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Abstract

Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dom-1

inate the field of medical image-to-image translation. However, neither modes2

are ideal. The Pix2Pix mode has excellent performance. But it requires paired3

and well pixel-wise aligned images, which may not always be achievable due4

to respiratory motion or anatomy change between times that paired images are5

acquired. The Cycle-consistency mode is less stringent with training data and6

works well on unpaired or misaligned images. But its performance may not be7

optimal. In order to break the dilemma of the existing modes, we propose a new8

unsupervised mode called RegGAN for medical image-to-image translation. It9

is based on the theory of "loss-correction". In RegGAN, the misaligned target10

images are considered as noisy labels and the generator is trained with an addi-11

tional registration network to fit the misaligned noise distribution adaptively. The12

goal is to search for the common optimal solution to both image-to-image transla-13

tion and registration tasks. We incorporated RegGAN into a few state-of-the-art14

image-to-image translation methods and demonstrated that RegGAN could be15

easily combined with these methods to improve their performances. Such as a16

simple CycleGAN in our mode surpasses latest NICEGAN even though using less17

network parameters. Based on our results, RegGAN outperformed both Pix2Pix on18

aligned data and Cycle-consistency on misaligned or unpaired data. RegGAN is19

insensitive to noises which makes it a better choice for a wide range of scenarios,20

especially for medical image-to-image translation tasks in which well pixel-wise21

aligned data are not available. Code and data used in this study can be found at22

https://github.com/Kid-Liet/Reg-GAN.23

1 Introduction24

Generative adversarial networks (GANs)[1] is a framework that simultaneously trains a generator G25

and a discriminator D through an adversarial process. The generator is used to translate the distribu-26

tion of source domain images X to the distribution of target domain images Y . The discriminator is27

used to determine if the target domain images are likely from the generator or from the real data.28

min
G

max
D
LAdv (G,D) = Ey [log (D (y))] + Ex [log (1−D (G (x)))] (1)

Supervised Pix2Pix[2] and unsupervised Cycle-consistency[3] are the two commonly used modes in29

GANs. Pix2Pix updates the generator (G : X → Y ) by minimizing pixel-level L1 loss between the30

source image x and the target image y. Therefore, it requires well aligned paired images, where each31

pixel has a corresponding label.32

min
G
LL1 (G) = Ex,y [‖y −G (x) ‖1] (2)
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Figure 1: Comparison among the modes of Pix2Pix, CycleGAN and RegGAN.

Well aligned paired images, however, are not always available in real-world scenarios. To address the33

challenges caused by misaligned images, Cycle-consistency was developed which was based on the34

assumption that the generator G from the source domain X to the target domain Y (G : X → Y )35

was the reverse of the generator F from Y to X (F : Y → X). Compared to the Pix2Pix mode, the36

Cycle-consistency mode works better on misaligned or unpaired images.37

min
G

min
F
LCyc (G,F ) = Ex [‖F (G (x))− x‖1] + Ey [‖G (F (y))− y‖1] (3)

The Cycle-consistency mode, however, has its limitations. In the field of medical image-to-image38

translation, it requires not only the style translation between image domains, but also the translation39

between specific pair of images. The optimal solution should be unique. For example, the translated40

images should maintain the anatomical features of the original images as much as possible. It is41

known that the Cycle-consistency mode may produce multiple solutions[4, 5], meaning that the42

training process may be relatively perturbing and the results may not be accurate. The pix2pix mode43

is not ideal either. Even though it has a unique solution, it is difficult to satisfy the requirement44

asking for well aligned paired images. With misaligned images, the errors are propagated through the45

Pix2Pix mode which may result in unreasonable displacements on the final translated images.46

As of today, there is no image-to-image translation mode that can outperform both the Pix2Pix47

mode on aligned data and the Cycle-consistency mode on misaligned or unpaired data. Inspired48

by[6–10], we consider the misaligned target images as noisy labels, which means that the existing49

problem is regarded as supervised learning with noisy labels. So we introduce a new image-to-image50

translation mode called RegGAN. Figure 1 provides a comparison of the three modes: Pix2Pix,51

