
Optimal Gradient-based Algorithms for Non-concave
Bandit Optimization

Baihe Huang1∗, Kaixuan Huang2∗, Sham M. Kakade3,4∗, Jason D. Lee2∗

Qi Lei2∗, Runzhe Wang2∗, Jiaqi Yang5∗

1Peking University 2Princeton University 3University of Harvard
4Microsoft Research 5Tsinghua University

Abstract

Bandit problems with linear or concave reward have been extensively studied, but
relatively few works have studied bandits with non-concave reward. This work
considers a large family of bandit problems where the unknown underlying reward
function is non-concave, including the low-rank generalized linear bandit problems
and two-layer neural network with polynomial activation bandit problem. For
the low-rank generalized linear bandit problem, we provide a minimax-optimal
algorithm in the dimension, refuting both conjectures in [54, 42]. Our algorithms
are based on a unified zeroth-order optimization paradigm that applies in great
generality and attains optimal rates in several structured polynomial settings (in the
dimension). We further demonstrate the applicability of our algorithms in RL in
the generative model setting, resulting in improved sample complexity over prior
approaches. Finally, we show that the standard optimistic algorithms (e.g., UCB)
are sub-optimal by dimension factors. In the neural net setting (with polynomial
activation functions) with noiseless reward, we provide a bandit algorithm with
sample complexity equal to the intrinsic algebraic dimension. Again, we show that
optimistic approaches have worse sample complexity, polynomial in the extrinsic
dimension (which could be exponentially worse in the polynomial degree).

1 Introduction

Bandits [50] are a class of online decision-making problems where an agent interacts with the
environment, only receives a scalar reward, and aims to maximize the reward. In many real-world
applications, bandit and RL problems are characterized by large or continuous action space. To encode
the reward information associated with the action, function approximation for the reward function
is typically used, such as linear bandits [20]. Stochastic linear bandits assume the mean reward
to be the inner product between the unknown model parameter and the feature vector associated
with the action. This setting has been extensively studied, and algorithms with optimal regret are
known [20, 50, 2, 13].

However, linear bandits suffer from limited representation power unless the feature dimension is
prohibitively large. A comprehensive empirical study [59] found that real-world problems required
non-linear models and thus non-concave rewards to attain good performance on a testbed of bandit
problems. To take a step beyond the linear setting, it becomes more challenging to design optimal
algorithms. Unlike linear bandits, more sophisticated algorithms beyond optimism are necessary. For
instance, a natural first step is to look at quadratic [43] and higher-order polynomial [35] reward. In

∗Alphabetical order. Correspondence to: Qi Lei, qilei@princeton.edu, Jason D. Lee, jasonlee@
princeton.edu.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

qilei@princeton.edu
jasonlee@princeton.edu
jasonlee@princeton.edu

the context of phase retrieval, which is a special case for the quadratic bandit, people have derived
algorithms that achieve minimax risks in the statistical learning setting [9, 51, 15]. However, the
straightforward adaptation of these algorithms results in sub-optimal dimension dependency.

In the bandit domain, existing analysis on the nonlinear setting includes eluder dimension [61],
subspace elimination [54, 42], etc. Their results also suffer from a larger dimension dependency than
the best known lower bound in many settings. (See Table 1 and Section 3 for a detailed discussion of
these results.) Therefore in this paper, we are interested in investigating the following question:

What is the optimal regret for non-concave bandit problems, including structured polynomials
(low-rank etc.)? Can we design algorithms with optimal dimension dependency?

Contributions: In this paper, we answer the questions and close the gap (in problem dimension)
for various non-linear bandit problems.

1. First, we design stochastic zeroth-order gradient-like2 ascent algorithms to attain minimax re-
gret for a large class of structured polynomials. The class of structured polynomials contains
bilinear and low-rank linear bandits and symmetric and asymmetric higher-order homoge-
neous polynomial bandits with action dimension d. Though the reward is non-concave, we
combine techniques from two bodies of work, non-convex optimization and numerical linear
algebra, to design robust gradient-based algorithms that converge to global maxima. Our
algorithms are also computationally efficient, practical, and easily implementable.
In all cases, our algorithms attain the optimal dependence on dimension d, which was not
previously attainable using existing optimism techniques. As a byproduct, our algorithm
refutes3 the conjecture from [42] on the bilinear bandit, and the conjecture from [54] on
low-rank linear bandit by giving an algorithm that attains the optimal dimension dependence.

2. We demonstrate that our techniques for non-concave bandits extend to RL in the generative
setting, improving upon existing optimism techniques.

3. When the reward is a general polynomial without noise, we prove that solving polynomial
equations achieves regret equal to the intrinsic algebraic dimension of the underlying
polynomial class, which is often linear in d for interesting cases. In general, this complexity
cannot be further improved.

4. Furthermore, we provide a lower bound showing that all UCB algorithms have a sample
complexity of Ω(dp), where p is the degree of the polynomial. The dimension of all
homogeneous polynomials of degree p in dimension d is dp, showing that UCB is oblivious
to the polynomial class and highly sub-optimal even in the noiseless setting.

1.1 Related Work

Linear Bandits. Linear bandit problems and their variants are studied in [20, 50, 1, 13, 2, 20, 60, 34,
33]. The matching upper bound and minimax lower bound achievesO(d

√
T) regret. Structured linear

bandits, including sparse linear bandit [3] which developed an online-to-confidence-set technique.
This technique yields the optimal O(

√
sdT) rate for sparse linear bandit. However [54] employed

the same technique for low-rank linear bandits giving an algorithm with regret O(
√
d3poly(k)T)

which we improve to O(
√
d2poly(k)T), which meets the lower bound given in [54].

Eluder Dimension. [61] proposed the eluder dimension as a general complexity measure for
nonlinear bandits. However, the eluder dimension is only known to give non-trivial bounds for
linear function classes and monotone functions of linear function classes. For structured polynomial
classes, the eluder dimension simply embeds into an ambient linear space of dimension dp, where d
is the dimension and p is the degree. This parallels the linearization/NTK line in supervised learning
[70, 30, 7] which show that linearization also incurs a similarly large penalty of dp sample complexity,
and more advanced algorithm design is need to circumvent linearization [10, 17, 25, 71, 27, 58, 29,
56, 36, 67, 19].
Non-concave Bandits. To our knowledge, there is no general study of non-concave bandits, likely
due to the difficulty of globally maximizing non-concave functions. A natural starting point of

2Our algorithm estimates the gradient, but with some irreducible bias for the tensor case. Note that our
algorithms converge linearly despite the bias.

3Both papers conjectured regret of the form O(
√

d3poly(k)T) based on convincing but potentially mislead-
ing heuristics.

2

studying the non-concave setting are quadratic rewards such as the Rayleigh quotient, or namely
bandit PCA [46, 28]. In the bilinear [42] and low-rank linear setting [54] with rank k parameter
matrices achieved Õ(

√
d3poly(k)T) regret. Other literature considered related but different settings

that are not comparable to our results [43, 41, 32, 47]. We note that the regret of all previous work is
at least O(

√
d3T). This includes the subspace exploration and refinement algorithms from [42, 54],

or from eluder dimension [61]. Recently [35] considers online problem with a low-rank tensor
associated with axis-aligned set of arms, which corresponds to finding the largest entry of the tensor.
Finally, [46] study the bandit PCA problem in the adversarial setting, attaining regret of O(

√
d3T).

We leave adapting our results to the adversarial setting as an open problem.
Due to space limitation we defer the discussion of some equally important literature to the appendix.

2 Preliminaries

2.1 Setup: Structured Polynomial Bandit

We study structured polynomial bandit problems where the reward function is from a class of
structured polynomials (see below). A player plays actions for T rounds; at each round t ∈ [T], the
player chooses one action at from the feasible action set A and receives the reward rt afterward.

We consider both the stochastic case where rt = fθ(at) + ηt where ηt is the random noise, and the
noiseless case rt = fθ(at). Specifically the function fθ is unknown to the player, but lies in a known
function class F . We use the notation vec(M) to denote the vectorization of a matrix or a tensor
M , and v⊗p to denote the p-order tensor product of a vector v. For vectors we use ‖ · ‖2 or ‖ · ‖ to
denote its `2 norm. For matrices ‖ · ‖2 or ‖ · ‖ stands for its spectral norm, and ‖ · ‖F is Frobenius
norm. For integer n, [n] denotes set {1, 2, · · ·n}. For cleaner presentation, in the main paper we use
Õ, Θ̃ or Ω̃ to hide universal constants, polynomial factors in p and polylog factors in dimension d,
error ε, eigengap ∆, total round number T or failure rate δ.

We now present the outline with the settings considered in the paper:

The stochastic bandit eigenvector case, FEV, considers action set A = {a ∈ Rd : ‖a‖2 ≤ 1} as
shown in Section 3.1, and

FEV =

{
fθ(a) = aTMa,M =

∑k
j=1 λjvjv

>
j , for orthonormal vj

M ∈ Rd×d, 1 ≥ λ1 ≥ |λ2| ≥ · · · ≥ |λk|

}
.

The stochastic low-rank linear reward case, FLR considers action sets on bounded matrices A =
{A ∈ Rd×d : ‖A‖F ≤ 1} in Section 3.2, and

FLR =

{
fθ(A) = 〈M ,A〉 = vec(M)>vec(A),
M ∈ Rd×d, rank(M) = k,M = M>, ‖M‖F ≤ 1

}
.

We illustrate how to apply the established bandit oracles to attain a better sample complexity for RL
problems with the simulator in Section 3.2.1.

The stochastic homogeneous polynomial reward case is presented in Section 3.3. For the sym-
metric case in Section 3.3.1, the action sets are A = {a ∈ Rd : ‖a‖2 ≤ 1}, and

FSYM =

{
fθ(a) =

∑k
j=1 λj(v

>
j a)p for orthonormal vj ,

1 ≥ r∗ = λ1 > |λ2| ≥ · · · ≥ |λk|

}
;

in the asymmetric case in Section D.3.1, the action sets are
A = {a = a(1)⊗ a(2)⊗ · · · ⊗ a(p) ∈ Rdp : ∀q ∈ [p], ‖a(q)‖2 ≤ 1}, and

FASYM =

{
fθ(a) =

∑k
j=1 λj

∏p
q=1(vj(q)

>a(q)) for orthonormal vj(q) for each q,
1 ≥ r∗ = |λ1| ≥ |λ2| ≥ · · · ≥ |λk|

}
.

In the above settings, there is stochastic noise on the observed rewards. We also consider noiseless
settings as below:
The noiseless polynomial reward case is deferred to Appendix G.1 due to space limitation. The
action sets A are subsets of Rd, and FP = {fθ(a) = 〈θ, ã⊗p〉 : θ ∈ V, ã = [1,a>]>,V ⊆
(Rd+1)⊗p is an algebraic variety}. Additionally, F needs to be admissible (Definition G.2). This
class includes two-layer neural networks with polynomial activations (i.e. structured polynomials).
We study the fundamental limits of all UCB algorithms in Section G.1.2 as they are Ω(dp−1) worse
than our algorithm presented in Section G.1.1.

3

FHPS FHPA FB FLL

Upper Bound from LinUCB/eluder Õ(dp+1kε−2)(k > p) Õ(dp+1kε−2) Õ(d3kε−2) Õ(d3kε−2)

Our Results
NPM Gap-dependent Õ(κdpk∆−2ε−2) (even p) N/A Õ(κd2∆−2ε−2) Õ(d2k2λ−2

k ε−2)

Gap-independent Õ(dpkε−2) (odd p) Õ((Ck)pdpε−2) Õ(min{d2ε−5, d2k5ε−2}) N/A
Lower bounds Ω(dpε−2) Ω(dpε−2) Ω(d2ε−2) Ω(d2k2ε−2)∗

Table 1: Baselines and Our Main Results (for stochastic settings). Eigengap ∆ = λ1 − |λ2|,
κ = λ1/∆. C is a constant that depends on failure probability. The result with ∗ is from [54].

