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Abstract:1

Offline Learning from Demonstrations (OLfD) is valuable in domains where2

trial-and-error learning is infeasible or specifying a cost function is difficult,3

such as robotic surgery, autonomous driving, and path-finding for NASA’s Mars4

rovers. However, two key problems remain challenging in OLfD: 1) heterogene-5

ity: demonstration data can be generated with diverse preferences and strategies,6

and 2) generalizability: the learned policy and reward must perform well beyond7

a limited training regime in unseen test settings. To overcome these challenges,8

we propose Dual Reward and policy Offline Inverse Distillation (DROID), where9

the key idea is to leverage diversity to improve generalization performance by de-10

composing common-task and individual-specific strategies and distilling knowl-11

edge in both the reward and policy spaces. We ground DROID in a novel and12

uniquely challenging Mars rover path-planning problem for NASA’s Mars Curios-13

ity Rover. We also curate a novel dataset along 163 Sols (Martian days) and con-14

duct a novel, empirical investigation to characterize heterogeneity in the dataset.15

We find DROID outperforms prior SOTA OLfD techniques, leading to a 26% im-16

provement in modeling expert behaviors and 92% closer to the task objective of17

reaching the final destination. We also benchmark DROID on the OpenAI Gym18

Cartpole environment and find DROID achieves 55% (significantly) better perfor-19

mance modeling heterogeneous demonstrations.20

Keywords: Learning from Heterogeneous Demonstration, Network Distillation,21

Offline Imitation Learning22

1 Introduction23

Deep Reinforcement Learning (Deep RL) has achieved great success in generating high-24

performance continuous control behaviors. However, Deep RL requires a high-fidelity simulator25

or reward-annotated dataset [1, 2, 3, 4, 5, 6, 7, 8]. For example, consider the Mars Path-Planning26

(MPP) problem where one must construct a path through a series of waypoints for the Mars rover27

to traverse towards a scientific objective. Not only is this challenging due to the chaotic terrain but28

also due to factors such as physical limitations of the rover’s capabilities and unobservable terrain29

information [9, 10]. Expert human Rover Planners (RPs) at NASA design paths under time and30

safety constraints based on their expertise crafted over years of experience – knowledge that has yet31

to be codified and otherwise difficult to capture [9]. Efforts have been made to automate the process32

with symbolic and connectionist (e.g., Deep RL) approaches [11, 12, 13]. However, these methods33

do not match the human RPs’ success because it is difficult to codify experts’ knowledge into a34

cost function [13, 14] and require a large homogeneous dataset to learn robust policies [9]. Such35

challenges not only exist in the MPP problem but are prevalent in other robotic applications such as36

surgery, search and rescue, self-driving, and elderly care [15, 16, 17, 18, 19, 20, 21].37
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Figure 1: This figure shows an illustration of the proposed algorithm, DROID, in the MPP problem,
which performs knowledge distillation across heterogeneous domain settings and expert strategies
to a common task policy and a shared task reward.

Learning from Demonstration (LfD) is a promising paradigm to address this challenge for robotics:38

LfD methods learn by having users demonstrate the desired behavior on the robot, removing the39

need for cost function specification [22]. However, most LfD approaches (e.g., Inverse Reinforce-40

ment Learning, IRL [23, 24]), are limited by the need for many environment interactions [25].41

Particularly with robotic applications, the exploratory environment interaction could be costly (e.g.,42

damaged or lost rovers), unethical (e.g., in surgery), or unsafe. Appropriately, Offline LfD (OLfD)43

has been proposed as framework which allows for training a robot policy solely from pre-recorded44

demonstrations with no assumption about a viable simulator [26].45

OLfD relaxes the requirement for a reward function and a simulator, it however faces several algo-46

rithmic challenges that limit its full potential [26, 27]. First, a key challenge for OLfD is hetero-47

geneity within an offline demonstration set. Each expert has individual preferences (stemming from48

varying cognitive biases [28] or different latent goals [29]) for accomplishing a given task [30, 31].49