Cycle-consistency and RegGAN. To facilitate reading, we summarize our contributions as follows.52

• We demonstrate the feasibility of RegGAN from the theoretical perspective of "loss-53

correction". Specifically, we train the generator using an additional registration network54

to fit the misaligned noise distribution adaptively, with the goal to search for the common55

optimal solution for both image-to-image translation and registration tasks.56

• RegGAN eliminates the requirement for well aligned paired images and searches unique57

solution in training process. Based on our results, RegGAN outperformed both Pix2Pix on58

aligned data and Cycle-consistency on misaligned or unpaired data.59

• RegGAN can be integrated into other methods without changing the original network60

architecture. Compared to Cycle-consistency with two generators and discriminators,61

RegGAN can provide better performance using less network parameters.62
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2 Related Work63

Image-to-image Translation: Generative adversarial networks (GANs) have shown great potential64

in the field of image-to-image translation[11–16]. It has been successfully implemented in medical65

image analysis like segmentation[17], registration[18, 19] and dose calculation[20]. The existing66

modes, however, have their limitations. Specifically, the Pix2Pix mode[2] requires well aligned paired67

images which may not always be available. The Cycle-consistency mode can achieve unsupervised68

image-to-image translation. With a Cycle-consistency loss, it can be used for misaligned images.69

Based on Cycle-consistency, many methods[3, 21–30] have been developed including CycleGAN[3]70

and its variants such as MUNIT[31] and UNIT[32] in which both image content and style information71

are used to decouple and reconstruct the image-to-image translation task; U-gat-it[33] with a self-72

attention mechanism added; and NICEGAN[34] proposed to reuse the discriminator for encoding.73

The main limitation of Cycle-consistency is that it may produce multiple solutions and therefore74

is sensitive to perturbation, making it difficult to meet the high accuracy requirements of medical75

image-to-image translation tasks.76

Learning from Noisy Labels: Neural network anti-noise training has made great progress. Current77

research are mainly focused on: estimating the noise transition matrix[7, 35–40], designing a robust78

loss function[41–44], correcting the noise label[45–50], sampling importance weighting[51–55]79

and meta-learning[56–59]. Our work is in the category of estimating the noise transition matrix.80

Compared to conventional noise transition estimation, we mitigate the issue and simplify the task by81

acquiring prior knowledge of noise distribution.82

Closest to our work, Arar.M et al[60] introduced a multi-modal registration method for natural83

images based on geometry preserving. But their work focused only on registration and did not84

demonstrate results of image-to-image translation or discuss the relationship between registration and85

image-to-image translation. The key insight of our work is that we demonstrated the feasibility of86

using registration to significantly improve the performance of image-to-image translation because the87

noise could be eliminated adaptively during the joint training process. What we propose in the paper88

is a completely new mode for medical image-to-image translation.89

3 Methodology90

3.1 Theoretical Motivation91

If we consider misaligned target images as noisy labels, the training for image-to-image translation92

becomes a supervised learning process with noisy labels. Given a training dataset {(xn, ỹn)}Nn=193

with N noisy labels in which xn, ỹn are images from two modalities and assume yn is the correct94

label for xn, but it is unknown in real-world scenarios. Our goal is to train a generator using the95

dataset {(xn, ỹn)}Nn=1 with noisy labels and achieve the performance equivalent to trained on clean96

dataset {(xn, yn)}Nn=1 as much as possible. Direct optimization based on Equations 4 usually does97

not work and can lead to bad results because the generator cannot squeeze out the influence of noise.98

Ĝ = argmin
G

− 1

N

N∑
n=1

L (G (xn) , ỹn) (4)

To address the noise issue, we propose a solution based on "loss-correction"[7] shown in Equations99

5. Our solution corrects the output of the generator G(xn) by modeling a noise transition φ to match100

the noise distribution. Previously, Patrini et al[7] proved mathematically that the model trained with101

the noisy labels could be equivalent to the model trained with the clean labels, if the noise transition102

