network φp : RDrep+Dded → R2 is a vector at ∈ R2 consisting186

of δt ∈ [−π6 ,
π
6 ] representing the steering angle and ωt ∈ [−1, 1] representing the scalar of throttle187

and brake signal, the policy network is represented as follows:188

at = φp(o), (2)

where o ∈ RDrep+Dded is a combination of the embedded environmental representation oenv and189

Dded-dimensional vector consisting of the values of each of the dedicated functions. In this study, we190

employ Dded = 11 pieces of information as dedicated functions, as mentioned above.191

Our goal is to find a policy that minimizes lap time. Therefore, we adopt a reward based on the192

concept of maximizing course progress, represented by the following equation, following the design193

in [1],194

rt = rprogt −
{
cw‖vt‖2 if in contact with wall
0 otherwise,

(3)

where the first term in (3) is the reward for course progress evaluated at arbitrary time intervals.195

Course progress is calculated by projecting the trajectory of the car onto the centerline of the track.196

Since progress on the centerline is maximized by driving more inward at the corners of the track, we197

can assume that the design gives a higher reward for shorter paths. The second term corresponds to198

the penalty for contact with the wall and is proportional to vector vt = [vx, vy, vz], which represents199

the current linear velocity of the vehicle. Introducing this term prevents the policy from learning a200

more efficient time-saving strategy by hitting a wall. Here, cw represents the weight coefficient that201

controls the trade-off between these rewards and penalties.202

The policy network is trained with the soft actor-critic (SAC) algorithm [20], following its success in203

[1].204

4 Experiments205

Settings206

We evaluated our vision-based control algorithm in the time trial task in GTS. In this experiment,207

we used the Mazda Demio XD Turing ’15 and the Tokyo expressway central outer loop as the target208

course. This is the same condition as that in one of the experiments in [1], which allows us to compare209

the performance of our method with the scores of approximately 28,000 human players provided by210

Polyphony Digital Inc.211

The following sections detail the experimental settings for representation learning and reinforcement212

learning.213

Image-based Representation Learning214

For training the network, we first collected pairs of game screen images, as shown in Figure 2 (Left),215

and observations at various points on the racetrack. Originally, HUD information, including the216

current speed, was displayed on the screen, but we hid it since the controller can receive it directly217

from the environment. We collected approximately 630,000 game screen images for 50 laps using218
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Figure 2: (Left) Examples of the Gran Turismo Sport game screen, driving a Mazda Demio on the
"Tokyo Expressway - Central Outer Loop." (Right) Examples of trajectories (blue line) collected by
disrupted operations to observe various points on the course.

disrupted operations described in Section 3. Figure 2 (Right) shows trajectories of the car collected by219

the disturbed operation. The game screen images were captured at a 1280 x 720 resolution but were220

downsampled to a 470 x 280 resolution before being input to the network. This was adjusted based221

on the trade-off between inference speed and the number of features. In this experiment, Denv was222

set to 27, the number of objective variables in this task, and Drep, the vector length of the embedded223

environmental representation, was set at 64.224

Note that only the curvature among the observations estimated by the network has a different meaning225

from that in previous research [1]. In that research, the curvature was represented by a vector226

consisting of values of the position of the car after 1.0 to 2.8 seconds, calculated based on the speed at227

that moment. In the proposed method, since training for feature extraction from images and training228

for car control are independent of each other, it is represented as a vector containing curvature values229

of the track at 10 points 40 to 120 m ahead of the current position. To keep the experimental settings230

as close as possible to those in the conventional method, the distance and interval for sampling the231

curvature values were calculated based on the approximate maximum speed of the Mazda Demio. To232

ensure that differences in the range of values for each observation did not affect the training priorities,233

each element of oenv was standardized using the mean and variance of the entire training dataset.234

We prepared pairs of game images and observations obtained by operating the built-in AI without any235

external disruptions and used them as an evaluation dataset. We trained the network for 50 epochs236

and employed the weights that produced the smallest prediction error for each observation in the237

evaluation dataset.238

Reinforcement Learning using Representation239

We trained the controller under the reward function shown in (3) using the SAC algorithm. The240

Drep = 64-dimensional vector, which is the output of the φrep in (2), was used as the embedded en-241

vironmental representation instead of the environmental information from the dedicated observations.242

The 75-dimensional vector, o, which is a combination of the embedded environmental representation243

and the Dded = 11-dimensional vector consisting of the elements selected as in Section 3, was used244

as the input to the controller. Owing to the specifications of our HDMI capture device, the captured245

images were always 4 frames (67ms) behind the observations provided by the simulator, but we did246

not apply any additional processing because this delay is rather fair, considering the perceived speed247

of the human player. The policy network φp consisted of two 256-dimensional fully connected layers248

followed by a ReLU layer.249

Training samples have been collected by driving 20 cars per PS4 at the same time using one PS4 [10]250

or four PS4s [1], but in this method, we collected samples by driving only one car using only one251

