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Abstract

Observational studies often seek to infer the causal effect of a treatment even1

though both the assigned treatment and the outcome depend on other confounding2

variables. An effective strategy for dealing with confounders is to estimate a3

propensity model that corrects for the relationship between covariates and assigned4

treatment. Unfortunately, the confounding variables themselves are not always5

observed, in which case we can only bound the propensity, and therefore bound the6

magnitude of causal effects. In many important cases, like administering a dose of7

some medicine, the possible treatments belong to a continuum. Sensitivity models,8

which are required to tie the true propensity to something that can be estimated, have9

been explored for binary treatments. We propose one for continuous treatments.10

We develop a framework to compute ignorance intervals on the partially identified11

dose-response curves, enabling us to quantify the susceptibility of an inference12

to hidden confounders. We show with real-world observational studies that our13

approach can give non-trivial bounds on causal effects from continuous treatments14

in the presence of hidden confounders.15
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Figure 1. When a confounder is distorting
the assigned treatments in sub-populations,
the overall population-level trend may ap-
pear flipped in comparison to each sub-
population’s dose response.

The goal of causal inference is to separate the effect17

of one treatment variable from the influence of many18

related but irrelevant “confounding” variables. Physi-19

cal interventions accomplish this most effectively, but20

practical barriers often force researchers to rely on ob-21

servational studies and clever statistics. A plethora of22

methods operate on the basis of a learned propensity23

model for the assigned treatment conditioned on covari-24

ates, for instance to reweigh the sample and remove any25

visible biases. Usually, the covariates are inadequate to26

account for all the hidden paths between the treatment27

and the outcome, and propensity-based approaches may28

struggle to discern the real effect. The scientific com-29

munity at large continues to vascillate on the health30

implications and ideal consumption levels of coffee31

[Atroszko, 2019], alcohol [Ystrom et al., 2022], and32

cheese [Godos et al., 2020], to name a few substances.33

Most sensitivity analyses to hidden confounding re-34

quire the treatment categories to be binary or at least35

discrete. This weakens the empirical studies that would have been better specified by dose-response36

curves [Calabrese and Baldwin, 2001] from a continuous treatment variable, for example. Estimated37
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dose responses are indeed vulnerable in the presence of hidden confounders. A simulated example in38

Figure 1 demonstrates how a J-shaped treatment effect can appear flipped in observational data due39

to confounding. The phenomenon is an example of Simpson’s paradox [Simpson, 1951, Yule, 1903].40

1.1 Related works41

There is growing interest in causal methodology for treatments (or exposures, interventions) that take42

on specific values within a continuum, especially in the fields of econometrics [e.g. Huang et al.,43

2021, Tübbicke, 2022], health sciences [Vegetabile et al., 2021], and machine learning [Ghassami44

et al., 2021, Colangelo and Lee, 2021, Kallus and Santacatterina, 2019]. So far, much scrutiny on45

partially identified potential outcomes has focused on the case of binary treatments, the simplest46

setting [e.g. Rosenbaum and Rubin, 1983, Louizos et al., 2017, Lim et al., 2021]. A number of47

creative approaches were exhibited in the past few years to make strides in this binary setting. Most48

of them relied on a sensitivity model for bounding the extent of possible unobserved confounding, to49

which downstream tasks may be adapted by noting which treatment effects degrade the quickest.50

Quite recently, attempts were made to handle unobserved confounding with continuous treatments by51

optimizing the treatment effect bounds with generative models [Padh et al., 2022, Hu et al., 2021],52

rather than a sensitivity model. One employs instrumental variables [Kilbertus et al., 2020]. Another,53

with a sensitivity model, was developed in parallel to the present work [Jesson et al., 2022].54
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Figure 2. Illustration of true confounder Z deter-
mining potential outcomes Yt∈[0,1] with observ-
able covariate X and treatment T . The density
p(yt|τ, x), found in the integrand of Equation 1,
diverges from p(yt|x) when the covariates are in-
adequate to block all the links between assigned
treatment and potential outcomes.