φ matches the noise distribution.103

Ĝ = argmin
G

− 1

N

N∑
n=1

L (φ ◦G (xn) , ỹn) (5)

To achieve this, Goldberger et al[36] proposed to view the correct label as a latent random variable104

and explicitly model the label noise as a part of the network architecture, denoted by R. Then,105

Equations 5 can be rewritten in the form of log-likelihood, which is used as the loss function for106
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neural network training.107

L (G,R) =
N∑

n=1

log (p (ỹn|yn;R) p (yn|xn;G))

=

N∑
n=1

log (p (ỹn|xn;G,R))

(6)

3.2 RegGAN108

Compared to existing methods that use expectation-maximum[7, 36], fully connected layers[35],109

anchor point estimate[37] and Drichlet-distribution[38] to solve Equations 6. In our problem, the110

type of noise distribution is clearer, it can be expressed as displacement error: ỹ = y ◦ T . Here T is111

expressed as a random deformation field, which produces random displacement for each pixel. So we112

adopt a registration network R after the generator G as label noise model to correct the results. The113

Correction loss is shown Equations 7:114

min
G,R
LCorr (G,R) = Ex,ỹ [‖ỹ −G (x) ◦R (G (x) , ỹ) ‖1] (7)

where,R (G (x) , ỹ) is the deformation field and ◦ represents the resamples operation. The registration115

network is based on U-Net[61]. A smoothness loss[62] is defined in Equations 8 to evaluate the116

smoothness of the deformation field and minimize the gradient of the deformation field.117

min
R
LSmooth (R) = Ex,ỹ

[
‖∇R (G (x) , ỹ) ‖2

]
(8)

Finally, we add the Aversarial loss between the generator and the discriminator (Equations 1), and118

the total loss is expressed in Equations 9.119

min
G,R

max
D
LTotal (G,R,D) = LCorr + LSmooth + LAdv (9)

4 Experiments120

Performance evaluation of RegGAN was conducted through three investigations to 1) demonstrate121

the feasibility and superiority of the RegGAN mode in various methods, and 2) assess RegGAN’s122

sensitivity to noise, and 3) explore the availability of the RegGAN on unpaired data.123

4.1 Dataset124

The open-access dataset (BraTS 2018[63]) was used to evaluate the proposed RegGAN mode.125

The training dataset and testing dataset contained 8457 and 979 pairs of T1 and T2 MR images,126

respectively. BraTS 2018 was selected because the original images were paired and well aligned. We127

created misaligned images by randomly adding different levels of rotation, translation and rescaling128

to the original images. And we randomly sample one image from T1 and the other one from T2129

when training on unpaired images. The availability of well aligned paired images, misaligned paired130

images, and unpaired images allow us to evaluate the performances of all three modes (Pix2Pix,131

Cycle-consistency and RegGAN).132

4.2 Performances in Different Methods133

The primary motivation of introducing RegGAN was to address challenges caused by misaligned data.134

Therefore, in this section, misaligned data were used in model training to demonstrate the feasibility135

and superiority of RegGAN. We selected the most popular CycleGAN[3] and its variants MUNIT[31],136

UNIT[32], and NICEGAN[34] as the methods for evaluation and compared the following four modes137

for each method.138

• C(Cycle-consistency): The most primitive mode of all methods, with Cycle-consistency139

loss (Equations 3) as the main constraint. Two generators and two discriminators are140

required in this mode.141
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Table 1: Comparison of CycleGAN, MUNIT, UNIT and NICEGAN using four training modes(C,
C+R, NC and NC+R).

