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ABSTRACT

In this paper, we introduce pioneering algorithms for multi-view arbitrary style
transfer. Multi-view arbitrary style transfer is an advanced study of the conven-
tional monocular arbitrary style transfer, which aims to preserve the consistent
style on the common region across the given arbitrary number of views. We in-
tend to address the multi-view inconsistency problem by minimizing the differ-
ence in the color and feature values of the corresponding regions. However, the
conventional feature extractors generally produce a feature vector of a point from
its rectangular local patch, and such local patches are misaligned across the views
in a multi-view environment due to various camera poses. Thus, even if we assim-
ilate the feature vectors of the corresponding pixels, since the spatial distribution
of the surrounding feature vectors within their local patches are different and de-
coding such misaligned patches induces misaligned brushstrokes and geometric
patterns, these feature vectors can be decoded to distinctive style texture. Based
on the observation, we intend to interpret this challenging problem in terms of
the photometric inconsistency and the stroke inconsistency. We propose a photo-
metric consistency loss, which directly enforces the geometrically consistent style
texture across the view, and a stroke consistency loss, which matches the char-
acteristics and directions of the brushstrokes by aligning the local patches of the
corresponding pixels before minimizing feature deviation. Then, We construct
an optimization-based multi-view arbitrary style transfer framework (MVAST-O)
with photometric and stroke consistency losses and extend it to a feed-forward
framework (MVAST-FF) to overcome the chronic computational inefficiency is-
sue of optimization-based algorithms. We validate our methods on the DTU
dataset, a large-scale multi-view stereo dataset, and confirmed the superiority on
preserving appearance consistency throughout the stylized multi-view images.

1 INTRODUCTION

Multi-view vision has recently attracted new attention with the development of computing devices
and deep learning skills. Several works (Yao et al., 2018; Chen et al., 2019) demonstrate promising
performances in multi-view stereo. In industry, autonomous mobilities and portable devices have
adopted multi-camera systems for safety and satisfactory performances. Current trend of computer
vision technology is to better understand the 3D world through multi-view systems, and thus the
conventional monocular or stereoscopic vision tasks are being extended to fit the multi-view envi-
ronment. Style transfer is also one of such tasks that needs to be extended accordingly

Style transfer is an important image manipulation task aiming at synthesizing an image that pre-
serves the semantics of the content image while assimilating the texture of the input image to the
style image. Starting from the pioneering optimization-based approach of Gatys et al. (2015; 2016),
subsequent works attempt to improve the computation and memory efficiency as well as the styliza-
tion quality (Johnson et al., 2016), and generalize the algorithms even to the unseen style images (Li
et al., 2017b; Huang & Belongie, 2017; Sheng et al., 2018). However, the possibility of applying
neural style transfer to multi-view images has not yet been sufficiently explored.

As a pioneer work to the novel task, we introduce algorithms for multi-view arbitrary style transfer:
an optimization-based approach and a feed-forward approach. The core challenge of the task is
to preserve the consistency of the appearance of the corresponding regions across the views while
stylizing the multi-view scenes with arbitrary style images. Although there have been many studies
in field of monocular style transfer, there are many problems in applying these methods to multi-
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Figure 1: Visualization of the inconsistent stylized texture in spatially corresponding areas. (a) Given
3-view images and a style image, we compared the stylization results of conventional monocular
style transfer method (first row) and our method (second row).

view style transfer. As shown in Fig.1, the conventional monocular style transfer method often
fails to maintain consistency of appearance across views. First of all, we introduce a photometric
consistency loss, which directly minimizes the deviation of the stylized appearance between the cor-
responding pixels. However, since the photometric consistency loss only constraints the stylization
results pixel-wise regardless of the local geometries, the stylized multi-view scenes often show lo-
cal geometric inconsistencies in the common areas due to feature differences. Such deviations in
common areas should also be minimized.