Regarding binary treatments, the so-called55

Marginal Sensitivity Model (MSM) due to56

Tan [2006] continues to be studied exten-57

sively [Zhao et al., 2019, Veitch and Zaveri, 2020,58

Yin et al., 2021]. Variations thereof include Rosen-59

baum’s earlier sensitivity model [2002] that enjoys60

ties to regression coefficients [Yadlowsky et al.,61

2020]. Other groups have borrowed strategies62

from deep learning [Wu and Fukumizu, 2022]63

rather than opting for the MSM. Another active64

line of work constructs bounds not due to igno-65

rance on confounding but instead viewed from the66

lens of robustness [Guo et al., 2022, Makar et al.,67

2020, Johansson et al., 2020]. The MSM is highly68

interpretable with its single free parameter, and69

applicable to a wide swath of models.70

Other approaches require additional structure to71

the data-generating (observed outcome, treat-72

ment, covariates) process. Proximal causal learn-73

ing [Tchetgen et al., 2020, Mastouri et al., 2021]74

requires additional proxy structures. Chen et al.75

[2022] rely on multiple large dataset partitions.76

1.2 Contributions77

Our first contribution is to propose a unique sensitivity model (§2.1) that extends the MSM to a78

treatment continuum. Next, we derive general (§3) and specialized (§3.2) formulas. We devise an79

efficient algorithm (§C) to compute ignorance bounds over dose-response curves, following up with80

experiments on real (§4) datasets.81

2 Potential outcomes82

Causal inference is often cast in the nomenclature of potential outcomes, due to Rubin [1974]. The83

broad goal is to measure a treatment’s effect on an individual, marked by a set of covariates, while84

accounting for all the confounding between the covariates and the treatment variable. Effects could85

manifest heterogenously across individuals. In non-interventional settings, observed covariates may86

not entirely overlap across treatment regimens. It is typical to estimate two models, (1) the outcome87
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predictor and (2) a model for the propensity of treatment conditioned on the covariates. The latter88

may help account for biases.89

The first two assumptions involved in Rubin’s framework are that observations of outcome, assigned90

treatment, and covariates {Y (i), T (i), X(i)} are i.i.d draws from the same population and that all91

treatments have a chance to occur for each covariate vector: pT |X(t | x) > 0 (overlap/positivity)92

for all t, x ∈ [0, 1] × X , specifically in our context of continuous treatments. The third and most93

challenging of these fundamental assumptions is that of ignorability, or sufficiency. Our study is94

concerned with the scenarios where that assumption is violated: when there exists a dependency, not95

blocked by the covariates, between the assigned treatment and true potential outcomes. Let p(yt|x)96

denote the probability density function of potential outcome Yt = yt from a treatment t ∈ [0, 1],97

given covariates X = x. Formally, we have a violation of ignorability:98

{(Yt)t∈T 6⊥⊥ T} | X.

It is only realistic to observe samples of Y |T = t,X = x with density p(yt|t, x). However, to99

account for possible hidden confounding, we also require a p(yt|τ 6= t, x) for quantifying treatment100

effects of the general form E[f(Yt)|X], involving the density101

p(yt|x) =

∫ 1

0

p(yt|τ, x)p(τ |x) dτ, (1)

where p(yt|τ, x) is the distribution of potential outcomes conditioned on actual treatment T = τ ∈102

[0, 1] that may differ from the potential outcome’s index t. Throughout this study, yt will indicate the103

value of the potential outcome at treatment t, and to disambiguate with assigned treatment τ will104

be used for events where T = τ . For instance, we may care about the counterfactual of a smoker’s105

(τ = 1) health outcome had they not smoked (yt=0), where T = 0 signifies no smoking and T = 1106

is “full” smoking. We aim to develop some intuition before introducing the novelties.107

On notation. We will use the shorthand p(· · · ) with lowercase variables whenever working with108

probability densities of the corresponding stochastic variables in uppercase. In other words,109

p(τ |x) means
d

dτ
P[T ≤ τ |X = x], and p(yt|τ, x) means

d

du
P[Yt ≤ u|T = τ, X = x]

∣∣∣
u=yt.