In the above settings, we are concerned with the cumulative regret R(T) for T rounds. Let f∗θ =

sup
a∈A

fθ(a), Rθ(T) :=
T∑
t=1

(f∗θ − fθ(at)). Since the parameters can be chosen adversarially, we are

bounding R(T) = supθRθ(T) in this paper. In all the stochastic settings above, we make the
standard assumption on stochasticity that ηt is conditionally zero-mean 1-sub-Gaussian random
variable regarding the randomness before t.

2.2 Warm-up: Adapting Existing Algorithms

In all of the above settings, the function class can be viewed as a generalized linear function. Namely,
there is fixed feature maps ψ, φ so that fθ(a) = ψ(θ)Tφ(a). Thus it is straightforward to adapt linear
bandit algorithms like the renowned LinUCB [52] to our settings. Furthermore, another baseline
is given by the eluder dimension argument [61][66] which gives explicit upper bounds for general
function classes. We present the best upper bound by adapting these methods as a baseline in Table 1,
together with our newly-derived lower bound and upper bound in this paper.
The best-known statistical rates are based on the following result.

Theorem 2.1 (Proposition 4 in [61]). With α = O(T−2) appropriately small, given the α-covering-
number N (under ‖·‖∞) and the α-eluder-dimension dE of the function class F , Eluder UCB
(Algorithm 2) achieves regret Õ(

√
dET logN).

In the first row of Table 1, we further elaborate on the best results obtained from Theorem 2.1 in
individual settings. More details can be found in Appendix B.

3 Main results

We now present our main results. We consider 4 different stochastic settings (see Table 1) and one
noiseless setting with structured polynomials.
In the cases of stochastic reward, all our algorithms can be unified as gradient-based optimization. At
each stage with a candidate action a, we define the estimatorGn(a) := 1

n

∑n
i=1(fθ((1−ζ)a+ζzi)+

ηi)zi, with zi ∼ N (0, σ2Id) and proper step-size ζ [26]. Therefore Ez[G(a)] = σ2ζ∇fθ((1 −
ζ)a)+O(ζ2) = ζ(1−ζ)p−1σ2∇fθ(a)+O(ζ2) for p-th order homogeneous polynomials. Therefore
with enough samples, we are able to implement noisy gradient ascent with bias.
In the noiseless setting, our algorithm solves for the parameter θ with randomly sampled actions
{at} and the noiseless reward {fθ(at)}, and then determines the optimal action by computing
arg maxa fθ(a).

3.1 Stochastic Eigenvalue Reward (FEV)

Now consider bandits with stochastic reward r(a) = a>Ma+η with action setA = {a|‖a‖2 ≤ 1}.
M =

∑r
i=1 λiviv

>
i is symmetric and satisfies r∗ = λ1 > |λ2| ≥ |λ3| · · · ≥ |λr|, η ∼ N (0, 1).

Denote by a∗ the optimal action (±v1), the leading eigenvector of M , (a∗)>Ma∗ = λ1. Let
∆ = λ1 − |λ2| > 0 be the eigengap and κ := λ1/∆ be the condition number.

Remark 3.1 (Negative leading eigenvalue). For a symmetric matrixM , we will conduct noisy power
method to recover its leading eigenvector, and therefore we require its leading eigenvalue λ1 to
be positive. It is straightforward to extend to the setting where the nonzero eigenvalues satisfy:
r∗ ≡ λ1 > λ2 ≥ λl > 0 > λl+1 · · · ≥ λk, and |λk| > λ1. For this problem, we can shiftM to get
M + |λk|I and the eigen-spectrum now becomes λ1 + |λk|, λ2 + |λk|, · · · 0; therefore, we can still
recover the optimal action with dependence on the new condition number (λ1 + |λk|)/(λ1 − λ2).

4

Remark 3.2 (Asymmetric matrix). Our algorithm naturally extends to the asymmetric setting:
f(a1,a2) = a>1 M̃a2, where M̃ = UΣV >. This setting can be reduced to the symmetric case via
defining

M =

[
0 M̃>

M̃ 0

]
=

1

2

[
V V
U −U

] [
Σ 0
0 −Σ

] [
V V
U −U

]>
,

which is a symmetric matrix, and its eigenvalues are ±σi(M̃), the singular values of M̃ . Therefore
our analysis on symmetric matrices also applies to the asymmetric setting and will equivalently
depend on the gap between the top singular values of M̃ . A formal asymmetric to symmetric
conversion algorithm is presented in Algorithm 1 in [28].

Algorithm. We note that by conducting zeroth-order gradient estimate 1/n
∑n
i=1(f(a/2 + zi/2) +

ηi)zi with step-size 1/2 [26] and sample size n, we get an estimate for Eη,z[(f(a/2+z/2)+η)z] =
σ2

2 Ma when z ∼ N (0, σ2). Therefore we are able to use noisy power method to recover the top
eigenvector. We present the complete algorithm in Algorithm 1 and attain a gap-dependent risk
bound:

Algorithm 1 Noisy power method for bandit eigenvalue problem.

1: Input: Quadratic function f : A → R with noisy reward, failure probability δ, error ε.
2: Initialization: Initial action a0 ∈ Rd randomly sampled on the unit sphere Sd−1. We set
α = |λ2/λ1|, sample size per iteration n = Cnd

2 log(d/δ)(λ1α)−2ε−2, sample variance
m = Cmd log(n/δ), total iteration L = bCL log(d/ε)c+ 1.

3: for Iteration l from 1 to L do
4: Sample zi ∼ N (0, 1/mId), i = 1, 2, · · ·n. (Re-sample the whole batch if exists zi with

norm greater than 1.)
5: Noisy power method:
6: Take actions ãi = al−1+zi

2 and observe ri = f(ai) + ηi,∀i ∈ [n]
7: Update normalized action al ← m

n

∑n
i=1 rizi, and normalize al ← al/‖al‖2.

8: Output: aL.

Theorem 3.3 (Regret bound for noisy power method (NPM)). In Algorithm 1, we set ε ∈ (0, 1/2),
δ = 0.1/(L0S) and let CL, CS , Cn, Cm be large enough universal constants. Then with high
probability 0.9 we have: the output aL satisfies tan θ(a∗,aL) ≤ ε and yields r∗ε2-optimal reward;
and the total number of actions we take is Õ(κd2

∆2ε2). By explore-then-commit (ETC) the cumulative
regret is at most Õ(

√
κ3d2T).

All proofs in this subsection are in Appendix C.1.
Remark 3.4 (Intuition of [42] and how to overcome the conjectured lower bound via the design of
adaptive algorithms). Let us consider the rank 1 case of r(a) = (aTθ∗)2 + η. A random action
a ∼ Unif(Sd−1) has f(a) � 1/d2, and the noise has standard deviation O(1). Thus the signal-
to-noise-ratio is O(1/d2) and the optimal action θ∗ requires d bits to encode. If we were to play
non-adaptively, this would require O(d3) queries and result in regret

√
d3T which matches the result

of [42].

To go beyond this, we must design algorithms that are adaptive, meaning the information in f(a) + η
is strictly larger than 1

d2 . As an illustration of why this is possible, consider batching the time-
steps into d stages so that each stage decode 1 bit of θ∗. At the first stage, random exploration
a ∼ Unif(Sd−1) gives signal-to-noise-ratio O(1/d2). Suppose k bits of θ are decoded at k-th stage
by θ̂, adaptive algorithms can boost the signal-to-noise-ratio to O(k/d2) by using θ̂ as bootstrap
(e.g. exploring with θ̂ ± a where a is random exploration in the unexplored subspace). In this way
adaptive algorithms only need d2/k queries in (k + 1)-th stage and so the total number of queries
sums up to

∑d
k=1 d

2/k ≈ d2 log d.

Gradient descent and power method offer a computationally efficient and seamless way to implement
the above intuition. For every iterate action a, we estimateMa from noisy observations and take
it as our next action a+. With d2/(∆2ε2) samples, noisy power method enjoys linear progress

5

tan θ(a+,a∗) ≤ max{c tan(a,a∗), ε}, where c < 1 is a constant that depends on λ1, λ2, and ε.
Therefore even though every step costs d2 samples, overall we only need logarithmic (in d, ε, λ1, λ2)
iterations to find an ε-optimal action.

Remark 3.5 (Connection to phase retrieval and eluder dimension). For rank-1 caseM = xx>, the
bilinear bandits can be viewed as phase retrieval, where one observes yr = (a>r x)2 = a>rMar
plus some noise ηr ∼ N (0, σ2). The optimal (among non-adaptive algorithms) sample complexity to
recover x is σ2d/ε2 [16, 15] where they play a from random Gaussian N (0, I). However, in bandit,
we need to set the variance of a to at most 1/d to ensure ‖a‖ ≤ 1. Our problem is equivalent to
observing yr/d where their a/

√
d ∼ N (0, 1/dI) and noise level ηr/d ∼ N (0, 1), i.e., σ2 = d2.

Therefore one gets d3/ε2 even for the rank-1 problems. On the other hand, for all rank-1 M
the condition number κ = 1; and thus our results match the lower bound (see Section 3.3.2) up
to logarithmic factors, and also have fundamental improvements for phase retrieval problems by
leveraging adaptivity.

For UCB algorithms based on eluder dimension, the regret upper bound is O(
√
dE log(N)T) =

O(
√
d3T) as presented in Theorem 2.1, where the dependence on d is consistent with [42, 54] and is

non-optimal.

The previous result depends on the eigen-gap. When the matrix is ill-conditioned, i.e., λ1 is very close
to λ2, we can obtain gap-free versions with a modification: The first idea stems from finding higher
reward instead of recovering the optimal action. Therefore when λ1 and λ2 are very close (gap being
smaller than desired accuracy ε), it is acceptable to find any direction in the span of (v1,v2). More
formally, we care about the convergence speed of identifying any action in the space spanned by any
top eigenvectors (whose associated eigenvalues are higher than λ1 − ε). Therefore the convergence
speed will depend on ε instead of λ1 − λ2.

Corollary 3.6 (Gap-free regret bound). For positive semi-definite matrix M , by setting α =
1 − ε2/2 in Algorithm 1 and performing ETC afterwards, one can obtain cumulative regret of
Õ(λ

3/5
1 d2/5T 4/5).

Again, the PSD assumption is not essential. For general symmetric matrices with λ1 ≥ λ2 ≥ · · · >
0 > · · ·λk. We can still conduct shifted power method onM − λkI , yielding a cumulative regret of
(λ1 + |λk|)3/5d2/5T 4/5.

Another novel gap-free algorithm requires to identify any top eigenspace V1:l, l ∈ [k]: V1:l is the
column span of {v1,v2, · · ·vl}. Notice that in traditional subspace iteration, the convergence rate of
recovering Vl depends on the eigengap ∆l := |λl|−|λl+1|. Meanwhile, since

∑k
l=1 ∆l = λ1, at least

one eigengap is larger or equal to λ1/k. Suppose ∆l∗ ≥ λ1/k; we can, therefore, set α = 1− 1/k
and recover the top l∗ subspace up to λ1ε error, which will give an ε-optimal reward in the end.
We don’t know l∗ beforehand and will try recovering the top subspace V1,V2, · · ·Vk respectively,
which will only lose a k factor. With the existence of l∗, at least one trial (on recovering Vl∗) will be
successful with the parameters of our choice, and we simply output the best action among all trials.

Theorem 3.7 (Informal statement: (gap-free) subspace iteration). By running subspace iteration (Al-
gorithm 3) with proper choices of parameters, we attain a cumulative regret of Õ(λ

1/3
1 k4/3(dT)2/3).

Algorithm 3) with another set of parameters can also recover the whole eigenspace, and achieve
cumulative regret of Õ((λ1k)1/3(κ̃dT)2/3), where κ̃ = λ1/|λk|.

3.2 Stochastic Low-rank Linear Bandits (FLR)

In the low-rank linear bandit, the reward function is f(A) = 〈A,M〉, with noisy observations
rt = f(A) + ηt, and the action space is {A ∈ Rd×d : ‖A‖F ≤ 1}. Without loss of generality we
assume k, the rank ofM satisfies k ≤ d

2 , since when k is of the same order as d, the known upper
and lower bound are both

√
d2k2T = Θ(

√
d4T) [54] and there is no room for improvement. We

write r∗ = ‖M‖F ≤ 1, therefore the optimal action isA∗ = M/r∗. In this section, we writeX(s)
to be the s-th column of any matrixX .