However, we observed that directly minimizing the feature inconsistency across the views rather
cause the misalignment of the transferred brushstroke. As shown in Fig. 2, despite the feature devi-
ation reduction, the corresponding strokes of the stylized scenes are often misaligned and oriented
in inconsistent directions, which we call stroke inconsistency. Such stroke inconsistency originates
from the projective distortions between scenes and the characteristic of the conventional neural net-
works, which can only extract features from rectangular patches. Specifically, since the rectangular
patches surrounding the corresponding points cannot avoid rotational misalignment across views
and the characteristics of the stylized strokes are highly related from the feature values, the fea-
ture map of a given view cannot properly constrain the stroke consistency on other views’ stylized
images. Thus, we introduce a stroke consistency loss, which focuses on generating the modified
feature maps extracted from aligned patches and minimizes the differences between feature maps of
the corresponding parts or areas across views.

With the proposed losses, we first construct an optimization-based multi-view arbitrary style trans-
fer framework (MVAST-O), adopting an optimization-based stylization method as a backbone al-
gorithm. Moreover, we also extend MVAST-O to a feed-forward multi-view arbitrary style transfer
framework (MVAST-FF) to resolve the chronic computational inefficiency issue of optimization-
based algorithms. We extensively conducted quantitative comparisons and analyses in Section 4
and appendix, and confirmed that our methods show significantly better performances in preserving
geometrically consistent stylized textures on stylized multi-view scenes.

To summarize, our contributions are fourfold:

• We explore a novel multi-view arbitrary style transfer task. We additionally claim a new
issue called stroke inconsistency caused by the fundamental setting of multi-view systems.

• We propose an optimization-based multi-view arbitrary style transfer (MVAST-O) regard-
ing the photometric consistency and stroke consistency losses. Here, the stroke consistency
loss aims to align the directions of the transferred brushstrokes across the views.

• To overcome the chronic computational inefficiency of optimization-based algorithms, we
extend the core ideas to a feed-forward approach and construct a feed-forward multi-view
arbitrary style transfer network (MVAST-FF).

• We extensively conducted experiments and analyses with the multi-view dataset and con-
firmed the qualitative superiority of our methods.

2



Under review as a conference paper at ICLR 2021

(a) Input images (b) Photometric only (c) Photometric + Feature (d) Photometric + Stroke

Figure 2: Qualitative comparisons of constraint effects between various consistency losses.

2 RELATED WORK

Multi-view style transfer Few works (Chen et al., 2018; Gong et al., 2018) have recently explored
stereoscopic style transfer, attempting to preserve geometric consistency between stereoscopic pairs
by aggregating each view features to the other view via a disparity based warp function. However,
these approaches are limited to two scenes only and hard to adopt for multi-camera or multi-lens
devices. Unlike the previous work, we focus on expanding the applicability of style transfer to an
arbitrary number of views.

Multi-view vision Multi-view vision is a promising topic that bridges the 2D images to the 3D
world. Multi-view stereo (MVS) has been researched for a long time, and recently learning-based
MVS networks (Yao et al., 2018; Chen et al., 2019) demonstrate excellent performances on large-
scale MVS benchmarks (Jensen et al., 2014). With advances of the MVS methods, Nam et al. (2019)
attempts to capture high fidelity hair geometry at strand-level using the estimated point cloud. There
are also some works that focus on surface refinement, 3D edge reconstruction, and text co-detection
in the multi-view environment. However, few works have studied multi-view style transfer, and
most of them studied only for the stereoscopic case (Chen et al., 2018; Gong et al., 2018). In this
paper, we focus on stylizing an arbitrary number of views without visual fatigue.

3 METHOD

3.1 OPTIMIZATION-BASED MULTI-VIEW ARBITRARY STYLE TRANSFER (MVAST-O)

Fundamental stylization losses Though we are focusing on preserving the multi-view consis-
tency, multi-view arbitrary style transfer algorithm should meet the necessity conditions of style
transfer. Given N-view images {Iv}Nv=1, we utilize the standard style reconstruction loss Lvs and
content reconstruction loss Lvc for any view index v ∈ {1, ...N}:

Lvc (Ov, Iv) =
∑
l∈lc

‖F l(Ov)− F l(Iv)‖2,

Lvs(Ov, Iv) =
∑
l∈ls

‖G(F l(Ov))−G(F l(Iv)‖2,
(1)

where Ov denotes the stylized result of the v-th scene, F l(·) is the feature maps function for the
layer l of the feature extractor and G(·) is the gram matrix function. In addition, we apply the total
variation loss to reduce the rough texture:

Lvtv(Ov) = ‖∇xOv‖+ ‖∇yOv‖. (2)