Interpretation. How would one interpret p(yt|τ, x)? The potential-outcomes vector (Yt)t∈[0,1]110

of infinite dimensionality is intrinsic to each individual with true confounder Z, for which X is a111

noisy proxy. By “true” confounder we refer to any set of variables that suffice to block all backdoor112

paths between Yt and T . The potential-outcomes vector would only change from knowledge of113

assigned treatment T = τ if it betrayed additional information about Z, absent in X , that further114

informed any Yt. We may express p(yt|τ, x) explicitly in terms of hypothetical true confounders115

as
∫
p(yt|z)p(z|τ, x) dz because z subsumes both x and τ . This way, p(yt|z) is the true potential116

outcome and p(z|τ, x) acts as a filter for how parts of the true confounder mix together into the proxy117

x and the assigned treatment τ .118

Propensities. The probability density p(τ |x) is termed the nominal propensity. A quantity often119

examined is the complete propensity, specifically referring to p(τ | yt, x) in our realm. The complete120

propensity can differ from p(τ |x) because of hidden confounders. In that instance, conditioning121

on potential outcome yt modulates the distribution. Similarly, by connection through Bayes’ rule,122

conditioning the potential outcomes p(yt|x) on assigned treatment τ modulates those distributions.123

Absent any unobserved confounding, p(yt|τ, x) = p(yt|x) and Equation 1 trivializes. See Figure 2124

for a graphical illustration on the runaway influence of τ on the potential outcomes.125

Sensitivity. Explored by Kallus et al. [2019] and Jesson et al. [2021] among many others, the126

Marginal Sensitivity Model (MSM) serves to bound the extent of (putative) hidden confounding in127

the regime of binary treatments T ′ ∈ {0, 1}. Specifically, it couples the odds of treatment under the128

nominal propensity to the odds of treatment under complete propensity, limiting the discrepancy:129

Definition 1 (The Marginal Sensitivity Model). For binary treatment t′ ∈ {0, 1} and violation factor130

Γ ≥ 1, the following ratio is bounded: Γ−1 ≤
[

p(t′|x)
1−p(t′|x)

]−1 [
p(t′| yt′ ,x)

1−p(t′| yt′ ,x)

]
≤ Γ.131
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Restricting ourselves to binary treatments affords us a number of conveniences. For instance, one132

probability value is sufficient to describe the whole propensity landscape on a set of conditions,133

p(1− t′| · · · ) = 1− p(t′| · · · ). As we transfer to the separate context of t ∈ [0, 1], we must contend134

with infinite treatments and infinite potential outcomes.135

2.1 Towards continuous sensitivity136

We require a constraint on the quantity p(τ | yt, x) that is fundamentally unknowable across all the137

combinations of assigned treatments T = τ ∈ [0, 1] and potential outcomes yt∈[0,1]. As with the138

MSM, our target is to associate p(τ | yt, x) to the knowable p(τ |x). In other words, we seek to139

constrain the knowledge conferred on propensity by a single potential outcome yt. It is not necessary140

for the functions pertaining to (yt)t∈[0,1] to exhibit any degree of smoothness in t. The potential-141

outcome variables are treated as entries in an infinitely long vector. However, we do impose that the142

propensity probability densities p(τ | . . . ) are at least once differentiable in τ . What sort of analogue143

exists for the notion of “odds” in the MSM?144

Contrast treatment τ versus τ + δ locally, for some infinitesimal δ, at any part of the curve. A145

translation of the MSM might appear as
[
p(τ+δ|x)
p(τ |x)

]−1 [
p(τ+δ| yt,x)
p(τ | yt,x)

]
. Let us peer into one of those146

ratios. In logarithms,147

δ−1 log
p(τ + δ|x)

p(τ |x)
=

log p(τ + δ|x)− log p(τ |x)

δ
−−−→
δ→0

∂ log p(τ |x)

∂τ
, ∂τ log p(τ |x).

Hence, we introduce the infinitesimal MSM (δMSM), tying ∂τ log p(τ | yt, x) to ∂τ log p(τ |x).148

Definition 2 (The Infinitesimal Marginal Sensitivity Model). For treatments in the closed unit interval,149

t ∈ [0, 1], and violation factor Γ ≥ 1, the following inequality holds everywhere:150 ∣∣∣∣∂τ log
p(τ | yt, x)

p(τ |x)

∣∣∣∣ ≤ log Γ.

We crafted the δMSM with the intention of functionally mirroring the MSM—locally, on a treatment151

continuum. Whereas Definition 2 is stated in logarithms, Definition 1 is not; the difference is merely152

cosmetic and hyperparameter Γ plays an equivalent role in both structures. Nevertheless, the emergent153

properties are vastly different.154

3 The framework155

We list the core assumptions surrounding our problem.156

Assumption 1 (Bounded Hidden Confounding). Invoking Definition 2, the violation of ignorability157

is constrained by a δMSM with some Γ ≥ 1.158

Assumption 2 (Fully Observed Confounding at No Treatment). The utter lack of treatment is not159

informed by potential outcomes: p(τ = 0| yt, x) = p(τ = 0| x) for all t and yt.160