As presented in Algorithm 4, we conduct noisy subspace iteration to estimate the right eigenspace of
M . Subspace iteration requires calculating MXt at every step. This can be done by considering

6

FEV LB (k = 1) [42] NPM Gap-free NPM Subspace Iteration

Regret
√
d2T

√
d3kλ−2

k T
√
κ3d2T d2/5T 4/5 min(k4/3(dT)2/3, k1/3(κ̃dT)2/3)

FLR LB ([54]) UB ([54]) Subspace Iteration

Regret Ω(
√
d2k2T)

√
d3kT

∗
or
√
d3kλ−2

k T min(
√
d2kλ−2

k T , (dkT)2/3)

Table 2: Summary of results for quadratic reward. All red expressions are our results. LB, UB,
NPM stands for lower bound, upper bound, and noisy power method respectively. ∆ = λ1 − |λ2|
is the eigengap, and κ = λ1/∆, κ̃ = λ1/|λk| are the condition numbers. The result with ∗ is
not computationally tractable. For low-rank setting in this table, we treat ‖M‖F as a constant for
simplicity and leave its dependence in the theorems. Our upper bounds match the lower bound
in terms of dimension and substantially improve over existing algorithms that are computationally
efficient.

a change of variable of g(X) := f(XX>) = 〈XX>,M〉 whose gradient4 is ∇g(X) = 2MX .
The zeroth-order gradient estimator can then be employed to stochastically estimate MX . We
instantiate the analysis with symmetricM while extending to asymmetric setting is straightforward
since the problem can be reduced to symmetric setting (suggested in Remark 3.2).

With stochastic observations and randomly sampled actions, we achieve the next iterate Yl that
satisfies MXl−1 ≡ E[Yl] in Algorithm 4. Let M = V ΣV >. With proper concentration bounds
presented in the appendix, we can apply the analysis of noisy power method [37] and get:

Theorem 3.8 (Informal statement; sample complexity for low-rank linear reward). With Algorithm 4,
XL satisfies ‖(I −XLX

>
L)V ‖ ≤ ε/4, and output Â satisfies ‖Â−A∗‖F ≤ ε‖M‖F with sample

size Õ(d2kλ−2
k ε−2).

We defer the proofs for low-rank linear reward in Appendix C.2.

Corollary 3.9 (Regret bound for low-rank linear reward). We first call Algorithm 4 with ε4 =

Θ̃(d2kλ−2
k T−1) to obtain Â; we then play Â for the remaining steps. The cumulative regret satisfies

R(T) ≤ Õ(
√
d2k(r∗)2λ−2

k T),

with high probability 0.9.

To be more precise, we need T ≥ Θ̃(d2k/λ2
k) for Algorithm 4 to take sufficient actions; however,

the conclusion still holds for smaller T . Since simply playing 0 for all T actions will give a sharper

bound of R(T) ≤ r∗T ≤ Õ(r∗
√
d2kλ−2

k T)). For cleaner presentation, we won’t stress this for
every statement.

Notice that k ≤ ‖M‖2F /λ2
k ≤ kκ̃2 is order k. Thus for well-conditioned matrices M , our upper

bound of Õ(
√
d2k‖M‖2F /λ2

kT) matches the lower bound
√
d2k2T except for logarithmic factors.

In the previous setting with the bandit eigenvalue problem, estimatingM up to an ε-error (measured
by operator norm) gives us an ε-optimal reward. Therefore the sample complexity for eigenvalue re-
ward with similar subspace iteration is ‖M‖22d2k/(λ2

kε
2). In this section, on the other hand, we need

Frobenius norm bound ‖AL −A∗‖F ≤ ε; naturally the complexity becomes ‖M‖2F d2k/(λ2
kε

2).

Theorem 3.10 (Regret bound for low-rank linear reward: gap-free case). Set ε6 = Θ(d2k2

(r∗)2T),

n = Θ̃(d2k2

(r∗)2ε4), L = Θ(log(d/ε)) and k′ = 2k in Algorithm 4 and get Â. Then we play it for the
remaining steps, the cumulative regret satisfies:

R(T) ≤ Õ((dkT)2/3(r∗)1/3).

We summarize all our results and prior work for quadratic reward in Table 2.

4Directly performing projected gradient descent on f(A) would not work, since this is not an adaptive
algorithm as the gradient of a linear function is constant. This would incur regret

√
d3poly(k)T .

7

3.2.1 RL with Simulator: Q-function is Quadratic and Bellman Complete

In this section we demonstrate how our results for non-concave bandits also apply to reinforcement
learning. Let Th be the Bellman operator applied to the Q-function Qh+1 defined as:

Th(Qh+1)(s, a) = rh(s, a) + Es′∼P(·|s,a)[max
a′

Qh+1(s′, a′)].

Definition 3.11 (Bellman complete). Given MDPM = (S,A,P, r,H), function classFh : S×A 7→
R, h ∈ [H] is called Bellman complete if for all h ∈ [H] and Qh+1 ∈ Fh+1, Th(Qh+1) ∈ Fh.

Assumption 3.12 (Bellman complete for low-rank quadratic reward). We assume the function class
Fh = {fM : fM (s, a) = φ(s, a)>Mφ(s, a), rank(M) ≤ k, and 0 < λ1(M)/λmin(M) ≤
κ̃.} is a class of quadratic function and the MDP is Bellman complete. Here fM (φ(s, a)) =∑k
j=1 λj(v

>
j φ(s, a))2 whenM =

∑k
j=1 λjvjv

>
j . Write Q∗h = fM∗h ∈ Fh.

Observation: When querying sh−1, ah−1, we observe s′h ∼ P(·|sh−1, ah−1) and reward
rh−1(sh−1, ah−1).
Oracle to recover parameter M̂ : Given n ≥ Θ̃(d2k2κ̃2(M)/ε2), if one can play ≥ n samples ai
and observe yi ∼ a>i Mai + ηi, i ∈ [n] with 1-sub-gaussian and mean-zero noise η, we can recover
M̂ = M̂({(ai, yi)}) such that ‖M̂ −M‖2 ≤ ε. This oracle is implemented via our analysis from
the bandit setting.

With the oracle, at time step H , we can estimate M̂H that is ε/H close to M∗
H in spectral norm

through noisy observations from the reward function with Õ(κ̃2d2H2/ε2) samples. Next, for each
time step h = H − 1, H − 1, · · · , 1, sample s′i ∼ P(·|s, a), we define ηi = maxa′ fM̂h+1

(s′i, a
′)−

Es′∼P(·|s,a) maxa′ fM̂h+1
(s′, a′). ηi is mean-zero andO(1)-sub-gaussian since it is bounded. Denote

Mh as the matrix that satisfies fMh
:= T f

M̂h+1
, which is well-defined due to Bellman completeness.

We estimate M̂h from the noisy observations yi = rh(s, a) + maxa′ fM̂h+1
(s′i, a

′) = T f
M̂h+1

+

ηi =: fMh
+ ηi. Therefore with the oracle, we can estimate M̂h such that ‖M̂h −Mh‖2 ≤ ε/H

with Θ(κ̃2d2k2H2/ε2) bandits. More details are deferred to Algorithm 5 and the Appendix. We state
the theorem on sample complexity of finding ε-optimal policy here:

Theorem 3.13. Suppose F is Bellman complete associated with parameter κ̃. With probability 1− δ,
Algorithm 5 learns an ε-optimal policy π with Θ̃(d2k2κ̃2H3/ε2) samples.

Existing approaches require O(d3H2/ε2) trajectories, or equivalently O(d3H3/ε2) samples, though
they operate in the online RL setting [73, 23, 40], which is worse by a factor of d.

It is an open problem to attain d2 sample complexity in the online RL setting. The quadratic Bellman
complete setting can also be easily extended to any of the polynomial settings of Section 3.3.

3.3 Stochastic High-order Homogeneous Polynomial Reward

Next we move on to homogeneous high-order polynomials.

3.3.1 The symmetric setting

Let reward function be a p-th order stochastic polynomial function f : A → R, where the action
set A := {Bd1 = {a ∈ Rd, ‖a‖ ≤ 1.}. f(a) = T (a⊗p), rt = f(a) + ηt, where T =

∑k
j=1 λjv

⊗p
j

is an orthogonally decomposable rank-k tensor. {v1, · · ·vk} form an orthonormal basis. Optimal
reward r∗ satisfies 1 ≥ r∗ = λ1 ≥ |λ2| · · · ≥ |λk|. Noise ηt ∼ N (0, 1).

In this setting, the problem is fundamentally more challenging than quadratic reward functions.
On the one hand, it has a higher noise-to-signal ratio with larger p. One can tell from the rank-1
setting where T = λ1v

⊗p
1 . For a randomly generated action a on the unit ball, E[‖a>v1‖2] = 1/d.

Therefore on average the signal strength is only (a>v1)p ∼ d−p/2, much smaller than the noise level
1. Intuitively this demonstrates why higher complexity is needed for high-order polynomials. On the
other hand, it is also technically more challenging. Unlike the matrix case, the expected zeroth-order
update is no longer equal to any tensor product. Therefore existing tensor decomposition arguments
do not apply. Fortunately, we prove that zeroth-order optimization still pushes the iterated actions

8

toward the optimal action with linear convergence, given a good initialization. We show the bandit
optimization procedure in Algorithm 6 and present the result in Theorem 3.14:

Theorem 3.14 (Staged progress). For each stage s, with high probability As is not empty; and at
least one action a ∈ As satisfies: tan θ(a,a∗) ≤ ε̃s = 2−s.

We defer the proofs together with formal statements to Appendix D.1.1 and D.1.

Remark 3.15 (Choice of step-size). Here we choose step-size ζ = 1/2p. Note that E[y] = ζ(1−
ζ)pσ2∇af(a). The scaling (1 − ζ)p ≥ 1/

√
e ensures the signal to noise ratio not too small.

The choice of weighted action is a delicate balance between making progress in optimization and
controlling the noise to signal ratio.

Corollary 3.16 (Regret bound for tensors). Algorithm 6 yields an regret of: R(T) ≤ Õ
(√

kdpT
)

,
with high probability.

Corollary 3.17 (Regret bound with burn-in period). In Algorithm 6, we first set ε = 1/p, ns =

Θ̃(dp/λ2
1). We can first estimate the action a such that v>1 a ≥ 1 − 1/p with Õ(kdp/λ2

1) samples.
Next we change ε = Θ̃(k1/4d1/2λ

−1/2
1 T−1/4), and ns = Θ̃(d2ε−2λ−2

1) in Algorithm 6. This
procedure suffices to find λ1ε

2-optimal reward with Õ(kd2/λ2
1ε

2) samples in the candidate set
with size at most Õ(k). Finally with the UCB algorithm altogether we have a regret bound of:
Õ(kd

p

λ1
+
√
kd2T).

In Section 3.3.2 we also demonstrate the necessity of the sample complexity in this burn-in period.

3.3.2 Lower Bounds for Stochastic Polynomial Bandits

In this section we show lower bound for stochastic polynomial bandits.

f(a) =

p∏
i=1

(θ>i a) + η, where η ∼ N(0, 1), ‖a‖2 ≤ 1 and f(a) ≤ 1. (1)

Theorem 3.18. Define minimax regret as follow

R(d, p, T) = inf
π

sup
(θ1,...,θp)

E(θ1,...,θp)

[
T max

a

p∏
i=1

(θ>i a)−
T∑
t=1

p∏
i=1

(θ>i a
(t))

]
.

For all algorithmsA that adaptively interact with bandit (Eq (1)) for T rounds, we have R(d, p, T) ≥
Ω(
√
dpT/pp).

From the theorem, we can see even when the problem is rank-1, any algorithm incurs at least
Ω(
√
dpT/pp) regret. This further implies algorithm requires sample complexity of Ω((d/p2)p/ε2)

to attain ε-optimal reward. This means our regret upper bound obtained in Corollary 3.16 is optimal
in terms of dependence on d. In Appendix G we also show a Ω(

√
dpT) lower bound for asymmetric

actions setting, which our upper bound up to poly-logarithmic factors.