Index

Modes Methods
CycleGAN MUNIT UNIT NICEGAN

NMAE ↓

C 0.089 0.11 0.087 0.082
C+R (-0.012)0.077 (-0.022)0.088 (-0.013)0.074 (-0.011)0.071
NC 0.11 0.10 0.098 0.089

NC+R (-0.038)0.072 (-0.021)0.079 (-0.027)0.071 (-0.019)0.070

PSNR ↑

C 23.5 20.6 24.6 25.2
C+R (+0.3)23.8 (+2.1)22.7 (+0.7)25.3 (+0.9)26.1
NC 20.2 21.5 23.7 23.5

NC+R (+5.4)25.6 (+2.3)23.8 (+1.8)25.5 (+2.8)26.3

SSIM ↑

C 0.83 0.80 0.84 0.83
C+R (+0.02)0.85 (+0.03) 0.83 (+0.02)0.86 (+0.03)0.86
NC 0.79 0.81 0.83 0.84

NC+R (+0.07)0.86 (+0.04)0.85 (+0.03) 0.86 (+0.02)0.86

• C+R (Cycle-consistency + Registration): The RegGAN mode is combined with the mode142

C. Registration network (R) and Correction loss (Equations 7) are added to the constraints.143

• NC(Non Cycle-consistency): Only Adversarial loss (Equations 1) is used for updating.144

Compared to the mode C, Cycle-consistency loss is removed. Only one generator and one145

discriminator are required in this mode.146

• NC+R(Non Cycle-consistency + Registration): A registration network (R) and Correction147

loss (Equations 7) are added to the mode NC. It is the proposed RegGAN mode.148

To evaluate the performance of each method on misaligned data, we randomly added [-5, +5] degrees149

of angle rotation, [-5, +5] percent of translation, and [-5, +5] percent of rescaling to the original T1150

and T2 images on the training dataset.151

To ensure fair comparison, we used the same training strategy and hyperparameters for all methods152

and modes (see supplementary materials for details). The Normalized Mean Absolute Error (NMAE),153

Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) were used as metrics to evaluate154

the performances of trained models based on the testing dataset. To avoid false high results of index,155

we excluded the image background from the calculation. Table 1 summarized the results for all156

methods and modes under the current investigation.157

Based on the results from the Table 1, we can reach several conclusions. First, adding the registration158

network (+R) significantly improves the performances of the methods. This is true for all methods in159

both C and NC modes. It clearly demonstrates that RegGAN can be incorporated in various methods160

or combined with different network architectures to improve the performances. Second, the C mode161

is in general better than the NC mode for most of methods. Adding the registration network (+R)162

improves the performance of the NC mode more than that of the C mode. In fact, our results show163

that the NC+R mode is even better than the C+R mode, implying that "Cycle-consistency loss"164

may play a negative role when it is combined with RegGAN. Compared with the commonly used165

C mode with two generators and two discriminators, RegGAN has fewer parameters but provides166

better performance. The simple CycleGAN method in the NC+R mode outperforms the current167

state-of-the-art method NICEGAN in the C mode by 0.01, 0.4, 0.03 for NMAE, PSNR and SSIM,168

respectively. The NC+R mode can also be used to improve the performance of NICEGAN. In fact,169

the performance of NICEGAN in the NC+R mode is the best among all combinations of the 4170

methods and 4 modes.171

Figure 2 shows representative results from various combinations of the 4 methods (CycleGAN,172

MUNIT, UNIT and NICEGAN) and 4 modes (C, C+R, NC and NC+R). For all aspects of the image173
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Figure 2: The errors of different modes in different methods.

(from the tumor areas and the details), the combinations that use the registration network (+R) always174

provide more realistic and accurate results than those that do not use the registration network (+R).175

4.3 Performances in Different Noise Levels176

To evaluate the sensitivity of RegGAN to noise, we selected a simple network architec-177

ture.(CycleGAN) with the intention to minimize interference from other factors. The same network178

architecture was used for all three modes: CycleGAN(C), Pix2Pix and RegGAN. Six levels of noise179

were used in the evaluation. Table 2 lists the specific noise setting and range for each noise level.180

Noise.0 means the original dataset with no added noise. Noise.5 is the highest level of noise. At181

Noise.5, the data are likely from different patients. Figure 3 shows example images at different levels182

of introduced noise.183

Noise.1 Noise.2Noise.0 Noise.3 Noise.4 Noise.5

Figure 3: Example images at six different levels of introduced noise.