Occlusion estimation Since considerable occlusions occur in a multi-view setting and signifi-
cantly affect constraining the multi-view consistency, we introduce an occlusion estimation method
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Figure 3: An overall framework of MVAST-O. Our framework consists of a VGG-16 encoder, an
occlusion estimation module, an MVS module, and a Local Patch Alignment (LPA) module. The
stylized results are iteratively optimized through the back-propagation of the total loss.

to filter occluded pixels. The key idea is to measure the closest distance between the unprojected
pixels of each view in the world frame and check if the distance exceeds a certain threshold. This
approach makes sense since if a occluded pixel p ∈ A(Iv) does not have correspondence in A(Iv′)
for a given view pair (v, v′), Chamfer distance between p and the unprojected point cloud of Iv′
must be large. In practice, given multi-view scenes {Iv}Nv=1, depth maps {dv}Nv=1, and camera
parameters {Kv, Rv, tv}Nv=1, we estimate an occlusion mask Mv,v of Iv with respect to Iv′ by:

M ε
v,v′(p) =

{
0 if min

q∈A(Iv′ )
‖Wv→world(p)−Wv′→world(q)‖ < ε,

1 otherwise,

Wv→world(p) = R−1v (dv(p)K
−1
v p− tv),

(3)

for all p ∈ A(Iv) and 1 ≤ v, v′ ≤ N , where Wv→world(·) is a warp function from the v-th camera
frame to the world frame, A(·) is a set of visible pixels on the image plane, and ε is a threshold. We
visualized the qualitative results of the occlusion mask in Fig. ?? and analyzed on Section 4.3.

Photometric consistency loss As the fundamental stylization losses optimize, each scene individ-
ually assimilates the texture into the style image regardless of its multi-view correspondences, and
eventually the corresponding regions gradually diversify their appearances. We directly minimize
the deviation of corresponding pixel values in the stylized results to handle the inconsistency, which
we call a photometric consistency loss. Suppose we have stylization results {Ov}Nv=1 of each view,
then the photometric consistency between Ov and Ov′ can be obtained by:

Lv,v
′

pho (Ov, Ov′) =
∑

p∈A(Ov)

M ε
v,v′(p)‖Ov(p)−Ov′(Wv→v′(p))‖2, (4)

for all 1 ≤ v, v′ ≤ N whereWv→v′(·) is a warp function from the v-th camera frame to v′-th camera
frame, which can be derived by the following projective equality:

Wv→v′(p) ∼ Kv′(Rv′Wv→world(p) + tv′), (5)

for all p ∈ A(Ov), where ’∼’ denotes the projective equality.

Stroke consistency loss We empirically observed that directly minimizing the differences between
stylized view scenes or their feature maps cannot sufficiently align the direction or assimilate the
style of the corresponding brushstrokes, or even wrongly align the brushstroke due to the different
camera poses. The main reason is that the style of the transferred brushstroke is determined by its
own and the surrounding features, and these features are extracted from the local patches, which
are usually misaligned in multi-view setting. Specifically, although a pair of views share common
regions, local patches of these regions cannot be aligned due to the the different principle axes of
views and the rectangular kernel of the convolution neural networks. Thus, to correctly compare the
strokes on the corresponding region, we should align local patches of view images {Ov}Nv=1 before
encoding. To obtain the aligned local patch of Ov′ with respect to vth camera frame, we warp Ov′
and complete the occluded region with Ov and M ε

v,v′(p) via interpolation:

O∗v′→v(q) = (1−M ε
v,v′(q)) ∗Ov′(Wv′→v(q)) +M ε

v,v′(q)Ov(q), (6)

for all q ∈ A(Ov′) and 1 ≤ v, v′ ≤ N . The completion process is necessary since the zero values
on the occluded regions can cause critical feature corruption during feature extraction. Then, the
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Figure 4: An overall framework of MVAST-FF. Our framework stylizes multi-view scenes in five
levels in a coarse-to-fine way. At each level, it aligns local patches through the Local Patch Align-
ment (LPA) module and applies Camera Frame-wise Average(CFA) to fuse the transformed features.

stroke consistency loss can constrain the inconsistent stroke by minimizing the feature map between
Ov and the aligned image Ov→v′ for any view pair (v, v′):

Lv,v
′

str (Ov, Ov′) = ‖|F i(Ov)− F i(O∗v′→v)‖2. (7)