If the LfD algorithm assumes homogeneity about heterogeneous data, the robot may fail to infer50

the expert intention [32, 28] and the learned policy may perform arbitrarily poorly [28, 33]. On51

the other hand, modeling heterogeneous behaviors separately is data-inefficient and prone to overfit-52

ting. Thus, leveraging a collection of experts alongside modeling individual-specific preferences can53

achieve personalization [31, 34] while avoiding the curse of dimensionality [35]. The second critical54

challenge is learning from a limited dataset [36], which is further complicated by the presence of het-55

erogeneity. The limited data makes it difficult for the learned policy and reward functions to capture56

the user’s latent intentions and to generalize beyond the demonstrated setting [15, 37, 38, 39].57

In this paper, we propose a novel OLfD approach, Dual Reward and Policy Offline Inverse58

Distillation (DROID), that simultaneously distills a common task policy and reward from diverse59

demonstrators, while modeling individual preferences along both strategy-specific policies and re-60

wards. This approach allows us to extract an unbiased task objective while understanding various61

styles of accomplishing the task (Figure 1). Our contributions are three-fold:62

1. We curate a novel dataset with RP-designed Mars Curiosity Rover paths for 163 Sols (Martian63

days) covering various terrains on Mars. We conduct a novel, empirical investigation to character-64

ize heterogeneity in the dataset, motivating the need for a OLfD approach robust to heterogeneity.65

2. We propose DROID, which simultaneously distills knowledge through the learned policy and66

reward. We also introduce two improvements (Augmented Regularization & Reward Maximiza-67

tion) to the underlying IRL algorithm [15] to improve generalization performance.68

3. We show DROID achieves 55% better modeling performance (measuring the distance between69

expert demonstration and generated trajectory) in Cartpole than previous SOTA. On the MPP70

problem, we also find DROID outperforms SOTA and gets 92% closer to the goal point (an71

important objective in the Mars path planning domain).72
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2 Related Work73

In this section, we discuss related works in offline learning from heterogeneous demonstration, re-74

ward and policy distillation, and the Mars Path Planning problem. There has been extensive work in75

LfD in robotics and learning from heterogenous demonstrations [29, 31, 33, 34, 35, 40, 41, 42, 43]76

but our focus is offline learning from diverse demonstrations (for safety-constrained or limited data77

regimes), an unexplored problem setting.78

Offline LfD Despite the abundance of OLfD approaches, few previous methods model heterogeneity79

within demonstrations [44, 45, 46, 47, 48], which could cause the learned reward function and80

policy to fail at generalizing beyond the original demonstrated setting [37, 38] and capturing the81

personalized intention of the expert [39]. Compared with AVRIL [15], DROID explicitly models82

heterogeneity with leverages additional enhancements to achieve better OLfD performance.83

Reward and Policy Distillation Several frameworks consider commonalities between reward func-84

tions across heterogeneous demonstrations [31, 34, 41]. However, these methods rely on online85

interactions with the environment, which is infeasible in many robotic domains. Policy distillation86

has been studied to improve policy transfer performance [49, 50]. However, DROID is the first to87

study simultaneous reward and policy distillation, particularly in the challenging setting of OLfD.88

Mars Path Planning For NASA, it requires a large amount of human effort for planning and vali-89

dating commands to the Mars Curiosity Rover [9]. Current approaches such as blind driving, Visual90

Odometry, and Autonomous Navigation (AutoNav) modes [51] do not consider all hazards that hu-91

mans deem dangerous to the rover [52]. Hedrick et al. [53] proposes efficient Martian path planning92

and Rover-IRL [54] learns a cost function from demonstration but both fail to plan under miss-93

ing/occluded terrain maps which is a key problem in the Mars domain [9].94

3 Preliminaries95

In this section, we introduce preliminaries on Markov Decision Processes (MDP), Offline Learning96

from Demonstration (OLfD), and Multi-Strategy Reward Distillation (MSRD).97

Markov Decision Process – A MDP, M , is a 6-tuple, ⟨S,A, R, T, γ, ρ0⟩. S and A correspond to98

the state / action space, R(s, a) the reward, and T (s′|s, a) the transition probability for state s′99

after performing action a in state s. γ ∈ (0, 1) is the discount factor and ρ0 denotes the initial100

state distribution. The policy π(a|s) represents the probability of choosing action a in state s. The101