Assumption 2 states that we look for sensitivity to hidden confounders outside the control group161

at T = 0. The restriction is reasonable in situations like the following: we seek to estimate the162

effect of a prescription drug, and some clinics prescribe different dosages. Our T = 0 group would163

be individuals who have not received any such prescription, and T > 0 would place patients on a164

scale depending on prescription dosage. We expect a dramatically lessened vulnerability to hidden165

confounders for the well-represented—in observed and unobserved attributes—control group. From166

a technical perspective, Assumption 2 is necessary for our derivations, and should be interpreted as a167

blind spot in the sensitivity model rather than a requirement for the underlying process. There is no168

additional constraint, besides the δMSM itself, on how much the complete propensity function may169

fluctuate around any T > 0. We motivate and validate this assumption in the real world with §4.170

Next, we proceed with derivations. The key to cracking open Equation 1 is to carve out a region171

inside the domain of integration where an approximation can be trusted. This will extrapolate from172

the singular point τ = t where estimation is feasible.173
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3.1 Dealing with an unreliable approximation174

We approximate p(yt|τ, x) around τ = t, where p(yt|t, x) = p(y|t, x) is learnable from data.175

Suppose that p(yt|τ, x) is twice differentiable in τ . Construct a Taylor expansion176

p(yt|τ, x) = p(yt|t, x) + (τ − t)∂τp(yt|τ, x)|τ=t +
(τ − t)2

2
∂2τp(yt|τ, x)|τ=t +O(τ − t)3. (2)

Denote with p̃(yt|τ, x) an approximation of first or second order as laid out above. We will encounter177

that even ∂τp(yt|τ, x)|τ=t is intractable. Thankfully, it can be bounded using the δMSM machinery.178

Let us quantify the reliability of this approximation by a set of weights 0 ≤ wt(τ) ≤ 1, where179

typically (but need not necessarily) wt(t) = 1. Decompose the integral of Equation 1—180

p(yt|x) =

∫ 1

0

wt(τ)p(yt|τ, x)p(τ |x) dτ +

∫ 1

0

[1− wt(τ)]p(yt|τ, x)p(τ |x) dτ

≈
∫ 1

0

wt(τ)p̃(yt|τ, x)p(τ |x) dτ︸ ︷︷ ︸
(A) the approximated quantity

+

∫ 1

0

[1− wt(τ)]p(τ |yt, x)p(yt|x) dτ︸ ︷︷ ︸
(B) by Bayes’ rule

.
(3)

This separation into recoverable (A) and entirely unknown (B), demarcated by the weights, ensures181

that the inaccurate regimes of the approximation vanish (as wt(τ) → 0 away from t) and are182

replaced with the ignorant quantity. We simplify part B of Equation 3 first, into p(yt|x)[1 −183 ∫ 1

0
wt(τ)p(τ |yt, x) dτ ]. We witness already that p(yt|x) shall take the form of184

p(yt|x) ≈
∫ 1

0
wt(τ)p̃(yt|τ, x)p(τ |x) dτ∫ 1

0
wt(τ)p(τ |yt, x) dτ

. (4)

How the approximation error of Equation 2 carries into Equation 4 depends on the peakedness of the185

weight function. To proceed further demands reflecting on Assumptions 1 & 2, as we do in §A.186

A note on ensemble uncertainty. One should quantify empirical uncertainties [Jesson et al., 2020]187

alongside sensitivity to hidden confounding. In our experiments we learn both the predictor and the188

propensity model as ensembles from bootstrapped resampled [Lo, 1987] data. Then p̃(yt|x) can also189

be resampled for confidence intervals via its component ensembles.190

3.2 Tractable weight combinations191

In addition to developing the general framework above, we derive analytical forms for a specific192

paramametrization to the weighting function and propensity distribution. Here, we look to the Beta193

function and its associated probability density for a natural solution. Suppose that194

(T | X = x) ∼ Beta(α(x), β(x)), for arbitrary α(x), β(x), (5)

wt(τ) =
τat−1(1− τ)bt−1

ct
=
τ rt(1− τ)r(1−t)

ct
, at + bt = r + 2, r > 0. (6)