Table 2 lists the quantitative evaluation metrics from 3 modes at 6 levels of noise. It is clear that184

RegGAN outperforms CycleGAN(C) under all noise levels. Figure 4(a) shows the test results from185

each epoch during the training process for both RegGAN and CycleGAN(C). Curves of different186
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Table 2: Comparison of the NMAE, PSNR and SSIM for CycleGAN(C), Pix2Pix and RegGAN
under 6 levels of noise.

Noise.0 Noise.1 Noise.2 Noise.3 Noise.4 Noise.5

Setting

Rotate 0◦ ±1◦ ±2◦ ±3◦ ±4◦ ±5◦

Translation 0% ±2% ±4% ±6% ±8% ±10%
Rescaling 0% ±2% ±4% ±6% ±8% ±10%

CycleGAN(C)

NMAE ↓ 0.084 0.095 0.087 0.094 0.087 0.110

PSNR ↑ 23.9 22.5 23.7 23.3 23.9 23.7

SSIM ↑ 0.83 0.83 0.82 0.81 0.82 0.79

Pix2Pix

NMAE ↓ 0.075 0.103 0.139 0.161 0.175 0.181

PSNR ↑ 25.6 22.3 18.9 16.2 15.3 15.0

SSIM ↑ 0.85 0.82 0.78 0.76 0.74 0.74

RegGAN

NMAE ↓ 0.071 0.073 0.071 0.072 0.072 0.072

PSNR ↑ 26 25.6 25.9 25.7 25.4 25.2

SSIM ↑ 0.86 0.86 0.86 0.86 0.86 0.85
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Figure 4: Quantitative evaluation metrics at different epochs in the training process. (a) Comparison
of CycleGAN and RegGAN at different levels of noise. (b) Comparison of Pix2Pix and RegGAN at
Noise.0 (i.e., no noise). (c) RegGAN’s Smoothness loss under different levels of noise.

colors corresponds to different levels of noise. We notice that CycleGAN(C) is not very stable during187

the training process. The test results fluctuate significantly and cannot converge well. This may be188

caused by the fact that the solution of CycleGAN (C) is not unique. As a comparison, RegGAN is189

quite stable. Although the results from different levels of noise may vary at the beginning of training,190

all curves converge to a similar result after multiple epoches of training, indicating that RegGAN is191

more robust to noise compared to CycleGAN (C).192

Based on Table 2, we notice that the performance of Pix2Pix deteriorates rapidly as the noise193

increases. This is as expected because Pix2Pix requires well aligned paired images. Surprisingly, the194

performances of RegGAN at all noise levels exceed those of Pix2Pix with no noise. Figure 4(b) shows195

the test results at each epoch of RegGAN and Pix2Pix under Noise.0 (i.e., no noise). Theoretically,196

the performances of RegGAN and Pix2Pix should be similar on perfectly aligned paired datasets197

because the registration network of RegGAN does not help and RegGAN is equivalent to Pix2Pix. A198

possible explanation to our results is that in the medical field, the perfectly pixel-wise aligned dataset199

may not practically exist. Even for BraST 2018[62] which is recognized as well aligned, it is still200

possible that there exists slight misalignment. As a result, adding the registration network is always201

likely to improve the performances in real-world scenarios. To verify our explanation, we plotted the202

Smoothness loss of RegGAN under different noise levels as shown in Figure 4(c). Large Smoothness203

loss corresponds to large deformation field displacement. First, we notice that the Smoothness loss204

under Noise.0 never completely goes to 0, indicating the existence of misalignment and potential205
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usefulness of the registration network. Second, the noise level and Smoothness loss show a step-like206

positive correlation, which means that RegGAN can adaptively handle the noise distribution, i.e., the207

registration network can determine the range of deformation according to the noise level.208

Case .1 Case .2 Case .3 Case .4 Case .5 Case .6

D.F

T1

T2

Figure 5: The misalignment of orginal image pairs and corresponding deformation fields.