Q-value is defined as Qπ
R(s, a) = Eπ,T [

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a], denoting the expected102

discounted cumulative return following π in the MDP under reward R.103

Offline Learning from Demonstration – IRL considers an MDP sans reward function (MDP\R)104

and infers the reward function R based on a set of demonstration trajectories D = {τ1, τ2, · · · , τN},105

where N is the number of demonstrations. Our method leverages Approximate Variational Reward106

Imitation Learning (AVRIL) [55] as the underlying IRL approach. AVRIL considers a distribu-107

tion over the reward function and approximates the posterior, p(R), with a variational distribution,108

qϕ(R). AVRIL introduces a second variational approximation for QπE

R (s, a) with Qθ(s, a) and109

ensures the variational reward distribution, qϕ(R), is consistent with the variational Q function,110

Qθ(s, a), by Bellman equation. We show the final loss function of AVRIL in Equation 1.111

LAVRIL(θ, ϕ) =
∑

(s,a,s′,a′)∈D

log

(
exp(βQθ(s, a))∑
b∈A exp(βQθ(s, b))

)
−DKL(qϕ(R(s, a))∥p(R(s, a)))

+ λ log qϕ(Qθ(s, a)− γQθ(s
′, a′))

(1)

Multi-Strategy Reward Distillation – We propose DROID’s reward distillation approach off a112

previous reward distillation framework, MSRD [34]. MSRD decomposes the per-strategy reward,113

Ri, for strategy i, as a linear combination of a common task reward and a strategy-only reward with114

neural network parameters ϕTask and ϕS−i: Ri = RϕTask + RϕS−i . MSRD leverages a regularization115

loss to distill common knowledge into ϕTask and retains personalized information in ϕS−i.116
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Figure 2: This figure shows the dataset curation process for the MPP problem. We unify the height
maps created by onboard cameras into a single “gaming area” (middle figure) and then plan the
driving path based on features calculated on the gaming area height map.

4 Mars Curiosity Rover Path Planning Problem117

In this section, we introduce the Mars Path Planning (MPP) problem and how we 1) curate the118

dataset, 2) construct an MDP for OLfD algorithms, 3) analyze heterogeneity present across RPs.119

Dataset Curation The raw data consists of height maps created by photos captured by the Mars120

Rover across multiple Sols (Martian days). The multi-resolution height maps are processed into121

a single 64x64 “gaming area” by interpolation of overlapping height maps and scaling along each122

axis (Figure 2). The processed gaming area is then used to calculate nine features identified by123

RPs: (1) distance to goal point, (2) unknown data percentage, (3) average roughness, (4) maximum124

roughness, (5) average pitch, (6) average roll, (7) maximum pitch, (8) maximum roll, and (9) turning125

angle. More details for the features are available in Supplementary.126

MDP Problem Setup We create a novel formulation to convert the MPP problem into an MDP:127

a state contains the terrain information of the Sol and the current and target locations for the path128

planning. The action space, A, consists of all possible next waypoints in the gaming area. The129

reward function is constructed as a function of features associated with the path specified by a on130

the terrain s: R(s, a) = f(ψ(s, a)) where ψ : (S ×A) → R9 is the path feature mapping.131

Figure 3: This figure shows heterogeneity in the
Mars dataset by visualizing significant differences
(p < .05 represented by connecting lines) in RP
metrics. RP IDs are labeled and marked red.