We note that with burn-in period, our algorithm also obtains a cumulative regret of kdp/λ1 +
√
kd2T ,

as shown in Corollary 3.17. Here for a fixed λ1 and very large T , this is better result than the previous
upper bound. We note that there is no contradiction with the lower bound above, since this worst case
is achieved with a specific relation between T and λ1.

The burn-in period requires kdp/λ2
1 samples to get a constant of r∗. We want to investigate whether

our dependence on λ1 ≡ r∗ is optimal. Next we show a gap-dependent lower bound for finding an
arm that is close to the optimal arm by a constant factor.

Theorem 3.19. For all algorithms A that adaptively interact with bandit (Eq (1)) for T rounds and
output a vector a(T) ∈ Rd, it requires at least T = Ω(dp/‖θ‖2p) rounds to find an arm a(T) ∈ Rd
such that

∏p
i=1(θ>i a

(T)) ≥ 3
4 ·maxa

∏p
i=1(θ>i a).

In the rank-1 setting r∗ = ‖θ‖p and the lower bound for achieving a constant approximation for
the optimal reward is Ω(dp/(r∗)2). Therefore our burn-in sample complexity is also optimal in the
dependence on d and r∗.

9

Acknowledgment

JDL acknowledges support of the ARO under MURI Award W911NF-11-1-0303, the Sloan Research
Fellowship, NSF CCF 2002272, and an ONR Young Investigator Award. QL is supported by NSF
2030859 and the Computing Research Association for the CIFellows Project. SK acknowledges
funding from the NSF Award CCF-1703574 and the ONR award N00014-18-1-2247. The authors
would like to thank Qian Yu for numerous conversations regarding the lower bound in Theorem
3.23. JDL would like to thank Yuxin Chen and Anru Zhang for several conversations on tensor
power iteration, Simon S. Du and Yangyi Lu for explaining to him to the papers of [42, 54], and Max
Simchowitz and Chao Gao for several conversations regarding adaptive lower bounds.

References
[1] Yasin Abbasi-Yadkori, Peter L Bartlett, and Alan Malek. Linear programming for large-scale

Markov decision problems. arXiv preprint arXiv:1402.6763, 2014.

[2] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. In NIPS, volume 11, pages 2312–2320, 2011.

[3] Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Online-to-confidence-set conversions
and application to sparse stochastic bandits. In Artificial Intelligence and Statistics, pages 1–9.
PMLR, 2012.

[4] Alekh Agarwal, Dean P Foster, Daniel Hsu, Sham M Kakade, and Alexander Rakhlin. Stochastic
convex optimization with bandit feedback. arXiv preprint arXiv:1107.1744, 2011.

[5] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory
and algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 2019.

[6] Zeyuan Allen-Zhu and Yuanzhi Li. First efficient convergence for streaming k-pca: a global,
gap-free, and near-optimal rate. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 487–492. IEEE, 2017.

[7] Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels?
arXiv preprint arXiv:1905.10337, 2019.

[8] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. Journal of machine learning research,
15:2773–2832, 2014.

[9] Ery Arias-Castro, Emmanuel J Candes, and Mark A Davenport. On the fundamental limits of
adaptive sensing. IEEE Transactions on Information Theory, 59(1):472–481, 2012.

[10] Yu Bai and Jason D. Lee. Beyond linearization: On quadratic and higher-order approximation
of wide neural networks. In International Conference on Learning Representations, 2020.

[11] Maria-Florina Balcan, Simon Shaolei Du, Yining Wang, and Adams Wei Yu. An improved
gap-dependency analysis of the noisy power method. In Conference on Learning Theory, pages
284–309. PMLR, 2016.

[12] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry, volume 36.
Springer Science & Business Media, 2013.

[13] Sebastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1), 2012.

[14] Sébastien Bubeck, Yin Tat Lee, and Ronen Eldan. Kernel-based methods for bandit convex
optimization. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 72–85, 2017.

[15] T Tony Cai, Xiaodong Li, Zongming Ma, et al. Optimal rates of convergence for noisy sparse
phase retrieval via thresholded wirtinger flow. The Annals of Statistics, 44(5):2221–2251, 2016.

10

[16] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via wirtinger
flow: Theory and algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007,
2015.

[17] Minshuo Chen, Yu Bai, Jason D Lee, Tuo Zhao, Huan Wang, Caiming Xiong, and Richard
Socher. Towards understanding hierarchical learning: Benefits of neural representations. Neural
Information Processing Systems (NeurIPS), 2020.

[18] Sitan Chen and Raghu Meka. Learning polynomials in few relevant dimensions. In Conference
on Learning Theory, pages 1161–1227. PMLR, 2020.

[19] Alex Damian, Tengyu Ma, and Jason Lee. Label noise sgd provably prefers flat global minimiz-
ers. arXiv preprint arXiv:2106.06530, 2021.

[20] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under
bandit feedback. The 21st Annual Conference on Learning Theory, 2008.

[21] Kefan Dong, Jiaqi Yang, and Tengyu Ma. Provable model-based nonlinear bandit and reinforce-
ment learning: Shelve optimism, embrace virtual curvature. arXiv preprint arXiv:2102.04168,
2021.

[22] Simon S Du, Wei Hu, Sham M Kakade, Jason D Lee, and Qi Lei. Few-shot learning via learning
the representation, provably. arXiv preprint arXiv:2002.09434, 2020.

[23] Simon S Du, Sham M Kakade, Jason D Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and
Ruosong Wang. Bilinear classes: A structural framework for provable generalization in RL.
arXiv preprint arXiv:2103.10897, 2021.

[24] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of deep neural networks. In International Conference on Machine Learning,
pages 1675–1685, 2019.

[25] Cong Fang, Jason D Lee, Pengkun Yang, and Tong Zhang. Modeling from features: a mean-field
framework for over-parameterized deep neural networks. arXiv preprint arXiv:2007.01452,
2020.

[26] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex opti-
mization in the bandit setting: gradient descent without a gradient. arXiv preprint cs/0408007,
2004.

[27] Ruiqi Gao, Tianle Cai, Haochuan Li, Liwei Wang, Cho-Jui Hsieh, and Jason D Lee. Convergence
of adversarial training in overparametrized networks. Neural Information Processing Systems
(NeurIPS), 2019.

[28] Dan Garber, Elad Hazan, and Tengyu Ma. Online learning of eigenvectors. In International
Conference on Machine Learning, pages 560–568. PMLR, 2015.

[29] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design. International Conference on Learning Representations (ICLR), 2018.

[30] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized
two-layers neural networks in high dimension. arXiv preprint arXiv:1904.12191, 2019.

[31] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized
two-layers neural networks in high dimension. The Annals of Statistics, 49(2):1029–1054, 2021.

[32] Aditya Gopalan, Odalric-Ambrym Maillard, and Mohammadi Zaki. Low-rank bandits with
latent mixtures. arXiv preprint arXiv:1609.01508, 2016.

[33] Botao Hao, Tor Lattimore, Csaba Szepesvári, and Mengdi Wang. Online sparse reinforcement
learning. In International Conference on Artificial Intelligence and Statistics, pages 316–324.
PMLR, 2021.

[34] Botao Hao, Tor Lattimore, and Mengdi Wang. High-dimensional sparse linear bandits. arXiv
preprint arXiv:2011.04020, 2020.

11

[35] Botao Hao, Jie Zhou, Zheng Wen, and Will Wei Sun. Low-rank tensor bandits. arXiv preprint
arXiv:2007.15788, 2020.

[36] Jeff Z. HaoChen, Colin Wei, Jason D. Lee, and Tengyu Ma. Shape matters: Understanding the
implicit bias of the noise covariance. arXiv preprint arXiv:2006.08680, 2020.

[37] Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with applications.
Advances in neural information processing systems, 27:2861–2869, 2014.

[38] Elad Hazan and Yuanzhi Li. An optimal algorithm for bandit convex optimization. arXiv
preprint arXiv:1603.04350, 2016.

[39] Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and
generalization in neural networks. In NeurIPS, 2018.

[40] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of
rl problems, and sample-efficient algorithms. arXiv preprint arXiv:2102.00815, 2021.

[41] Nicholas Johnson, Vidyashankar Sivakumar, and Arindam Banerjee. Structured stochastic linear
bandits. arXiv preprint arXiv:1606.05693, 2016.

[42] Kwang-Sung Jun, Rebecca Willett, Stephen Wright, and Robert Nowak. Bilinear bandits
with low-rank structure. In International Conference on Machine Learning, pages 3163–3172.
PMLR, 2019.

[43] Sumeet Katariya, Branislav Kveton, Csaba Szepesvari, Claire Vernade, and Zheng Wen. Stochas-
tic rank-1 bandits. In Artificial Intelligence and Statistics, pages 392–401. PMLR, 2017.

[44] Joe Kileel, Matthew Trager, and Joan Bruna. On the expressive power of deep polynomial
neural networks. Advances in Neural Information Processing Systems, 32, 2019.

[45] Robert Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. Advances in
Neural Information Processing Systems, 17:697–704, 2004.

[46] Wojciech Kotłowski and Gergely Neu. Bandit principal component analysis. In Conference On
Learning Theory, pages 1994–2024. PMLR, 2019.

[47] Sahin Lale, Kamyar Azizzadenesheli, Anima Anandkumar, and Babak Hassibi. Stochastic
linear bandits with hidden low rank structure. arXiv preprint arXiv:1901.09490, 2019.

[48] Tor Lattimore. Improved regret for zeroth-order adversarial bandit convex optimisation, 2020.

[49] Tor Lattimore and Botao Hao. Bandit phase retrieval. arXiv preprint arXiv:2106.01660, 2021.

[50] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[51] Guillaume Lecué and Shahar Mendelson. Minimax rate of convergence and the performance of
erm in phase recovery. arXiv preprint arXiv:1311.5024, 2013.

[52] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670, 2010.

[53] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic
gradient descent on structured data. In Advances in Neural Information Processing Systems,
pages 8157–8166, 2018.

[54] Yangyi Lu, Amirhossein Meisami, and Ambuj Tewari. Low-rank generalized linear bandit
problems. In International Conference on Artificial Intelligence and Statistics, pages 460–468.
PMLR, 2021.

[55] James S. Milne. Algebraic geometry (v6.02), 2017. Available at www.jmilne.org/math/.

[56] Edward Moroshko, Suriya Gunasekar, Blake Woodworth, Jason D Lee, Nathan Srebro, and
Daniel Soudry. Implicit bias in deep linear classification: Initialization scale vs training accuracy.
Neural Information Processing Systems (NeurIPS), 2020.

12

[57] Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and
faster approximate singular value decomposition. arXiv preprint arXiv:1504.05477, 2015.

[58] Mor Shpigel Nacson, Suriya Gunasekar, Jason Lee, Nathan Srebro, and Daniel Soudry. Lexico-
graphic and depth-sensitive margins in homogeneous and non-homogeneous deep models. In
International Conference on Machine Learning, pages 4683–4692. PMLR, 2019.

[59] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An
empirical comparison of bayesian deep networks for thompson sampling, 2018.

[60] Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of
Operations Research, 35(2):395–411, 2010.

[61] Dan Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. In Advances in Neural Information Processing Systems, pages 2256–2264, 2013.

[62] Maziar Sanjabi, Sina Baharlouei, Meisam Razaviyayn, and Jason D Lee. When does
non-orthogonal tensor decomposition have no spurious local minima? arXiv preprint
arXiv:1911.09815, 2019.

[63] Igor R Shafarevich. Basic Algebraic Geometry 1: Varieties in Projective Space. Springer
Science & Business Media, 2013.

[64] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computa-
tional mathematics, 12(4):389–434, 2012.

[65] Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini. Finite-time
analysis of kernelised contextual bandits. arXiv preprint arXiv:1309.6869, 2013.

[66] Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general
value function approximation: Provably efficient approach via bounded eluder dimension.
Advances in Neural Information Processing Systems, 33:6123–6135, 2020.