PS4 owing to the screen capture process. To closely match the training settings of these previous252

studies, we changed the starting point of the car for each trial and sampled the driving operation for253

100s, updating the controller after 20 driving trials. Three seeds were used to train the controller for254

evaluation. For the evaluation, we let the agents run two consecutive laps and adopted the lap time of255

the second lap to eliminate the effect of initial speed given at the start of the evaluation according to256

previous research [1], and the fastest time was used as the best lap score.257
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Figure 3: (Left) Time trial lap time comparison between over 28,000 human players (pale blue
histogram), the built-in GTS AI (blue line), the median lap time of human players (red line), and our
vision-based controller (yellow line). Our controller outperforms the median and mode of the scores
of human players. (Right) Learning progress of the three agents with different initial values for the
same feature extraction network and the other agent with different initial values for another feature
extraction network. 1 epoch is for 20 trials of 100s each, and we update and evaluate the network
parameters after the end of each epoch.

Table 1: Time trial comparisons between the built-in GTS AI, human players, the state-of-the-art
controller proposed by Fuchs et al., and our vision-based controller.

DRIVER LAP TIME

BUILT-IN GTS AI 01:52.075
HUMAN PLAYERS (MEDIAN) 01:47.259
HUMAN PLAYERS (FASTEST) 01:39.445
FUCHS ET AL. 01:39.408
OURS 01:42.717

Results258

Figure 3 (Left) and Table 1 present the results of the time trial in each setting. As shown in the results,259

the agent trained by the proposed method beat the lap time of the built-in GTS AI by 9.4s and the260

median score of human players by 4.5s. Furthermore, its score lies within the top 10% of the results261

for scores collected from 28,000 human players. This result shows that the proposed approach can262

achieve expert human-level performance.263

Agents trained with the conventional method, which uses dedicated observations to analyze informa-264

tion on the track instead of using image-based environmental information, run more optimal paths265

and outperform the fastest human players. Our experiments show that the performance degradation266

is limited to approximately 3.3 s compared to the score of the conventional method, even if dedi-267

cated observations of the environmental information are completely replaced with the representation268

obtained from the game screen image.269

Figure 3 (Right) shows the learning progress of three agents with different initial values for the same270

feature extraction network and the other agent with different initial values for a feature extraction271

network initialized with different values. Although there is a difference in the learning progress272

depending on the initial value, all agents learn the policy in approximately 400 epochs. Furthermore,273

it has been shown that even if the network that extracts representations from images is trained with274

different initial values, it performs equally well during the reinforcement learning phase. This means275

that the agent is robust to the representations that the network acquires.276

Figure 4 shows the trajectories of our agent in some different types of corners in the track. Our agent277

accurately recognizes the position of the vehicle in relation to the track from the game screen image278

and drives in a near-optimal path that passes close by the walls without any collisions.279
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Figure 4: The trajectories of our agent during the evaluation driving in different sections (blue line).
When a vehicle hits the walls, the impact causes it to not only slow down and disrupt the driving
operation but also deviate from its optimal path. The trajectory of our agent is smooth and shows that
our controller can drive the car without hitting a wall.

5 Conclusion280

In this paper, we proposed the first vision-based control algorithm that achieves expert human-level281

performance on Gran Turismo Sport, a realistic racing simulator. In our approach, there are two282

phases: representation learning to extract the features needed to control the car from the game screen283

image and reinforcement learning to train the policy.284

Our vision-based controller not only significantly outperformed the built-in AI but also performed285

within the top 10% of 28,000 players under the same conditions in the time trial task. Moreover,286

compared to state-of-the-art methods that use accurate observations provided by the simulator to287

outperform humans, the difference was approximately 3.3s.288

As a future prospect of our research, we plan to further validate the acquired feature representation. In289

this paper, we have not clarified that the feature extraction network does not recognize the objective290

variables by learning them from other features in the image. Furthermore, we intend to build a291

learning scheme to acquire embedded representations using multiple images to perfectly match the292

observation conditions with human players, since our method still observes differential information293

such as acceleration and angular velocity from the simulator. In addition, although we have set up294

an observation space for environmental information in this research based on the results of previous295

research [1], the application and performance comparison of completely end-to-end learning as in [3]296

and online methods for representation learning as in [16, 17] should be performed in a future study.297
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