Analysis of Heterogeneity We perform a PER-132

MANOVA test with α = 0.05 and the Holm133

method for the correction of multi-tests with134

the 37 different RPs to answer whether dif-135

ferent strategies exist among drivers. The test136

shows significant differences along seven pairs137

of RPs, particularly along the paths designed by138

RP 26 with respect to 5 other RPs, as shown in139

Figure 3 with TSNE [56] dimension reduction140

to reduce features into two dimensions (Fur-141

ther explanation provided in the supplemen-142

tary). This result shows heterogeneity in the143

RP-generated paths from differences in domain144

settings (Sols) and the expert RP strategies, mo-145

tivating the need for offline learning from het-146

erogeneous demonstration approaches.147

5 Methods148

The challenges of heterogeneity and limited data are prevalent for OLfD in many robotic applica-149

tions, particularly in the MPP problem as shown in Section 4. To overcome these challenges, we150

propose our algorithm, DROID, for learning high-performing policies by distilling common infor-151

mation across heterogeneous demonstrations in both the policy space and the reward function space.152

5.1 Reward Distillation153

We propose a novel reward distillation approach tailored for OLfD. We propose to model the154

reward distributions as mean-field Gaussian distributions partitioned on each state-action pair155

and let the reward neural networks output the mean and standard deviation of the Gaussian156

distributions. The advantage of Gaussian-distribution models of task reward (RTask(s, a) ∼157
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qϕTask(R) = N (µTask(s, a), σ
2
Task(s, a))) and strategy rewards (RS−i(s, a) ∼ qϕS−i(R) =158

N (µS−i(s, a), σ
2
S−i(s, a))) is that the summation of two Gaussian distributions is still Gaussian dis-159

tribution, as shown in Equation 2, where Ri denotes the random variable for the reward distribution160

of strategy i.161

Ri(s, a) = RTask(s, a) +RS−i(s, a) ∼ N (µTask(s, a) + µS−i(s, a), σ
2
Task(s, a) + σ2

S−i(s, a)) (2)

Through this parameterization, we can perform reward distillation on the strategy reward, as shown162

in Equation 3, where M is the number of strategies and cτ is the strategy for τ .163

LRD({ϕS−i}Mi=1;D) = E(τ,cτ )∈D [||µS−cτ (s, a)||] (3)

Intuitively, LRD pushes the strategy reward to output 0 and therefore encourages any common knowl-164

edge to flow to the shared task reward and each individual strategy reward only capture preferences.165

5.2 Policy Distillation166

We propose DROID leverages commonalities in both reward and policy spaces among heteroge-167

neous demonstrations, to better distill common information in a limited dataset. As policies are168

implicitly defined via the Q function in AVRIL by π(a|s) = argmaxa∈AQ(s, a), we construct169

the Q function for each strategy as a combination of task Q function and strategy Q function:170

Qi = QθTask +QθS−i . As such, we propose to regularize the output of the strategy Q-value, QS−i, as171

in Equation 4, to encourage common information to be distilled into the task Q-value, QTask.172

LPD({θS−i}Mi=1;D) = E(τ,cτ )∈D [||QS−cτ (s, a)||] (4)

DROID’s explicit knowledge distillation across diverse policies aids in improving generalization173

performance as the shared policy benefits by modeling all demonstrations in the offline dataset.174

5.3 Enhancing DROID for Offline LfD175

We present two enhancements to construct the inductive bias useful for learning more accurate176

rewards and better-performing policies in OLfD.177

Improvement 1: Augmenting Dataset for Regularization. We introduce an augmented dataset178

where D′ = {(s, b)|∀s ∈ D, b ∈ A}, for regularizing qϕ(R(s, a)) to a prior p(R(s, a)). By extend-179

ing the operation of DKL to be on the entire action space, we are encouraging a more conservative180

estimate of the reward for any action that is not taken by the demonstrator, following the pessimistic181

principle in OLfD [57].182

L+
KL(ϕ) =

∑
s∈D,a∈A

DKL(qϕ(R(s, a))||p(R(s, a))) (5)

Intuitively, Equation 5 could be viewed as a data augmentation technique to regularize reward183

learning across a larger action space. In contrast, AVRIL’s variational lower-bound regularizes184