[67] Xiang Wang, Chenwei Wu, Jason D Lee, Tengyu Ma, and Rong Ge. Beyond lazy training for
over-parameterized tensor decomposition. Neural Information Processing Systems (NeurIPS),
2020.

[68] Yang Wang and Zhiqiang Xu. Generalized phase retrieval: measurement number, matrix
recovery and beyond. Applied and Computational Harmonic Analysis, 47(2):423–446, 2019.

[69] Yining Wang and Animashree Anandkumar. Online and differentially-private tensor decompo-
sition. arXiv preprint arXiv:1606.06237, 2016.

[70] Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization
and optimization of neural nets vs their induced kernel. In Advances in Neural Information
Processing Systems, pages 9709–9721, 2019.

[71] Blake Woodworth, Suriya Genesekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Kernel and
deep regimes in overparametrized models. In Conference on Learning Theory (COLT), 2019.

[72] Pan Xu, Zheng Wen, Handong Zhao, and Quanquan Gu. Neural contextual bandits with deep
representation and shallow exploration. arXiv preprint arXiv:2012.01780, 2020.

[73] Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
optimal policies with low inherent Bellman error. In International Conference on Machine
Learning, 2020.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Our abstract and introduction accurately reflect our
main contribution, which is also summarized in Table 1.

(b) Did you describe the limitations of your work? [Yes] In the Preliminary section we
clearly state the settings we considered and when our results apply.

(c) Did you discuss any potential negative societal impacts of your work? [No] Our work
is theoretical and generally will not have negative social impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] The assump-

tions are clearly included in every theorem or lemma.
(b) Did you include complete proofs of all theoretical results? [Yes] All the proofs can be

found in the appendix
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Omitted Related Work

Neural Kernel Bandits. [65] initiated the study of kernelized linear bandits, showing regret
dependent on the information gain. [72] specialized this to the Neural Tangent Kernel (NTK) [53,
24, 39, 27, 10], where the algorithm utilizes gradient descent but remains close to initialization and
thus remains a kernel class. Furthermore NTK methods require dp samples to express a degree
p polynomial in d dimensions [31], similar to eluder dimension of polynomials, and so lack the
inductive biases necessary for real-world applications of decision-making problems [59].

Concave Bandits. There has been a rich line of work on concave bandits starting with [26, 45].
[4] attained the first

√
T regret algorithm for concave bandits though with a large poly(d) dependence.

In the adversarial setting, a line of work [38, 14, 48] have attained polynomial-time algorithms with√
T regret with increasingly improved dimension dependence. The sharp dimension dependence

remains unknown.

Noiseless Bandits. In the noiseless setting, there is some investigation in phase retrieval borrow-
ing the tools from algebraic geometry (see e.g. [68]). In this paper, we will study the bandit problem
with more general reward functions: neural nets with polynomial activation (structured polynomials)
including phase retrieval. [44] study similar structured polynomials, also using tools from algebraic
geometry, but they only study the expressivity of those polynomials and do not consider the learning
problems. [21] study noiseless bandits with bounded Sequential Rademacher Complexity, but focus
on attaining local optimality.

Concurrent work. [49] address the phase retrieval bandit problem which is equivalent to a
symmetric rank 1 variant of the bilinear bandit of [42] and attain Õ(

√
d2T) regret. Our work in

Section 3.1 specialized to the rank 1 case attains the same regret.

Matrix/Tensor Power Method. Our analysis stems from noisy power methods for matrix/tensor
decomposition problems. Robust power method, subspace iteration, and tensor decomposition that
tolerate noise first appeared in [37, 8]. Follow-up work attained the optimal rate for both gap-
dependence and gap-free settings for matrix decomposition [57, 6]. An improvement on the problem
dimension for tensor power method is established in [69]. [62] considers the convergence of tensor
power method in the non-orthogonal case.

B Additional Preliminaries

In this section we show that adapting the eluder UCB algorithms from [61] would yield the sample
complexity in Theorem 2.1. Especially we give the rates in Table 1 for our stochastic settings.

Algorithm 2 Eluder UCB

1: Input: Function class F , failure probability δ, parameters α,N,C.
2: Initialization: F0 ← F .
3: for t from 1 to T do
4: Select Action:
5: at ∈ arg maxa∈A supfθ∈Ft−1

fθ(a)
6: Play action at and observe reward rt
7: Update Statistics:
8: θ̂t ∈ arg minθ

∑t
s=1(fθ(as)− rs)2

9: βt ← 8 log(N/δ) + 2αt(8C +
√

8 ln(4t2/δ))

10: Ft ← {fθ :
∑t
s=1(fθ − fθ̂t)

2(as) ≤ βt}

The algorithm [61] consider Algorithm 2 for the stochastic generalized linear bandit problem.
Assume that θ∗ is the true parameter of the reward model. The reward is rt = fθ∗(at) + ηt for

15

fθ∗ ∈ F . Let N be the α-covering-number (under ‖·‖∞) of F , dE be the α-eluder-dimension of F
(see Definition 3,4 in [61]). Let C = sup

f∈F,a∈A
|f(a)|. We set α = 1

T 2 in the algorithm.

The regret analysis Choosing α = 1/T 2, proposition 4 in [61] state that with probability 1− δ,
for some universal constant C, the total regret R(T) ≤ 1

T + C min{dE , T} + 4
√
dEβTT ≤ 1 +

C
√
dET + 4

√
dEβTT = O(

√
dE(1 + βT)T). In our settings with α = 1/T 2, βT = 8 log(N/δ) +

2(8C +
√

8 ln(4T 2/δ))/T = O(log(N/δ)) where log(N) = Ω(1) for our action sets, and thus

R(T) = Õ(
√
dET logN).

Applications in our settings We show that in our settings Theorem 2.1 will obtain the rates
listed in Table 1.

The covering numbers
Lemma B.1. The log-covering-number (of radius α with α� 1, under ‖·‖∞) of the function classes
are: logN(FSYM) = O(dk log k

α), logN(FASYM) = O(dk log k
α), logN(FEV) = O(dk log k

α), and
logN(FLR) = O(dk log k

α).

Proof. Let Sdξ denote a minimal ξ-covering of Sd−1 (under ‖·‖2) for 0 < ξ < 1
10 , and |Sdξ | =

O(d log 1/ξ) (see for example [61]). Then we can construct the coverings in our settings from Sdξ :

• FSYM: let ξ = α
kp , and for k copies of Sdξ , we can construct a covering of FSYM

with size |Sdξ |k. Specifically, let the covering be SSYM = {g(a) =
∑k
j=1 λj(u

>
j a)p :

(u1,u2, · · · ,uk) ∈ Sdξ ×Sdξ × · · ·×Sdξ }, then for each f(a) =
∑k
j=1 λj(v

>
j a)p ∈ FSYM,

as we can find uj ∈ Sdξ that ‖uj − vj‖2 ≤ ξ,

sup
a

[f(a)− g(a)] ≤ sup
a

[

k∑
j=1

|λj ||u>j a− v>j a||
p−1∑
q=0

(u>j a)q(v>j a)p−q−1|] ≤ pkξ = α;

• FASYM: let ξ = α
kp , and for kp copies of Sdξ , let the covering be SASYM = {g(a) =∑k

j=1 λj
∏p
q=1(uj(q)

>a(q)) : (u1(1),u1(2), · · · ,u1(p),u2(1), · · · ,uk(p)) ∈ Sdξ ×
Sdξ × · · · × Sdξ } with size |Sdξ |kp. Then for each f(a) =

∑k
j=1 λj

∏p
q=1(vj(q)

>a(q)) ∈
FASYM, as we can find uj(q) ∈ Sdξ that ‖uj(q)− vj(q)‖2 ≤ ξ,

supa[f(a)− g(a)] ≤ supa[
∑k
j=1 |λj |

∑p
q=1 |uj(q)>a− vj(q)>a|·

|
∏
r<q(uj(r)

>a)
∏
r>q(vj(r)

>a)|]
≤ pkξ = α;

• FEV: the construction follows that of FSYM by taking p = 2;

• FLR: taking the construction of FSYM with p = 2 and ξ = α
2k , for N =∑k

j=1 λjuju
>
j andM =

∑k
j=1 λjvjv

>
j with ‖uj − vj‖2 ≤ ξ, we know ‖N −M‖F ≤∥∥∥N −∑k

j=1 λjujv
>
j

∥∥∥
F

+
∥∥∥∑k

j=1 λjujv
>
j −M

∥∥∥
F
≤

∑k
j=1 2|λj |ξ ≤ α. Then

supA[fM (A)− fN (A)] ≤ supA ‖M −N‖F · ‖A‖F ≤ α.

Then we can bound the covering numbers in Theorem 2.1. Notice that in the settings the log-covering
numbers are only different by constant factors.

The eluder dimensions
Lemma B.2. The ε-eluder-dimension (ε < 1) dE of the function classes are: dE(FSYM) = Θ̃(dp)

(for k ≥ p), dE(FASYM) = Θ̃(dp), dE(FEV) = Θ̃(d2), and dE(FLR) = Θ̃(d2). In the settings WLOG
we assume the top eigenvalue is r∗ = λ1 = 1 as we are mostly interested in the cases where r∗ > ε.

16

Proof. The upper bounds for the eluder dimension can be given by the linear argument. [61] show
that the d-dimension linear model {fθ(a) = θ>a} has ε-eluder-dimensionO(d log 1

ε). In all of these
settings, we can find feature maps φ and ψ so that F = {fθ(a), fθ(a) = φ(θ)>ψ(a), ‖φ(θ)‖2 ≤
k, ‖ψ(a)‖2 ≤ k}. Then the eluder dimensions will be bounded by the corresponding linear dimension
as an original ε-independent sequence {ai} will induce an ε-independent sequence {ψ(ai)} in the
linear model. Therefore for matrices (FLR and FEV) the eluder dimension is O(d2 log k

ε) and for the
tensors (FSYM and FASYM) it is O(dp log k

ε).

Then we consider the lower bounds. We provide the following example of O(1)-independent
sequences to bound the eluder dimension in our settings up to a log factor.

• FSYM: the sequence is {ai = (ei1 , ei2 , · · · , eip) : i = (i1, i2, · · · , ip) ∈ [d]p}. For
fj(a) =

∏p
q=1 e

>
jq
a(q), fj(ai) is only 1 when i = j and 0 otherwise. Then each ai is

1-independent to the predecessors on fi and zero, and thus the eluder dimension is lower
bounded by dp.

• FASYM: for p ≤ d and k ≥ p, the sequence is {ai = 1√
p (ei1 + ei2 + · · · + eip) : i =

(i1, i2, · · · , ip) ∈ [d]p, i1 < i2 < · · · < ip}. There are tensors fj and gj of CP-rank k that
(fj−gj)(a) =

∏p
q=1(e>jqa) where j1 < j2 < · · · < jp, (fj−gj)(ai) is only 1 when i = j

and 0 otherwise. Then each ai is 1-independent to the predecessors on fi and gi, and thus
the eluder dimension is lower bounded by

(
d
p

)
.

• FEV: the sequence is {ai = 1√
2
(ei1 + ei2) : i = (i1, i2) ∈ [d]2, i1 ≤ i2}. For fj(a) =

1
2a
>(ej1 + ej2)(ej1 + ej2)>a and gj(a) = 1

2a
>(ej1 − ej2)(ej1 − ej2)>a with j1 ≤ j2,

(fj − gj)(ai) is only 1 when i = j and 0 otherwise. Then each ai is 1-independent to the
predecessors on fi and gi, and thus the eluder dimension is lower bounded by

(
d
2

)
.

• FLR: the sequence is {Ai = 1
2ei1e

T
i2

+ ei1e
T
i2

: i = (i1, i2) ∈ [d]2, i1 ≤ i2}. For
fj(A) = 〈 12 (ej1e

T
j2

+ ej2e
T
j1

),A〉 with j1 ≤ j2, fj(Ai) is only 1 when i = j and 0
otherwise. Then eachAi is 1-independent to the predecessors on fi and zero, and thus the
eluder dimension is lower bounded by

(
d
2

)
.

Then we are all set for the results in the first line of 1. Notice that when we choose α = O(1/T 2) and
ε = O(1/T 2) in our analysis of Algorithm 2, the regret upper bound would only expand by log(T)
factors.