We designed the reliability weights to mirror the propensity’s form by rescaling a Beta density. We195

assert that wt(τ) peaks at τ = t, and that wt(τ) = 1. We find that ct , trt(1− t)r(1−t), even though196

the solution is irrelevant for our purposes. The mode is fixed: (at − 1)/(at + bt − 2) = t. See §B for197

details on the solution.198

4 Results from an observational study199

The most pertinent application for the framework laid out above is an observational study with200

incomplete or noisy covariates and a continuous treatment variable. More concretely, the treatment201

variable should be transformed and scaled into the unit interval such that T = 0 signifies a control202

with a complete lack of treatment. Every kind of individual should be about equally likely to fall in203

the (T = 0) cohort (Assumption 2.) As for shaping the (T > 0) regime, the domain should inform204

whether a linear scale is employed, versus an empirical or parametric cumulative density function.205

We obtained real observational data from the UK Biobank and performed one semi-synthetic and one206

fully empirical experiment. In the latter, we relied on discarding covariates to induce greater hidden207

confounding. See §D for details.208
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Figure 3. Ignorance (horizontal) versus recall (vertical) in four replications of a counterfactual model
estimated on real Biobank covariates with a synthetic binary outcome, and known dose response.

The objective. We chose to investigate the coverage [McCandless et al., 2007] of E[Yt] from209

ignorance intervals on counterfactual models trained with inadequate covariates. In the semi-synthetic210

case (Figure 3), the covariates were real but the outcome was simulated, and the treatment effect was211

known to be linear after a logit transformation. Coverage in the empirical case (Figure 4) was more212

difficult in the absence of a ground truth. There, we trained an uncensored model on an expanded213

set of covariates to act as an approximate target for the smaller model’s ignorance intervals. In both214

cases, the recall was expressed as the portion of the dose-response curve that satisfied the relevant215

objective; ignorance was, (a) the average width of the intervals in logits for the semi-synthetic, and216

(b) normalized to the 95%-confidence intervals of the uncensored model for the empirical study.217

The comparisons. We compared our δMSM with r = 32 throughout (solid in the figures on this218

page) to other sensitivity models: namely, (dotted) an analogue developed independently and in219

parallel to the present work, with just one free parameter [Jesson et al., 2022]; (dashed) the product220

of shoehorning a continuous model into the binary MSM by triggering a binary treatment at T > 0.5221

and discretizing the propensity at the threshold; and (dot/dash) a baseline sensitivity model that222

emerges from Γ-scaling the Algorithm 1 weights without any propensity.223
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Figure 4. Ignorance (up to 2.25) versus recall for the model estimated on the real censored dataset.
Four disjoint sections of the covariates were censored for the different panels. Curves begin at Γ := 1.

5 Discussion224

The utility of our framework is evident in the above showcased results. We demonstrated that, in225

the presence of a semi-synthetic ground truth, the δMSM covers the full dose-response curve most226

efficiently. In the empirical study, we showed that discrepancies in the potential-outcomes continuum227

between a censored model and a full model are most efficiently bridged under the δMSM assumption.228

Ethical implications. Sensitivity models for hidden confounders can help to guard against erro-229

neous conclusions from observational studies. We generalized this line of analysis to the regime of230

continuous treatments, thereby increasing its practical applicability. The method also bears utility231

in the context of fairness in machine learning. It can help decision makers identify subpopulations232

for whom the sample is too biased to reliably draw conclusions. Nevertheless, researchers must be233

careful to maintain a healthy degree of skepticism towards observational results even after properly234

calibrating the partially identified effects.235
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A Additional derivations399

We will expand the denominator of Equation 4 first, and then repurpose the results for the derivatives400

of Equation 2 that appear in the numerator. This part shows how the assumed model serves to401

characterize the unknown quantities, but the impatient reader may skip to §3.2. Without loss of402

generality, consider403

∂τ log p(τ |yt, x) = ∂τ log p(τ |x) + γ(τ |yt, x), |γ(τ |yt, x)| ≤ log Γ. (7)

We may attempt to integrate both sides;404 ∫ t′

0

∂τ log p(τ |yt, x) dτ =

∫ t′

0

∂τ log p(τ |x) dτ +

∫ t′

0

γ(τ |yt, x) dτ︸ ︷︷ ︸
,λ(t′|yt,x)