LKL(ϕ) =
∑

(s,a)∈DDKL(qϕ(R(s, a)||p(R(s, a))), on (s, a) samples from D. We provide a lemma185

to describe the effect in the supplementary.186

Improvement 2: Reward Maximization. The second improvement we propose is to maximize187

the reward given to the demonstrated action, as shown in Equation 6.188

Lmax-action(ϕ;D) = −
∑

(s,a)∈D

r(s, a) where r(s, a) ∼ qϕ(R(s, a)) (6)

Lmax-action makes the reward learning signal propagate faster instead of relying on the two-stage pro-189

cess of 1) Q function learning (first-term of LAVRIL) and then 2) reward learning by compatibility190

(third-term of LAVRIL). The two improvements also create a contrastive objective where demon-191

strated action’s reward is maximized while the un-demonstrated action’s reward is regularized to be192

close to the prior distribution. We summarize the loss function for DROID in Equation 7.193

L =
∑

(s,a)∈D

log
expβQθ(s, a)∑

b∈A exp(βQθ(s, b))
−

∑
s∈D,a∈A

DKL(qϕ(R(s, a))||p(R(s, a))) + Lmax-action(ϕ;D)

+
∑

(s,a,s′,a′)∈D

λ log qϕ(Qθ(s, a)− γQθ(s
′, a′)) + LRD({ϕS−i}Mi=1;D) + LPD({θS−i}Mi=1;D)

(7)

194
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6 Results195

In this section, we show DROID achieves strong performance in both the CartPole environment [58]196

and the more difficult Mars Path Planning problem. We test DROID against the baseline techniques197

of: a) AVRIL Batch (which assumes homogeneity by training a single LfD model on all expert data),198

b) AVRIL Single (which handles heterogeneity without knowledge sharing by training separate IRL199

models for each expert), and c) MSRD (which performs reward distillation). Given the key chal-200

lenges of heterogeneity and generalization (along both the learned policy and reward), we focus our201

analysis around three questions:202

Q1: Diverse Demonstration Modeling – How well does DROID perform at modeling latent expert203

preferences from heterogeneous demonstrations in offline LfD?204

Q2: Policy Performance – How well can the learned policies perform in an unseen holdout test205

dataset (e.g., modeling unseen demonstrations in CartPole, unseen terrains in MPP)?206

Q3: Reward Generalizability – How successful are the learned rewards in encoding experts’ latent207

objectives and inducing high-performing downstream policies?208

6.1 Cartpole209

We evaluate DROID’s trajectories against baselines on four metrics: Frechet Distance [59], KL Di-210

vergence [60], Undirected Hausdorff Distance [61], and Average Log Likelihood of expert demon-211

stration under the learned policy. We train each technique on a heterogeneous dataset of 60 tra-212

jectories from 20 distinct strategies generated by jointly optimizing an environment reward and a213

diversity reward from DIAYN [62]. The diverse strategies include swinging to different ends of the214

track and oscillating at varying periodicity. More experiment details and videos of demonstrations215

and learned policies are provided in the supplementary.216

Q1: Diverse Demonstration Modeling. Table 1 (left) summarizes the results of modeling and217

imitation on the training demonstrations. We find DROID performs significantly (p < .05) better218

on the KL Divergence (19%) and Frechet Distance (32%) metrics compared to the best baselines,219

showing that DROID models heterogeneous behaviors better and minimizes deviation between the220

learned policy’s behavior and the expert demonstrations.221

Q2: Policy Performance. We study how well each method’s policy performs on unseen demonstra-222

tions of a given strategy. Results in Table 1 section “Policy Performance” show DROID significantly223

outperforms (p < .05) baselines along KL Divergence (30%) and Undirected Hausdorff (55%).224

Especially, DROID’s performance gain over MSRD being larger on generalization than imitation225

shows the policy distillation in DROID is essential to learn a generalizable policy.226

Table 1: This table shows performance comparisons and significance of DROID and baselines in
Cartpole (left) and MPP (right). Bold denotes the best-performing models for the metric. * denotes
significance of p < .05 against the second-best approach.