C Omitted Proofs for Quadratic Reward

In this section we include all the omitted proof of the theorems presented in the main paper.

C.1 Omitted Proofs of Main Results for Stochastic Bandit Eigenvector Problem

Proof of Theorem 3.3. Notice in Algorithm 1, for each iterate a, its next iterate y satisfies

y =
1

ns

ns∑
i=1

(a/2 + zi/2)>M(a/2 + zi/2)zi + ηizi

=
ms

ns

ns∑
i=1

(
1

4
a>Ma+

1

2
a>Mzi + ηi)zi.

Therefore E[y] = 1
2Ma. We can write 2y = Ma+ g where g := ms

ns

∑ns

i=1(1
2a
>Ma+ 2ηi)zi.

With Claim D.12 and Claim D.11 we get that ‖g‖ ≤ C
√

ms log2(n/δ) log(d/δ)d
ns

. Therefore with

our choice of ns ≥ Θ̃(d2

ε2s(λ1−|λ2|)2) we guarantee ‖g‖ ≤ εs(λ1 − |λ2|). Therefore it satisfies
the requirements for noisy power method, and by applying Corollary C.4, we have with L =

17

O(κ log(d/ε)) iterations we will be able to find ‖â−a∗‖ ≤ ε. By setting δ < 0.1/L in the algorithm
we can guarantee the whole process succeed with high probability. Altogether it is sufficient to take
Lns = Õ(κd2/(ε∆)2) actions to get an ε-optimal arm.

Finally to get the cumulative regret bound, we apply Claim D.7 with A = d2κ
∆2 and a = 2. Therefore

we set ε = A1/4T−1/4 = d1/2κ1/4

∆1/2T 1/4 and get:

Reg(T) .T 1/2A1/2r∗ =

√
d2κ

∆2
Tr∗ =

√
d2κ3T .

Corollary C.1 (Formal statement for Corollary 3.6). In Algorithm 1, by setting α = 1− ε2/2, one
can get ε-optimal reward with a total of Õ(d2λ2

1/ε
4) total samples to get a such that r∗ − f(a) ≤ ε.

Therefore one can get an accumulative regret of Õ(λ
3/5
1 d2/5T 4/5).

Proof of Lemma 3.6. In order to find an arm with λ1ε
2-optimal reward, one will want to recover

an arm that is ε/2-close (meaning to find an a such that tan θ(Vl,a) ≤ ε/2) to the top eigenspace
span(v1, · · ·vl), where l satisfies λl ≥ λ1 − ε̃ and λl+1 ≤ λ1 − ε̃. Here we set ε̃ := λ1ε

2/2. We
first show 1) this is sufficient to get an λ1ε-optimal reward, and next show 2) how to set parameter to
achieve this.

To get 1), we write Vl = [v1, · · ·vl] ∈ Rd×l and V ⊥l = [vl+1, · · ·vk]. When tan θ(Vl,aT) =
‖V ⊥a‖/‖V a‖ ≤ ε/2, from the proof of Claim D.6, we get r∗−f(a) ≤ min{λ1, λ12(ε/2)2+ ε̃} =
λ1ε

2.

Now to get 2), we note that in each iteration we try to conduct the power iteration to find an
action tan θ(Vl, â) ≤ ε/2 and with eigengap ≥ ε̃ := λ1ε

2/2. Therefore it is sufficient to let
‖g‖ ≤ 0.1ε̃ε and |v>1 g| ≤ 0.1ε̃ 1√

d
, and thus ns ≥ Θ̃(d2

ε2ε̃2) ≤ Θ̃(d2/λ2
1ε

6). Together we need

λ1/ε̃ log(2d/ε)ns = Θ̃(d2/λ2
1ε

8) samples to get an λ1ε
2-optimal reward. Namely we get ε̃-optimal

reward with Õ(d2λ2
1/ε̃

4) samples.

Finally by applying Claim D.7 we get:

R(T) . (d2λ2
1)

1
5T

4
5λ

1
5
1 ≤ Õ(λ

3/5
1 d2/5T 4/5).

Algorithm 3 Gap-free Subspace Iteration for Bilinear Bandit

1: Input: Quadratic reward f : X → R generating noisy reward, failure probability δ, error ε.
2: Initialization: Set k′ = 2k. Initial candidate matrixX0 ∈ Rd×k′ ,X0(j) ∈ Rd, j = 1, 2, · · · k′

is the j-th column of X0 and are i.i.d sampled on the unit sphere Sd−1 uniformly. Sample
variance m, # sample per iteration n, total iteration L.

3: for Iteration l from 1 to L do
4: for s from 1 to k′ do
5: Noisy subspace iteration:
6: Sample zi ∼ N (0, 1/mId), i = 1, 2, · · ·ns.
7: Calculate tentative rank-1 arms ãi = 1

2 (Xl−1(s) + zi).
8: Conduct estimation Yl(s)← 4m/n

∑n
i=1(f(ãi) + ηi)zi. (Yl ∈ Rd×k′)

9: Let Yl = XlRl be a QR-factorization of Yl
10: Update target arm al ← arg max‖a‖=1 a

>YlX
>
l−1a.

11: Output: aL.

Theorem C.2 (Formal statement of Theorem 3.7). In Algorithm 3, if we set n = Θ̃(
d2λ2

1

ε2λ2
k

),m =

d log(n/δ), L = Θ(log(d/ε)), δ = 0.1/L, we will be able to identify an action â that yield at
most ε-regret with probability 0.9. Therefore by applying the standard PAC to regret conversion

18

as discussed in Claim D.7 we get a cumulative regret of Õ(λ
1/3
1 k1/3(κ̃dT)2/3) for large enough T ,

where κ̃ = λ1/|λk|.

On the other hand, we set n = Θ̃(d
2k2

ε2) and keep the other parameters. If we play Algorithm 3 k
times by setting k′ = 2, 4, 6, · · · 2k and select the best output among them, we can get a gap-free
cumulative regret of Õ(λ

1/3
1 k4/3(dT)2/3) for large enough T with high probability.

Proof of Theorem 3.7. First we show the first setting identify an ε-optimal reward with Õ(κ̃2d2kε−2)
samples.

Similarly as Theorem 3.8, when setting n ≥ Θ̃(d2/(σ2
k ε̃

2)), we can find XL that satisfies
‖(XLX

>
L − I)U‖ ≤ ε̃, and therefore we recover an YL = MXL−1 +GL with ‖GL‖ ≤ σkε̃ and

‖YLX>L−1−M‖2 = ‖MXL−1X
>
L−1−M+GLX

>
L−1‖2 ≤ (λ1 + |λk|)ε̃. Therefore by definition

of aL,a>LYLX
>
L−1aL = max‖a‖=1 a

>(MXL−1X
>
L−1+GLX

>
L−1)a ≥ λ1−(λ1+|λk|)ε̃. There-

fore a>LMaL ≥ λ1− 2(λ1 + |λk|)ε̃. Therefore we set 2(λ1 + |λk|)ε̃ = ε, i.e., ε̃ = 0.5ε/(λ1 + |λk|)
which will get a total sample of T = Θ̃(kn) = Θ̃(d2κ̃2kε−2). Then by applying Claim D.7 we get
the cumulative regret bound.

Next we show how to estimate the action with Õ(d2k4ε−2) samples. To achieve this result, we need to
slightly alter Algorithm 3 where we respectively set k′ = 2, 4, 6, · · · 2k and keep the best arm among
the k outputs. We argue that among all the choices of k′, at least for one l ∈ [k], k′ = 2l, we have
|λl| − |λl+1| ≥ λ1/k. Notice with similar argument as above, when we set n = Θ̃(d2λ−2

l ε̃−2) ≤
Θ̃(d2k2λ−2

1 ε̃−2) we can get ‖G‖ ≤ ε̃λl as required by Corollary C.4, the total number of iterations
L = O(σl/(σl−σl+1) log(2d/ε) = Õ(k). Finally by setting ε̃ = ε/(4λ1) we get the overall samples
we required is Õ(k2n) = Õ(d2k4ε−2).

For both settings, directly applying our arguments in the PAC to regret conversion: Claim D.7 will
finish the proof.

C.2 Omitted Details of Main Results of Low-Rank Linear Reward

Algorithm 4 Subspace Iteration Exploration for Low-rank Linear Reward.

1: Input: Quadratic function f : A → R with noisy reward, failure probability δ, error ε.
2: Initialization: Set k′ = 2k. Initial candidate matrixX0 ∈ Rd×k′ ,X0(j) ∈ Rd, j = 1, 2, · · · k′

is the j-th column of X0 and are i.i.d sampled on the unit sphere Sd−1 uniformly. Sample
variance m, # sample per iteration n, total iteration L.

3: for Iteration l from 1 to L do
4: Sample zi ∼ N (0, 1/mId), i = 1, 2, · · ·n.
5: for s from 1 to k′ do
6: Noisy subspace iteration:
7: Calculate tentative rank-1 actions Ãi = Xl−1(s)z>i .
8: Conduct estimation Yl(s)← m/n

∑n
i=1(〈M , Ãi〉+ ηi,s)zi. (Yl ∈ Rd×k′)

9: Let Yl = XlRl be a QR-factorization of Yl
10: Update target actionAl ← YlX

>
l .

11: Output: Â = AL/‖AL‖F

Theorem C.3 (Formal statement of Theorem 3.8). In Algorithm 4, for large enough constants
Cn, CL, Cm, let n = Cnd

2 log2(d/δ)σ−2
k ε−2, m = Cmd log(n/δ), and L = CL log(d/ε), XL

satisfies ‖(I −XLX
>
L)V ‖ ≤ ε/4, and the output Â satisfies ‖Â−A∗‖F ≤ ‖M‖F ε. Altogether

to get an ε-optimal action, it is sufficient to have total sample complexity of T ≤ Õ(d2kλ−2
k ε−2).

Proof of Theorem 3.8 . Let M = V ΣV >. From Claim C.6 we get that for each noisy subspace
iteration step we get Yl = MXl + Gl with 5‖Gl‖ ≤ εσk and ‖V >G‖ ≤ σk

√
k/3
√
d ≤

19

σk(
√

2k −
√
k)/2
√
d. Therefore we can apply Corollary C.4, and get ‖V (XLX

>
L − I)‖ ≤ ε/4

with O(log 2d/ε) steps. Therefore we have:
‖AL −M‖F =‖(MXL +GL)X>L −M‖F = ‖V >ΣV (XLX

>
L − I)) +GLX

>
L ‖F

≤‖M‖F ‖V (XLX
>
L − I)‖+ ‖GL‖‖XL‖F

≤(‖M‖F + σk)ε/4 < ‖M‖F ε/2.
Meanwhile, notice ‖A∗‖F = 1, ‖M‖F = r∗ and ‖Â‖F = 1. ‖AL/r

∗ − A∗‖F ≤ ε/2. ‖Â −
A∗‖F = ‖AL/‖AL‖F −A∗‖F = ‖vec(AL)/‖vec(AL)‖2 − vec(A∗)‖2.

Write θA := θ(vec(AL), vec(A∗). The worst case that makes ‖vec(Â)−vec(A∗)‖ to be larger than
‖vec(AL/r

∗)−vec(A∗)‖ is when ‖vec(AL/r
∗)−vec(A∗)‖ = sin θA and ‖vec(Â)−vec(A∗)‖ is

always 2 sin(θA/2). Notice trivially 2 sin(θA/2) ≤ 2 sin(θA) Therefore we could get ‖Â−A∗‖F ≤
2‖AL/r

∗ −A∗‖F ≤ ε.