⇐⇒ log p(τ = t′|yt, x)− log p(τ = 0 |yt, x) = log p(τ = t′|x)− log p(τ = 0 |x) + λ(t′|yt, x),

log p(τ |yt, x) = log p(τ |x) + λ(τ |yt, x) (by Assumption 2).
405

∴ p(τ |yt, x) = p(τ |x)Λ(τ |yt, x), Λ , exp{λ}. (8)
Clearly |λ(τ |yt, x)| ≤ τ log Γ because it integrates γ, bounded by± log Γ, over a support with length406

τ . Subsequently Λ(τ |y, t) is bounded by Γ±τ . We are now equipped with the requisite tools to407

properly bound p(yt|x)—or an approximation thereof, erring on ignorance via reliability weights408

wt(τ).409

Consider Equation 3.A:410 ∫ 1

0

wt(τ)p̃(yt|τ, x)p(τ |x) dτ = p(yt|t, x)

∫ 1

0

wt(τ)p(τ |x) dτ︸ ︷︷ ︸
(A.0)

+ g1(yt|t, x)

∫ 1

0

wt(τ)(τ − t)p(τ |x) dτ︸ ︷︷ ︸
(A.1)

+ g2(yt|t, x)

∫ 1

0

wt(τ)
(τ − t)2

2
p(τ |x) dτ︸ ︷︷ ︸

(A.2)

,

where gk(yt|t, x) , ∂kτ p(yt|τ, x)|τ=t. (9)

Lightening the notation with a shorthand for the weighted expectations, 〈·〉τ ,
∫ 1

0
wt(τ)(·)p(τ |x) dτ,411

it becomes apparent that we must grapple with the pseudo-moments 〈1〉τ , 〈τ − t〉τ , and 〈(τ − t)2〉τ .412

Note that t should not be mistaken for a “mean” value.413

Furthermore, we have yet to fully characterize gk(yt|t, x). Observe that414

p(yt|τ, x) =
p(τ |yt, x)p(yt|x)

p(τ |x)
⇐⇒ ∂τp(yt|τ, x) = p(yt|x) · ∂

∂τ

p(τ |yt, x)

p(τ |x)
.

The p(yt|x) will be moved to the other side of the equation as needed; by Equation 8,415

∂

∂τ

p(τ |yt, x)

p(τ |x)
=

∂

∂τ
Λ(τ |yt, x).

Expanding,416

=
∂

∂τ
exp

{∫ τ

0

γ(τ |yt, x) dτ

}
= γ(τ |yt, x) exp

{∫ τ

0

γ(τ |yt, x) dτ

}
= (γΛ)(τ |yt, x).

Appropriate bounds will be calculated for g2(yt|t, x) next, utilizing the finding above as their main417

ingredient. Let418

g̃k(yt|t, x) , p(yt|x)−1gk(yt|t, x) =

(
∂

∂τ

)k
p(τ |yt, x)

p(τ |x)

∣∣∣∣∣
τ=t.
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The second derivative may be calculated in terms of the ignorance quantities γ,Λ:419

g̃2(yt|t, x) =∂τγ(τ |yt, x)Λ(τ |yt, x)

=γ(τ |yt, x)2Λ(τ |yt, x) + γ̇(τ |yt, x)Λ(τ |yt, x)

=(γ2 + γ̇)Λ(τ |yt, x).

And finally we address p̃(yt|x). Carrying over the components of Equation 9 into Equation 3,420

p̃(yt|x) =
p(yt|t, x)〈1〉τ

〈Λ(τ |yt, x)〉τ − g̃1(yt|t, x)〈τ − t〉τ − g̃2(yt|t, x)〈(τ − t)2〉τ

=
p(yt|t, x)

Eτ [Λ(τ |yt, x)]− (γΛ)(t|yt, x)Eτ [τ − t]− 1
2 ((γ̇ + γ2)Λ)(t|yt, x)Eτ [(τ − t)2]

,

(10)

where these expectations Eτ [·] are with respect to the implicit distribution q(τ |t, x) ∝ wt(τ)p(τ |x).421

The notation γ̇ denotes a derivative in the first argument of γ(t|yt, x). To make use of this formula, one422

first procures the set of admissible d(t|yt, x) ∈ [d(t|yt, x), d(t|yt, x)] that violate ignorability up to a423

factor Γ according to the δMSM. Then, considering their reciprocals as importance weights [Tokdar424

and Kass, 2010], tight bounds on the partially identified expectations over p̃(yt|x) may be optimized.425

B Analytical solutions for the Beta parametrization426

The remaining degree of freedom disappears by a precision constraint at + bt − 2 = r for some427

r > 0. Constraining a more complex dispersion statistic like variance is much more difficult.428

The expectations found in Equation 10 are now available in closed form, and can be bounded in429

terms of just two extra free parameters, Γ and r. Guidance on setting the violation factor Γ is430

discussed elsewhere, e.g. §4; as for the class of weights, high r conveys poor trust in the Equation 2431

approximation, as studied in §B.432

r = 4 r = 16 r = 64

Figure 5. Beta weight schemes wt(τ) in the unit square, plotted for centers t = 0.125, 0.25, 0.5.
Shapes are symmetrical about t = 0.5. Trust declines with r.