Multi-view stereo (MVS) module Depth maps are essential for the photometric and stroke con-
sistency losses derivation, as shown in the previous formulas. However, depth sensors like LiDAR
sensors are not easily used in real life due to their cost-inefficiency and large size, so accurate depth
may not always be available. Thus, to alleviate the dependence on ground-truth depth map, we
utilize the multi-view stereo module to estimate the depth maps from given images and camera pa-
rameters. Our module consists of a feed-forward multi-view stereo network and the post-processing,
and we use the default MVSNet (Yao et al., 2018). However, directly using the predicted depth maps
causes incorrect correspondence across the views due to the prediction error, and the photometric
and stroke consistency losses will assimilate the stylized texture of these wrongly related regions,
causing fatal stylization defects. Inspired by Galliani et al. (2015), we filter out pixels with inaccu-
rate depth by warping each pixel to its corresponding pixels of other views using the predicted depth
and compare the depth values.

Overall framework and optimization problem Figure 3 describes the overall framework of
MVAST-O. It employs VGG-16 Simonyan & Zisserman (2015) as an encoder and iteratively re-
constructs the stylized output with style loss, content loss, tv loss, and two proposed multi-view
consistency losses. We can estimates reliable depth maps with raw images from the MVS module,
or we directly utilize ground-truth depth maps for unprojection. We compute all the losses for each
view and sum with proper loss weights:

Ltotal

(
{Ov, Iv}Nv=1

)
=

N∑
v=1

(
αLvc (Ov, Iv) + βLvs(Ov, Iv) + γLvtv(Ov)

+

N∑
v′=1,v′ 6=v

(
δLv,v

′

pho (Ov, Ov′) + ζLv,v
′

str (Ov, Ov′)
)) (8)

Finally, we iteratively update the stylized results {Ov}Nv=1 through total loss minimization.

3.2 FEED-FORWARD BASED MULTI-VIEW ARBITRARY STYLE TRANSFER (MVAST-FF)

Regardless of the rich stylization performance of MVAST-O, optimization-based algorithms require
high computational costs, hindering real-time applications. Therefore, it is necessary to approxi-
mate the optimization-based algorithm in a feed-forward manner. While MVAST-O can directly
update the stylized results {Ov}Nv=1 iteratively, the feed-forward multi-view style transfer network
should manipulate all the inconsistently transferred stylized texture at one pass. However, the var-
ious camera poses induce a trade-off between stylization quality and multi-view consistency with
respect to the level of feature transformation in the multi-view setting. In detail, we can expect a
global but coarse stylizing effect from deep feature transformations. However, even if we assimilate
the corresponding feature vectors of the common non-occluded region, the spatial distribution of
the surrounding feature vectors within the local patches of each corresponding region cannot be the
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Figure 5: Qualitative comparisons with arbitrary style transfer baselines and our methods.

same due to differences in camera poses. These gaps are magnified during the deep decoding pro-
cess, causing significant appearance inconsistency. On the other hand, assimilating shallow features
can guarantee consistent textures since the shallow decoding process cannot significantly amplify
the inconsistency, though only fine but local stylization effects can be expected.

We introduce a feed-forward framework for multi-view arbitrary style transfer, which reflects the
core ideas of photometric and stroke consistency losses for a multi-view feature fusion process
while maintaining adequate stylization quality. To achieve satisfactory effects on both sides, we use
a coarse-to-fine stylization network for macro style transfer and utilize the multi-view feature fusion
for progressive inconsistency reduction. In practice, we adopt multi-level whitening and colorization
transformation (ML-WCT) as the backbone coarse-to-fine stylization network. For each coarse-to-
fine level, we align local patches before encoding, match the second-order statistics of encoded
{Iv}Nv=1 and {I∗v→v′}Nv=1 with the style feature, and average them with respect to each camera
frame before decoding. The overall framework is described in Fig. 4.

4 EXPERIMENTS

We additionally reported experimental results and analyses in the appendix due to the limited space.
Moreover, to help compare the multi-view consistency of the stylized scenes, we provide GIF files
of the figures from the perspective of a fixed camera poses in the supplementary material.