CartPole
Benchmark KL Frechet Undirected Log
Method Divergence Distance Hausdorff Likelihood

Diverse Demonstration Modeling (n = 40)
AVRIL Batch 7.608 0.933 0.729 -48.113
AVRIL Single 10.051 1.294 0.895 -48.910
MSRD 7.479 0.621 0.476 -40.453
DROID (ours) 6.047∗ 0.425∗ 0.261 -37.948

Policy Performance (n = 20)
AVRIL Batch 8.367 1.004 0.786 -52.843
AVRIL Single 7.960 1.006 0.717 -54.023
MSRD 7.582 0.584 0.458 -44.173
DROID (ours) 5.271∗ 0.412 0.207∗ -38.057

Reward Generalizability (n = 20)
AVRIL Batch 8.923 1.197 1.152 -180.305
AVRIL Single 9.017 1.418 1.280 -178.544
MSRD 8.368 1.403 1.274 -179.694
DROID (ours) 8.048 1.441 1.336 -175.528∗

Mars Path Planning
Benchmark Undirected Distance from Final Log
Methods Hausdorff Waypoint Distance Likelihood

Diverse Demonstration Modeling (n = 114)
AVRIL Batch 8.825 10.517 1.428 -9.129
AVRIL Single 10.099 8.445 7.356 -15.662
MSRD 8.162 7.580 4.476 -27.667
DROID (ours) 6.780∗ 4.592 0.070∗ -7.261∗

Policy Performance (n = 49)
AVRIL Batch 8.387 10.020 3.878 -22.623
AVRIL Single 8.336 8.888 5.951 -17.357
MSRD 9.732 8.886 7.462 -148.964
DROID (ours) 6.144∗ 6.407 0.277∗ -18.483

Reward Generalizability (n = 49)
AVRIL Batch 9.385 9.501 1.823 -15.501
AVRIL Single 9.396 9.502 1.925 -15.653
MSRD 8.799 8.867 1.268 -14.515
DROID (ours) 8.240* 8.764 0.433* -15.050
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Figure 4: This figure visualizes actual 3D Mars terrain map with DROID’s mean estimate of the
learned task (left) and strategy (right) reward for Sol 2163. X-axis and Y-axis correspond to the
surface coordinates, Z-axis corresponds to elevation, and heatmap coloring is the normalized reward
output. The black line with arrows interlayed represents the path of the rover. The orange labels are
DROID’s found waypoints and the red labels are ground-truth demonstration waypoints (Point 0 is
the starting point, Point 1 is the intermediate waypoint, and Point 2 is the final waypoint selected).

Q3: Reward Generalizability. As a further analysis of generalization performance, we study how227

successful the learned reward functions are at inducing high-performing policies downstream. We228

train offline RL policies with CQL [63] and compare performances on the holdout test set. The229

results in Table 1 section “Reward Generalizability” show DROID achieves significantly better (p <230

.05) performance on log-likelihood (underperforms on Frechet Distance and Undirected Hausdorff),231

showing DROID’s reward function can induce a similarly well-performing policy with a stronger232

performance in expert behaviors modeling.233

6.2 Mars Path Planning234

With the success of DROID on Cartpole, we further test it against benchmarks on the more chal-235

lenging MPP problem, where RPs optimize for a complex objective considering goal locations,236

strategies, and safety constraints. Since there is no clear ground truth reward in the MPP problem,237

we study the performance along four metrics: Distance from Waypoint (distance away from expert238

waypoints), Final Distance (distance from desired goal point), Undirected Hausdorff Distance (how239

closely the generated path and expert path align), and Average Log Likelihood (how well the learned240

models expert’s trajectory). We train each technique on a dataset of 163 distinct sols (each with three241

waypoints: start point, midpoint, and goal point) from 37 RPs. Note data is extremely limited as242

each RP is associated with only 2-5 Sols and we treat each RP as a unique expert strategy for each243