The findings. We pose a third and final assumption, which enables us to state Proposition 1. The433

main insight to unlocking those expectations is that each one of them involves an integral with the434

product wt(τ)p(τ |x) over its normalization constant, yielding the moments of a Beta distribution.435

Assumption 3 (Second-order Simplification). The quantity γ̇(τ |yt, x) cannot be characterized as-is.436

We grant that γ2 dominates, and consequently
∣∣(γ̇ + γ2)Λ

∣∣ ≤ ∣∣γ2Λ
∣∣+ ε for small ε ≥ 0.437

Proposition 1 (Beta Parametrizations). The formulations in Equations 5 & 6 admit analytical438

solutions to the ignorance denominator in Equation 10. With α, β implicitly referring to α(x), β(x),439

Eτ [Λ(τ |yt, x)] ∈ 1F1

(
α+ at − 1; α+ β + r; ± log Γ

)
,

where again the operator Eτ is employed as in Equation 10, and 1F1 denotes Kummer’s confluent440

hypergeometric function [Mathews Jr. et al., 2021]. In addition, Eτ [τ − t] and Eτ [(τ − t)2] can be441

readily computed by means of the first two moments of the Beta distribution.442

C Computing the ignorance intervals443

After deriving p̃(yt|x) in Equation 10 and a specific solution with Proposition 1, we must find a way444

to bound the partially identified expectations with respect to this distribution. Concretely, we seek445

to characterize the Individual Treatment Effect (ITE) E[f(Yt)|X = x] or Average Treatment Effect446

(ATE) E[F (Yt)] for any task-specific f(y). This is accomplished with a Monte Carlo importance447

sampler of n outcome realizations yi drawn from proposal q(y):448

Ẽ[f(Yt)|X = x] =

∑n
i=1 f(yi)p̃(yt = yi|x)/q(yi)∑n

i=1 p̃(yt = yi|x)/q(yi)
. (11)
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For the ATE, one additionally averages over covariates with sample size m:449

Ẽ[f(Yt)] =

∑n
i=1

∑m
j=1 f(yi)p̃(yt = yi|xj)/q(yi)∑n

i=1

∑m
j=1 p̃(yt = yi|xj)/q(yi)

. (12)

Even though p̃(yt|x) is a normalized probability density, it contains partially identified quantities.450

It is untenable to constrain a search along the candidate values for each d(t|yt = yi, x) to even451

approximately ensure
∫
Y p̃(yt = y|x) dy = 1. For this reason the bias of an estimator without the452

corrective denominator of Equation 11 would be uncontrollable [Tokdar and Kass, 2010]. A greedy453

algorithm may be deployed to maximize Ẽ[f(Yt)|X = x] in the form above by optimizing weights454

wi attached to each f(yi), within the range455

wi :=
p(yi|t, x)

d(t|yi, x)q(yi)
, wi :=

p(yi|t, x)

d(t|yi, x)q(yi)
.

The minimum may be achieved by a trivial adaptation. Maximizing and minimizing Ẽ[f(Yt)|X = x]456

with respect to the bounding quantities (γ,Λ) enables the resolution of ignorance bounds on the basis457

of Γ from Definition 2. Our Algorithm 1 adapts the method of Jesson et al. [2021] to heterogeneous458

weight bounds [wi, wi] per draw i.459

input :{(wi, wi, fi)}ni=1 ordered by ascending fi.
output :maxw E[f(X)] estimated by importance sampling with n draws.
Initialize wi ← wi for all i = 1, 2, . . . n;
for j = 1, 2, . . . n do

Compute ∆j ,
∑n
i=1 wi(fj − fi);

if ∆j < 0 then
wj ← wj ;

else
break;

end
end
Return

∑
i wifi/

∑
i wi;

Algorithm 1: The expectation maximizer, with O(n) runtime if intermediate ∆j are memoized.