Proof of Corollary 3.9. The corollary uses a special property of the strongly convex action set that
ensures: A∗ = M/r∗. With Â that satisfies ‖Â‖F = 1, we have

r∗ − fM (A) =r∗ − 〈Â,M〉 = r∗ − 〈Â, r∗A∗〉

=
r∗

2
(2− 2〈Â,A∗〉) =

r∗

2
(‖Â‖2F + ‖A∗‖2F − 〈Â,A∗〉)

=
r∗

2
‖Â−A∗‖2F ≤

r∗ε2

2
(2)

Therefore, with first T1 = Õ(d2kλ−2
k ε−2) exploratory samples we get r∗ − f(Â) ≤ r∗ε2/2 =

r∗
√

d2k
λ2
kT

=
√

(r∗)2d2k
λ2
kT

. Together we have:

R(T) =

T1∑
t=1

r∗ − f(At) +

T∑
t=T1+1

r∗ − f(Â)

<r∗T1 + Tr∗ε2

≤Õ(
√
d2k(r∗)2λ−2

k T).

Proof of Theorem 3.10. We find an l to be the smallest integer such that
∑k
i=l+1 σ

2
i ≤ ε2‖M‖2F .

Then we have σl ≥ ε/
√
k − l > ε/

√
k.

Notice that in Algorithm 4, we set n ≥ Θ̃(d2k
(r∗)2ε4) large enough such that ‖G‖2 ≤

O(‖M‖F ε2/
√
k) . ε(σl − 0) and ‖U>G‖2 ≤ ‖M‖F ε/

√
k
√
k′−
√
k−1

2
√
d

. (This comes from the
argument proved in Claim C.6.)

Therefore by conducting noisy power method we get with O(nk) = Õ(d2k2

(r∗)2ε4) samples we can get

an action Â that satisfies:

‖M −XLX
>
LM‖2F ≤

k∑
i=l+1

σ2
i + lε2σ2

l ≤ 2‖M‖2F ε2.

Therefore we could get ‖A∗ − Â‖ ≤ 2ε, and with similar argument as (2) we have r∗ − f(Â) ≤
‖M‖F ε2.

20

Therefore if we want to take a total of T actions, we will set ε6 = Θ̃(d2k2

(r∗)2T) and we get:

R(T) =

T1∑
t=1

r∗ − f(At) +

T∑
t=T1+1

r∗ − f(Â)

<r∗T1 + Tr∗ε2

≤Õ(d2/3k2/3(r∗)1/3T 2/3).

C.3 Technical Details for Quadratic Reward

Noisy Power Method.
Corollary C.4 (Adapted from Corollary 1.1 from [37]). Let k′ ≥ l. Let U ∈ Rd×l represent the top
l singular vectors of M and let σ1 ≥ · · · ≥ σk > 0 denote its singular values. Suppose X0 is an
orthonormal basis of a random k′-dimensional subspace. Further suppose that at every step of NPM
we have

5‖G‖ ≤ε(σl − σl+1),

and 5‖U>G‖ ≤(σl − σl+1)

√
k′ −

√
l − 1

2
√
d

for some fixed parameter ε < 1/2. Then with all but 2−Ω(k′+1−l) + eΩ(d) probability, there exists an
L = O(σl

σl−σl+1
log(2d/ε)) so that after L steps we have that ‖(I −XLX

>
L)U‖ ≤ ε.

Theorem C.5 (Adapted from Theorem 2.2 from [11]). Let Ul ∈ Rd×l represent the top l singular
vectors ofM and let σ1 ≥ · · · ≥ σk > 0 denote its singular values. Naturally l ≤ k. Suppose X0 is
an orthonormal basis of a random k′-dimensional subspace where k′ ≥ k. Further suppose that at
every step of NPM we have

‖G‖ ≤O(εσl),

and ‖U>k G‖2 ≤O(σl

√
k′ −

√
k − 1

2
√
d

)

for small enough ε. Then with all but 2−Ω(k′+1−k) + eΩ(d) probability, there exists an L =
O(log(2d/ε)) so that after L steps we have that ‖(I −XLX

>
L)Ul‖ ≤ ε. Furthermore:

‖M −XLX
>
LM‖2F ≤

k∑
i=l+1

σ2
i + lσ2σ2

l .

Concentration Bounds.
Claim C.6. Write the eigendecomposition for M as M = UΣU>. In Algorithm 4, when n ≥
Θ̃(d2/(λ2

kε
2)), the noisy subspace iteration step can be written as: Yl = MXl−1 +Gl, where the

noise term satisfies:
5‖Gl‖ ≤ε|λk|

5‖U>Gl‖ ≤ε|λk|
√
k

3
√
d
.

with high probability for our choice of n.

Proof. For compact notation, write vector ηi := [ηi,1, ηi,2, · · · ηi,k′]> ∈ Rk′ . We have:

Gl(s) =
m

n

n∑
i=1

(z>i MXl(s))zi +
m

n

n∑
i=1

ηi,szi −MXl(s), therefore

Gl =(
m

n

n∑
i=1

[ziz
>
i]− I)MXl +

m

n

n∑
i=1

ziη
>
i .

First note that for orthogonal matrix Xl, ‖MXl‖ ≤ λ1, and ‖mn
∑n
i=1[ziz

>
i] − I‖ ≤

O(
√

d+log(1/δ)
n). The bottleneck is from the second term and we will use Matrix Bernstein to

21

concentrate it. Write Si = m
n ziη

>
i . We have ‖Si‖ ≤ O(

√
mk′ log(n/δ)

n) with probability 1− δ and
E[
∑
i SiS

>
i] = mk′

n Id and E[
∑
i S
>
i Si] = md

n Ik′ . Therefore with matrix Bernstein we can get that

‖
∑
i Si‖i ≤ O(

√
md
n log(d/δ)) with probability 1− δ.

Therefore for n ≥ Ω̃(d2/(λ2
kε

2), we can get that 5‖Gl‖ ≤ ε|λk|.

Similarly since U>zi ∼ N (0, 1
mIk′), with the same argument one can easily get that ‖U>Gl‖ ≤

O(
√

mk′

n log(d/δ)). Therefore with the same lower bound for n one can get 15‖U>Gl‖ ≤

ε|λk|
√

k
d .

C.4 Omitted Proof for RL with Quadratic Q function

Algorithm 5 Learn policy complete polynomial with simulator.

1: Initialize: Set n = Θ̃(κ̃2d2H3/ε2), Oracle to estimate T̂h from noisy observations.
2: for h = H, . . . 1 do
3: Sample φ(sih, a

i
h), i ∈ [n] from standard Gaussian N(0, Id)

4: for i ∈ [n] do
5: Query (sih, a

i
h) and use πh+1, . . . , πH as the roll-out to get estimation

Q̂
πh+1,...,πH

h (sih, a
i
h)

6: Retrieve M̂h from estimation Q̂πh+1,...,πH

h (sih, a
i
h), i ∈ [n]

7: Set Q̂h(s, a)← fT̂h

8: Set πh(s)← arg maxa∈S Q̂h(s, a)

9: Return π1, . . . , πH

Proof of Theorem 3.13. With the oracle, at horizon H , we can estimate M̂H that is ε/H close to
M∗

H in spectral norm through noisy observations from the reward function with Õ(κ̃2d2H2/ε2)
samples. Next, for each horizon h = H − 1, H − 1, · · · , 1, sample s′i ∼ P(·|s, a), we define ηi =
maxa′ fM̂h+1

(s′i, a
′) − Es′∼P(·|s,a) maxa′ fM̂h+1

(s′, a′). ηi is mean-zero and O(1)-sub-gaussian
since it is bounded. DenoteMh as the matrix that satisfies fMh

:= T f
M̂h+1

, which is well-defined

due to Bellman completeness. We estimate M̂h from the noisy observations yi = rh(s, a) +

maxa′ fM̂h+1
(s′i, a

′) = T f
M̂h+1

+ ηi =: fMh
+ ηi. Therefore with the oracle, we can estimate M̂h

such that ‖M̂h −Mh‖2 ≤ ε/H with Θ(κ̃2d2k2H2/ε2) bandits. Together we have:

‖f
M̂h
− f

M̂∗h
‖∞ =‖M̂h −M∗

h‖

≤‖M̂h −Mh‖+ ‖Mh −M∗
h‖

≤ε/H + ‖T f
M̂h+1

− T fM∗h+1
‖∞

≤ε/H + ‖f
M̂h+1

− fM∗h+1
‖∞

≤2ε/H + ‖f
M̂h+2

− fM∗h+2
‖∞

≤ · · ·
≤(H − h)ε/H.

Finally for h = 1 we have ‖M̂1 −M∗‖ ≤ ε if we sample n = Θ̃(κ̃2d2k2H2/ε2) for each h ∈ [H].
Therefore for all the H timesteps we need Θ(κ̃2d2k2H3/ε2).

22

Algorithm 6 Phased elimination with zeroth order exploration.

1: Input: Function f : A → R of polynomial degree p generating noisy reward, failure probability
δ, error ε.

2: Initialization: L0 = CLk log(1/δ); Total number of stages S = CSdlog(1/ε)e + 1, A0 =

{a(1)
0 ,a

(2)
0 , · · ·a(L0)

0 } where each a(l)
0 is uniformly sampled on the unit sphere Sd−1. ε̃0 = 1.

3: for s from 1 to S do
4: ε̃s ← ε̃s−1/2, ns ← Cnd

p log(d/δ)/λ2
1ε̃

2
s),ns ← ns · log3(ns/δ), ms ← Cmd log(ns/δ),

As = ∅.
5: for l from 1 to Ls−1 do
6: Zeroth-order optimization:
7: Locate current action ã = a

(l)
s−1.

8: for d(1/(1− α)) log(2d)e times do
9: Sample zi ∼ N (0, 1/msId), i = 1, 2, · · ·ns.

10: Take actions ai = (1 − 1
2p)ã + 1

2pzi and observe ri = T (ai) + ηi, i ∈ [ns]; Take
actions 1

2pzi and observe r′i = T (1
2pzi) + η′i, i ∈ [ns].

11: Conduct estimation y ← 1/ns
∑ns

i=1(ri − r′i)zi.
12: Update the current action ã← y/‖y‖.
13: Estimate the expected reward for ã through ns samples: rn(ã) = 1/ns

∑ns

i=1(T (ã)+ηi).
14: Candidate Elimination:
15: if rn ≥ λ1(1− pε̃2

s) then
16: Keep the action As ← As ∪ {ã}
17: Label the actions: Ls = |As|,As =: {a(1)

s , · · ·a(Ls)
s }.

18: Run UCB (Algorithm 7) with the candidate set AS .

D Technical details for General Tensor Reward

D.1 Technical Details for Symmetric Setting

Lemma D.1 (Zeroth order optimization for noiseless setting). For p ≥ 3, suppose 0.5a>v1 >
|a>vj | for all j ≥ 2, we have:

tan θ(G(a),v1) ≤ 1

2
tan θ(a,v1).

Proof. We first simplify G(a) =
∑r
j=1 λjvj · Sj , where

G(a) =

b(p−3)/2c∑
s=0

(1− 1
2p)p−2s−1(1

2p)2s+1

ms

(
p

2s+ 1

)
T (I⊗s+1 ⊗ a⊗p−2s−1)

=

b(p−3)/2c∑
s=0

(1− 1
2p)p−2s−1(1

2p)2s+1

ms

(
p

2s+ 1

) k∑
j=1

λj(v
>
j a)p−2j−1vj

=

k∑
j=1

vj ·

Sj :=︷ ︸︸ ︷
λj

b(p−3)/2c∑
s=0

(1− 1
2p)p−2s−1(1

2p)2s+1

ms

(
p

2s+ 1

)
(v>j a)p−2s−1

=

k∑
j=1

Sjvj .

23

Notice for even p,

Sj =λj(v
>
j a)3 ·

p/2−2∑
s=0

(1− 1
2p)p−2s−1(1

2p)2s+1

ms

(
p

2s+ 1

)
(v>j a)p−2s−4

=λj(v
>
j a)3 ·

p/2−2∑
r=0

(1− 1
2p)2r+3(1

2p)p−3−2r

mp/2−2−r

(
p

p− 2r − 3

)
(v>j a)2r.

(let 2r = p− 4− 2s)

Sj
λj(v>j a)3

=

p/2−2∑
r=0

(1− 1
2p)2r+3(1

2p)p−3−2r

mp/2−2−r

(
p

p− 2r − 3

)
(v>j a)2r

(Divide both sides by λj(v>j a)3)

≤
p/2−2∑
r=0

(1− 1
2p)2r+3(1

2p)p−3−2r

mp/2−2−r

(
p

p− 2r − 3

)
(v>1 a)2r.