technique. We retain a holdout test dataset representing 20% of Sols which is used to evaluate the244

generalization performance. More experiment details are in the supplementary.245

Q1: Diverse Demonstration Modeling. We show in Table 1 (right) that DROID is more success-246

ful at the imitation objective with respect to baseline approaches. DROID outperforms (p < .05)247

baselines by 95% on reaching the goal point (Final Distance) along with 20% better modeling on248

the strategic preference (Log Likelihood). Policy distillation ensures DROID accomplishes the task249

goal while per-strategy decomposition allows it to model expert waypoint preferences well.250

Q2: Policy Performance. On a holdout set of unseen Sols, Table 1 shows that DROID achieves251

better (p < .05) performance on the Undirected Hausdorff (26%) along with Final distance (92%)252

compared to best baselines. Despite limited and heterogeneous data, DROID’s learned policy gener-253

alizes well to achieve task performance and model expert preferences closely compared to baselines.254
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Figure 5: This figure shows Shapley values (the contribution of each of the composite features to
the model’s reward estimate) for the learned rewards of RP 1 (left) and 5 (right) evaluated on Sol
2030’s demonstrated path.

Q3: Reward Generalizability. Similar to the Cartpole experiment, we evaluate how successful255

the learned reward functions are at inducing high-performing policies downstream. We train CQL256

policies. The results in Table 1 section “Reward Generalizability” show DROID’s learned reward257

successfully induces policies with significantly better (p < .05) performance along the Undirected258

Hausdorff metric (12%) and the Final Distance metric (65%).259

6.2.1 Qualitative Analysis260

In this section, we present qualitative analysis of DROID, especially in understanding RPs’ prefer-261

ences in the domain of MPP. We visualize the task reward and strategy reward learned by DROID262

for a randomly selected Sol (Sol 2163) in Figure 4 left and right, respectively. We observe that the263

task reward encodes the common goal of converging at the goal point by giving high rewards to the264

goal point area. In contrast, the strategy reward correctly identifies the midpoint preference. DROID265

can successfully decompose the shared goal along with modeling a given RP’s latent strategy on266

unseen domains by highlighting their RP-specific cost function on a terrain map.267

We further perform a Shapley value analysis [64] on each RPs’ learned reward function. The analysis268

measures how adding a feature would change the prediction output and is helpful in comparing the269

relative importance different RPs place on features, even on Sols they have not explicitly planned270

on. As shown in Figure 5, we evaluated two randomly selected RPs (1 and 5) on Sol 2030. We271

observe that all drivers value that the path has a low pitch. However, RP 1 prefer to have a smaller272

turning angle, while RP 5 values a lower pitch more. This demonstrates how DROID can model273

heterogeneous strategies and quantify the influence of specific features on the modeled objective274

function. We can identify why certain RPs like or dislike a given path and understand which features275

contribute to that assessment.276

7 Conclusion, Limitations, and Future Work277

In this paper, we introduce an OLfD technique, DROID, that expands the applicability of OLfD with278

heterogeneous and limited data by a novel decomposition of the policy and reward models. Our279

results on both simulated and real-world data demonstrate that DROID outperforms SOTA methods,280

particularly in capturing difficult-to-articulate knowledge from rover path planners at NASA.281

There are several limitations with DROID. Firstly, DROID assumes experts have stationary pref-282

erences across demonstrations, which may be violated if experts gain more knowledge about the283

domain and adapt their strategies. Secondly, DROID requires retraining to adapt to new data and284

cannot improve its model in an online fashion. Thirdly, in the MPP domain, we extract nine features285

from height maps, which may not encompass all features an RP considers when making plans. In286

future work, we plan to explore modeling nonstationary strategies for demonstrators along with con-287

tinual learning in the DROID model. In the MPP domain, we plan to test DROID’s utility with RP’s288

daily workflow, explore automatic feature extraction for the Mars terrain information, and leverage289

DROID’s interpretability to gain insights during new-RP training procedures.290
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