D Experimental details460

Data from the UK Biobank were accessed under application 11559. From the brain Magnetic461

Resonance Imaging (MRI) data we extracted the 74 fields corresponding to parcelized cortical462

volumes on the left and the right hemispheres each [Miller et al., 2016].463

Semi-synthetic evaluation. In our first experiment, the synthetic binary outcome was generated464

by linearly combining the covariates and treatment and then applying a logistic curve for a Bernoulli465

probability. As the logit-transformed ATE was known to be linear, “recall” was evaluated as the466

portion of the ignorance intervals that permitted the actual linear effect along each section of the dose467

response.468

Semi-synthetic dataset. The 148 MRI fields were normalized such that values floored at each469

variable’s 25% quantile and ceiled at the 95% quantile were mapped to the range [0, 1]. In each of the470

four replications, a random quarter of the covariates were assigned a nonzero, normally distributed471

coefficient, and one of them was deemed the treatment variable with unit coefficient. After computing472

the outcomes, we randomly resampled a third of the feature values, with replacement, in order to473

introduce noise to the covariates while preserving the marginals.474

Semi-synthetic estimators. Both the predictor and the propensity model, censored and uncensored,475

were trained in ensembles of 32 artificial neural networks with one inner residual layers of 32 activa-476

tion units each. A dropout of 0.05 was imposed on these layers. Additionally, an L2-regularization477

on the inner layers with weight 10−3 was applied. All predictors were trained for 10,000 epochs and478

propensities for 5,000 epochs.479
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Empirical evaluation. Our test relies on approximating an unconfounded model by collecting a480

large set of covariates, and then learning another model on a heavily censored version. Our reasoning481

is that the censored model would suffer from a greater degree of hidden confounding. The censored482

model could then be assessed along all potential-outcome predictions, by pretending that the full483

model represented the real dose-response curves. A pertinent metric would be how much a sensitivity484

model with Γ ≥ 1 swallows the “real” dose responses, as a trade-off against the sheer area of the485

ignorance bounds. These competing quantities are a form of recall and (the opposite of) precision,486

respectively.487

Denote (yc, yc) the partially identified bounds of the censored model and (y, y) the full model’s488

bounds for Ẽ[Yt], both at 95% confidence from percentile bootstrapping. For some Γ := s and a489

t ∈ [0, 1] grid, of length 17 in our case, ignorance is
∑
t[yc(s, t)− yc(s, t)]/

∑
t[y(t)− y(t)], and490

recall is the normalized intersection between the bounds:491 ∑
t max{0,min{yc(s, t), y(t)} −max{yc(s, t), y(t)}}∑

t[y(t)− y(t)]
.

Empirical dataset. We summed each left/right pair to arrive at 74 positively valued outcomes. Six492

groups of semantically related fields composed the long covariate vector:493

• 6 basic details: age, weight, sex, standing height, seated height, and month of birth.494

• 3 reported activity measurements: weekly minutes spent walking, engaged in moderate495

activity, and vigorous activity.496

• 27 environmental variables surveying the pollution and greenery surrounding the person’s497

life.498

• 42 blood measurements from cell counts to calcium concentration.499

• 15 cardiac measurements including ECG and PWA modalities.500

• 8 welfare indices for English citizens assessing the following: deprivation, income, employ-501

ment, health, education, housing, crime, and living environment.502

Listwise deletion was employed to handle any missing value. To censor the covariates, the four503

largest sectors (italicized) encompassing various confounding variables were omitted, one at a time.504

The treatment variable was the walking field taken from the triad of activity measurements, scaled to505

the unit interval such that any recording of at least two hours per day was set to T = 0 and any lesser506

amount had T increase up to 1 according to an empirical CDF.507

Empirical estimators. Both the predictor and the propensity model, censored and uncensored, were508

trained in ensembles of 32 artificial neural networks with four inner residual layers of 32 activation509

units each. A dropout of 0.05 was imposed on these layers. Additionally, an L2-regularization on510

the inner layers with weight 10−3 was applied. All predictors were trained for 10,000 epochs and511

propensities for 5,000 epochs. The outcome predictor parametrized a Gamma distribution, and the512

propensity model parametrized a Beta distribution. See Figure 6.513
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Figure 6. Blue: censored-model likelihood in the train set; red: censored-model likelihood in the test
set; and green: full-model likelihood in the test set.
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