4.1 EXPERIMENTAL SETUP

Datasets Since there is no standard benchmark for multi-view arbitrary style transfer, we em-
ployed multi-view images with camera parameters from the multi-view stereo dataset. DTU (Aanæs
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(a) (b) (c) (d) (e) (f)

Figure 6: Coarse-to-fine stylization results of
MVAST-FF.

(a) (b) (c) (d) (e)

Figure 7: Occlusion maps and stylization re-
sults with MVSNet predictions without occlu-
sion map.

et al., 2016) is a large-scale multi-view stereo dataset containing 124 scenes with seven lighting
conditions. We used multi-view samples from the DTU dataset for comparisons.

Implementation details We used VGG-16 for the encoder of MVAST-O and the auto-encoder of
MVAST-FF, and adopt MVSNet for the initial depth estimation network in the MVS module. Here,
VGG-16 is pretrained on ImageNet, and MVSNet is trained on a training split of the DTU dataset
according to the training curriculum in the original paper. For the MVAST-O implementation, We
applied style reconstruction loss on layer ‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’, ‘conv5 1’,
content reconstruction loss on ‘conv4 2’, and stroke consistency loss on layer ’conv3 4’. We set 5
for the content reconstruction loss weight, 2 × 103 for each style reconstruction losses, 1 × 10−3

for the total variation loss, 1× 103 for the photometric consistency loss, and 1× 101 for the stroke
consistency loss. We iteratively updated the outputs by the L-BFGS optimizer (Liu & Nocedal,
1989) with a learning rate 1 for 1000 iterations. For the MVAST-FF implementation, we trained
the multi-view WCT (Li et al., 2017a) according to the original paper and followed the MVAST-O
settings for all shared modules. All experiments were performed on a single GeFore Titan XP GPU.

4.2 QUALITATIVE COMPARISONS

We compared our methods with various arbitrary style transfer baselines including Gatys et al.
(2016), WCT (Li et al., 2017a), AdaIN (Huang & Belongie, 2017), Avatar-Net (Sheng et al., 2018)
to validate the effectiveness on preserving consistent stylized textures across the views. We em-
ployed 3-view scenes from Scan1 split of the DTU dataset for content images, and Starry Night and
Candy for style images. Here, we used ground-truth depth maps to precisely validate the effective-
ness of the photometric and stroke consistency regularization. The 1st through 3rd columns of Fig. 5
show stylized results of the three scenes. Though baselines have distinctive stylization properties
each other, they seem to change the scenes similarly at first glance. However, as shown in 4th and
5th columns, if we compare the stylized multi-view scenes from a certain fixed camera frame, we
can observe several inconsistent regions from the baseline results. For example, as shown in the
local patches of 6th and 7th columns, all the baselines show inconsistent color or geometric patterns
while our MVAST-O and MVAST-FF preserve the stylized textures and the characteristics and di-
rection of the transferred brushstroke. Specifically, since Gatys et al. and Avatar-Net used to reflects
local geometries of the style image, as shown in the 6th column, unique patterns of candy were
well-described in the stylized results. However, despite being a corresponding region, uncontrolled
encoding and decoding processes cause similar but subtly different patterns. Moreover, as shown
in the 7th column, while Gatys et al., WCT, and AdaIn distinctively distort or blur and Avatar-Net
inconsistently colorize the unique brushstrokes of starry night, MVAST-O and MVAST-FF consis-
tently decode the transferred brushstrokes. In additional, we visualized the stylization progress of
MVAST-FF by level in Fig 6.

4.3 ANALYSIS

Analysis on multi-view stereo (MVS) module Since the MVS module consists of MVSNet for
initial depth prediction and the subsequent post-processing, we qualitatively compare their depth
maps in Fig. 8(b) to (d). While MVSNet predicted confidently on the object region, the degenerative
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8: Qualitative ablation results on MVS module and the induced stylization results.

error occurs in the background region due to the patternless background, which can fatally affect
the following multi-view stylization process. On the other hand, filtering out outliers through the
consistency check successfully removed wrong predictions, as shown in Fig. 8(c).