we also show some original image pairs and visualize the corresponding deformation fields output by209

registration network in Figure 5. Obviously, there is some misalignment between the original T1210

and T2 images, and such misalignment is represented by the deformation fields (highlighted by red211

circle).212

4.4 Performances on Unpaired Dataset213

So far, our investigations are based on paired datasets. We also want to explore how RegGAN214

performs using unpaired datasets. In practice, this is not recommended because even different patients215

may have similarities in their body tissues of adjacent layers. For unpaired datasets, we can conduct216

rigid registration first in 3D space and then use RegGAN for training. Unpaired data can be treated217

as having larger scale noise. If the correction capability is strong enough, RegGAN can still work218

effectively. The comparison of the performances of three modes on the unpaired dataset is shown in219

Figure 6.220

T1 T2       Pix2Pix                 Error   CycleGAN(C)          Error       RegGAN              Error

Mode

Index
NMAE↓ PSNR↑ SSIM↑

Pix2Pix 0.180 15.5 0.71

CycleGAN(C) 0.094 23.6 0.83

RegGAN 0.086 24.0 0.83

Figure 6: Performance comparison of the three modes (CycleGAN(C), Pix2Pix and RegGAN) on
unpaired dataset.

With unpaired datasets, Pix2Pix no longer considers the characteristics of the input T1 images221

and thus has the worst performance. Due to the challenges in fitting the noise, the performance222

improvement from replacing CycleGAN(C) with RegGAN using unpaired datasets may not be as223
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T1 T2 Translated Registered D.F T1 T2 Translated Registered D.F

Figure 7: Display of RegGAN’s output on unpaired data. T1 and T2 are unpaired images. The
Translated represents the translation result of T1 to T2. Registered represents the registration result
of the translated images. D.F represents deformation fields.

dramatic as that demonstrated using paired datasets, but RegGAN still has the best performance224

under unpaired conditions. In Figure 7, we show some examples of how RegGAN corrects noise225

on unpaired dataset. It can be seen that RegGAN will try its best to eliminate the influnce of noise226

through registration.227

Based on our results, it is reasonable to reach the conclusions below. In all circumstances, RegGAN228

demonstrates better performance compared to Pix2Pix and CycleGAN(C).229

• For paired and aligned conditions, RegGAN ≥ Pix2Pix > CycleGAN(C).230

• For paired but misaligned conditions, RegGAN > CycleGAN(C) >Pix2Pix.231

• For unpaired conditions, RegGAN > CycleGAN(C) >Pix2Pix.232

Conclusion233

In this study, we introduced a new image-to-image translation mode RegGAN to the medical234

community that can break the dilemma of image-to-image translation task. Using a public BraST235

2018 dataset, we demonstrated the feasibility of RegGAN and its superior performance compared236

to Pix2Pix and Cycle-consistency. We validated that RegGAN can be incorporated into various237

existing methods to improve their performances. We also evaluated the sensitivity of RegGAN to238

noise. Our results confirmed that RegGAN could adapt well to various scenarios from no noise239

to large-scale noise. The superior performance of RegGAN makes it a better choice over Pix2Pix240

and Cycle-consistency whether datasets are aligned or not. However, this mode may not work well241

on natural images. The noise may cannot be considered simply as deformation errors due to the242

differences in natural images are much greater than those in medical images.243

Broader Impact244

Image-to-image translation has been one of the main focuses in medical image analysis, as it aids in245

diagnosis and treatment. Previously, physicians had to use different medical imaging equipments246

if they wanted to get multi-modal images of a patient, which was time-consuming and expensive.247

Pix2Pix mode is expected to solve this problem by its outstanding performance in image-to-image248

translation. In most of clinical scenarios, however, it is not practical to create such a large well aligned249

dataset for Pix2Pix mode. Cycle-consistence mode does not need well aligned dataset but can not250

meet the high-precision requirements of medical image analysis. Our work aims to provide a general251

image-to-image translation mode, which not only has no strict requirements on the dataset, but also252

can meet the clinical requirements in terms of image quality. We foresee positive impacts if the mode253

is applied to diagnosis in radiology, treatment planning and research.254
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