Analysis on occlusion estimation From Fig. 7(b) to Fig. 7(d) visualizes the occlusion estimation
results derived from MVSNet predictions, MVS module results, and ground-truth depth maps. As
expected, pixels in the background region barely found its correspondences due to the unstable depth
values of the MVSNet predictions. Thus, most of the background pixels are occluded except some
fortunate spots. But, in fact, these few pixels are also errors induced by the accidental correspon-
dences with wrong pixels in other views. In contrast, since our MVS module filtered most of he
inconsistent depth prediction values, we can obtain stable occlusion masks. Even compared with
ground-truth depth map based occlusion masks, they maintain most of the object regions, which
facilitate the subsequent multi-view stylization process.

Analysis on how inaccurate depth map prediction affects consistent multi-view stylization
Despite filtering out some pixels with incorrectly predicted depth values, we observed that remain-
ing inaccurate depth predictions can distort the multi-view stylization results. From Fig. 8(e) to
Fig. 8(g) show MVAST-O prediction results with MVSNet predictions, MVS module results, and
ground-truth maps. Then, we additionally zoomed in on local patches in Fig. 8(h) to clearly visu-
alize the inconsistencies. First of all, as shown in the upper patches of Fig. 8(h), the spotty wrong
correspondences in the background cause spatially inconsistent spotty texture. We also observed
spatial distortions of the stylized textures on the object from the bottom local patches. This can
happen since even though there is an error in the predicted depth value of a pixel, if a pixel near the
corresponding pixel in another scene has an incorrect but appropriate depth value so the two pixels
can meet closely in the world frame, they can avoid occlusion filtering and be stylized consistently
in subsequent processes. In contrast, though stylization results with MVS module also have slight
spatial distortion, they show more consistent appearances.

Analysis on effect of estimated occlusion masks To verify the effectiveness of the estimated
occlusion mask, we visualized the stylization results of MVAST-O using MVSNet predictions
(Fig. 8(b)) without occlusion. Since the occluded pixels are not filtered and thus constrained by
consistency losses, the ghost artifacts appeared near the headset, as shown in Fig. 7(e).

5 CONCLUSION

We explored a novel multi-view arbitrary style transfer task, which has not sufficiently been ex-
plored yet. Unlike monocular and stereoscopic style transfer, We observed that minimizing the
feature deviation on the common non-occluded region can cause misaligned brushstrokes in a multi-
view system. Thus, we claimed the stroke inconsistency problem in the multi-view style transfer. To
solve the multi-view arbitrary style transfer task, inspired by the claim, we attempted to minimize
the photometric and stroke inconsistencies. We employed these key ideas in an optimization-based
approach in the form of the loss functions and a feed-forward approach in the way of the feature
fusion process. We demonstrated the successful multi-view consistency preservation through exten-
sive experiments and analyses.
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Figure 9: Internal computation descriptions of the Local Patch Alignment (LPA) module essential
for stroke consistency regularization.
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Figure 10: Internal computation descriptions of the Multi-view stereo (MVS) module.

A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

Our visual discriptions of MVAST-O and MVAST-FF in the main script are quit simplified due to its
complex structure and the limited space. Thus, we additionally described the detailed computation
processof the essential modules, a Local Patch Alignment (LPA) module and a Multi-view Stereo
(MVS) module, in Fig. 9 and Fig. 10.

A.2 ADDITIONAL QUALITATIVE RESULTS

Additional multi-view stylization results of MVAST-FF Since we visualized limited stylization
results with a few multi-view samples and style images, we provide additional results with various
style images. Figure 11 and 12 show the qualitative results of MVAST-FF with multi-view sample
from Scan75 and Scan118 splits of the DTU dataset, respecitvely.

Qualitative comparisons with baselines though animated GIF data It is not easy to find multi-
view inconsistencies only with static images since someone needs to simultaneously grasp the ap-
pearance deviations across stylized multi-view scenes. Thus, we provides animated GIF data of the
Fig. 5 and 8 to better figure out the inconsistent regions.
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Figure 11: Qualitative results of the feed-forward based multi-view aribtrar style transfer algorithm
(MVAST-FF). We used a multi-view scenes from Scan75 split of the DTU dataset for content images.
4th and 5th columns visualize the second and third scenes in the perspective of camera frame of the
first scene.
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Figure 12: Qualitative results of the feed-forward based multi-view aribtrar style transfer algorithm
(MVAST-FF). We used a multi-view scenes from Scan118 split of the DTU dataset for content
images. 4th and 5th columns visualize the second and third scenes in the perspective of camera
frame of the first scene.
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