(Since the first term is constant and |v>j a| ≤ v>1 a for r ≥ 1)

=
S1

λ1(v>1 a)3
.

Therefore for even p ≥ 4:

|Sj | ≤
|λj |
λ1

|v>j a|3

|v>1 a|3
S1 ≤

1

4

|v>j a|
|v>1 a|

S1,∀j ≥ 2. (3)

Similarly for odd p, we have:

Sj =λj(v
>
j a)2 ·

(p−3)/2∑
s=0

(1− 1
2p)p−2s−1(1

2p)2s+1

ms

(
p

2s+ 1

)
(v>j a)p−2s−3

=λj(v
>
j a)2 ·

(p−3)/2∑
r=0

(1− 1
2p)2r+2(1

2p)p−2−2r

m(p−3)/2−r

(
p

p− 2− 2r

)
(v>j a)2r,

(Let r = (p− 3)/2− s)

Sj
λj(v>j a)2

=

(p−3)/2∑
r=0

(1− 1
2p)2r+2(1

2p)p−2−2r

m(p−3)/2−r

(
p

p− 2− 2r

)
(v>j a)2r

(Divide both sides by λj(v>j a)2)

≤
(p−3)/2∑
r=0

(1− 1
2p)2r+2(1

2p)p−2−2r

m(p−3)/2−r

(
p

p− 2− 2r

)
(v>1 a)2r

(Since the first term is constant and |v>j a| ≤ v>1 a for r ≥ 1)

=
S1

λ1(v>1 a)2
.

Therefore for odd p we have:

|Sj | ≤
|λj |
λ1

|v>j a|2

|v>1 a|2
S1 ≤

1

2

|v>j a|
|v>1 a|

S1,∀j ≥ 2. (4)

Write V = [v2,v3, · · · ,vk] ∈ Rd×k be the complement for v1. Therefore for any x without
normalization, one can conveniently represent | tan θ(x,v1)| as ‖V >x‖2/|v>1 x|.

24

‖V >G(a)‖2 =

k∑
j=2

S2
j (5)

≤
k∑
j=2

|v>j a|2

4|v>1 a|2
S2

1 (from (4),(3))

=
1

4
tan2 θ(v1,a)(v>1 G(a))2. (6)

Therefore for p ≥ 3, tan θ(G(a),v1) ≤ 1
2 tan θ(a,v1).

D.1.1 Proof Sketch of Theorem 3.14

Definition D.2 (Zeroth order gradient function). For some scalar m, we define an empirical operator
Gn : A → A that is similar to the zeroth-order gradient of f through n samples:

Gn(a) :=
m

n

n∑
i=1

(
T

((
(1− 1

2p
)a+

1

2p
zi

)⊗p)
− T (

1

2p
zi)

)
zi + (ηi − η′i)zi.

where zi ∼ N (0, 1
mI) and ηi, η′i are independent zero-mean 1-sub-Gaussian noise. Therefore we

have:

E[Gn(a)] =mE[

p−1∑
l=0

(
p

l

)
T ((1− 1

2p
)p−la⊗(p−l) ⊗ (

1

2p
)lz⊗l)z]

(Due to symmetry of Gaussian only for odd l =: 2s+ 1 expectation is nonzero)

=(1− 1

2p
)p−2s−1(

1

2p
)2s+1[

bp/2−1c∑
s=0

m−s
(

p

2s+ 1

)
T (a⊗(p−2s−1) ⊗ I⊗s+1)]

Note that for even p the last term (when s = p/2−1) is T (a⊗I⊗p/2) =
∑k
j=1 λj(a

>vj)vj . While
all other terms will push the iterate towards the optimal action at a superlinear speed, the last term
perform a matrix multiplication and the convergence speed will depend on the eigengap. Therefore
for p ≥ 4 we will remove the extra bias in the last term that is orthogonal to v1 and will treat it as
noise. (Notice for quadratic function s = 0 = p/2 − 1 is the only term in E[Gn(a)]. This is the
distinction between p = 2 and larger p, and why its convergence depends on eigengap.)

We further define G(a) as the population version of Gn(a) by removing this undesirable bias term
that will be treated as noise:

G(a) =

{
E[Gn]− (1

2p)p−1(1− 1
2p)p

mp/2−1

∑k
j=2 λj(v

>
j a)vj , when p is even

E[Gn], when p is odd.

=

b(p−3)/2c∑
s=0

(1
2p)2s+1

ms

(
p

2s+ 1

)
T (I⊗s+1 ⊗ ((1− 1

2p
)a)⊗p−2s−1)

=
1

2
(1− 1

2p
)p−1T (I,a⊗p−1) +O(1/m).

We define G(a) to push the action a towards the v1 direction with at least linear convergence rate.
More precisely, their angle tan θ(G(a),v1) will converge linearly to 0 for proper initialization with
the dynamics a → G(a). An easy way to see that is when p = 2 or 3, G is conducting (3-order
tensor) power iteration. For higher-order problems, this operation G is equivalent to the summation
of p, p− 2, p− 4, · · · -th order tensor product and hence the linear convergence.

The estimation error Gn(a)−G(a) will be treated as noise (which is not mean zero when p is even
but will be small enough: O((2p)−pm−(p−1)/2)). Therefore the iterative algorithm with a→ Gn(a)
will converge to a small neighborhood of v1 depending on the estimation error. This estimation error
is controlled by the choice of sample size n in each iteration. We now provide the proof sketch:

Lemma D.3 (Initialization for p ≥ 3; Corollary C.1 from [69]). For any η ∈ (0, 1/2), with
L = Θ(k log(1/η)) samples A = {a(1),a(2), · · ·a(L)} where each a(l) is sampled uniformly on the

25

sphere Sd−1. At least one sample a ∈ A satisfies
max
j 6=1
|v>j a| ≤ 0.5|v>1 a|, and |v>1 a| ≥ 1/

√
d. (7)

with probability at least 1− η.

Lemma D.4 (Iterative progress). Let α = 1/2 for p ≥ 3 in Algorithm 6. Consider noisy operation
a+ → G(a) + g. If the error term g satisfies:

‖g‖ ≤min{0.025

p
λ1(v>1 a)p−2, 0.1λ1ε̃}

+ 0.03λ1| sin θ(v1,a)|(v>1 a)p−2,

|v>1 g| ≤0.05λ1(v>1 a)p−1.

Suppose a satisfies 0.5|v>1 a| ≥ maxj≥2 |v>j a|, we have:

tan θ(a+,v1) ≤ 0.8 tan θ(a,v1) + ε̃.

We can also bound g by standard concentration plus an additional small bias term.

Lemma D.5 (Estimation error bound for G). For fixed value δ ∈ (0, 1) and large enough universal
constant c1, c2, cm, cn, when m = cmd log(n/δ), n ≥ cnd log(d/δ), we have

‖g‖ ≡ ‖Gn(a)−G(a)‖ ≤c1

√
d2 log3(n/δ) log(d/δ)

n
+ eλ2| sin θ(a,v1)|,

|v>1 g| ≡ |v>1 Gn(a)− v>1 G(a)| ≤c2

√
d log3(n/δ) log(d/δ)

n
.

with probability 1− δ. e = 0 for odd p and e = (2p)−(p−1)m−(p/2−1) for even p.

Together we are able to prove Theorem 3.14:

Proof of Theorem 3.14. Initially with high probability there exists an a0 ∈ A0 such that Eqn. (7)
holds, i.e., v>1 a0 ≥ 1/

√
d and v>1 a0 ≥ 2|v>j a0|,∀j ≥ 2.

Next, from Lemma D.5, the extra bias term is bounded by eλ2| sin θ(a,v1)|
≤ 0.03λ1(v>1 a)p−2| sin θ(a,v1)| since e = (2p)−p+1m

−p/2+1
s and with our choice of variance

ms ≥ d ≥ (v>1 a)−2, plus p ≥ 3. Next with our setting of ns = Θ̃(dp/(λ2
1ε̃

2
t)), the error term

‖E[G(a)]−Gn(a)‖ is upper bounded by Õ(
√

d2

n) ≤ 0.025λ1d
−(p−2)/2ε̃s/p+0.1λ1ε̃s. Meanwhile

|v>1 g| ≤ Õ(
√

d
ns

) ≤ 0.05λ1(v>1 a)p−1.

This meets the requirements for Theorem D.4 and therefore tan θ(Gn(a0),v1) ≤ 0.8 tan θ(a0,v1)+
0.1λ1ε̃s. Therefore after l steps will have

tan θ(Gln(a0),v1) ≤0.8l tan θ(a0,v1) +

l∑
i=1

0.8i · 0.1ε̃s

≤0.8l tan θ(a0,v1) + 0.5ε̃s.

Notice initially tan θ(a0,v1) ≤ 1/(v>1 a0) ≤
√
d. Therefore after at most

l = O(log2(tan θ(a0,v1))) ≤ O(log2(d)) steps, we will have tan
(
Gln(a0),v1

)
≤ ε̃0/2 = ε̃1.

With the same argument, the progress also holds for s > 0 with even smaller l.

Proof of Lemma D.5. We first estimate Gn(a) − E[Gn(a)], which is want we want for even
p. For odd p we will need to analyze an extra bias term that is orthogonal to v1, e :=
(1
2p)p−1(1− 1

2p)p

mp/2−1

∑k
j=2 λj(v

>
j a)vj ; and we have Gn(a)− E[Gn(a)] = Gn(a)−G(a) + e.

We decompose Gn(a) as Gn(a) =
∑k
s=1G

(s)
n + N , where G

(s)
n := m

n

∑n
i=1

(
p
s

)
T (((1 −

0.5/p)a)⊗p−s ⊗ (zi/(2p))
⊗s)zi. The noise term N := m

n

∑
εizi.

26

G(s)
n :=

m

n

n∑
i=1

(
p

s

)
T (((1− 0.5/p)a)⊗p−s ⊗ (zi/(2p))

⊗s)zi

=
m

n
(1− 1

2p
)p−s(

1

2p
)s
(
p

s

) n∑
i=1

k∑
j=1

λj(a
>vj)

p−s(z>i vj)
szi.

E[G(s)
n] =m(1− 1

2p
)p−s(

1

2p
)s
(
p

s

) k∑
j=1

λj(a
>vj)

p−sE[(z>vj)
sz]

=

{
(1− 1

2p)p−s(1
2p)sm

(
p
s

)∑k
j=1 λj(a

>vj)
p−s 1

m(s+1)/2 (s)!!vj , for odd s,
0, for even s

=

{
(1− 1

2p)p−s(1
2p)s s!!

m(s−1)/2

(
p
s

)∑k
j=1 λj(a

>vj)
p−svj , for odd s,

0, for even s

G(s)
n − E[G(s)

n] = m(1− 1

2p
)p−s(

1

2p
)s
(
p

s

) k∑
j=1

λj(a
>vj)

p−sgn,s(j),

where gn,s(j) := 1
n

∑n
i=1(z>i vj)

szi − E[(z>vj)
sz].

Notice the scaling in each G(s)
n is (1− 1

2p)p−s(1
2p)s

(
p
s

)
≤ (1

2p)sps/(s!) < 2−s decays exponentially.
In Claim D.12 we give bounds for gn,s(j). We note the bound for each gn,s also decays with s.

Therefore the bottleneck of the upper bound mostly depend on gn,0 and v>1 gn,0, and we get:

‖Gn − E[Gn]‖ ≤C1λ1

√
(d+ log(1/δ))d log(n/δ)

n
+N,

|v>1 Gn − E[v>1 Gn]| ≤C2λ1

√
d log(n/δ)(1 + log(1/δ))

n
+ v>1 N.

Next from Claim D.11, the noise term

N ≤ C3

√
m log(n/δ)(d+ log(n/δ)) log(d/δ)

n
,

|v>1 N | ≤ C4

√
m

log2(n/δ) log(d/δ)

n
,

Finally e is very small: ‖e‖ ≤ 1
mp/2−1(2p)(p−1)

λ2‖V >a‖ = λ2
1

mp/2−1(2p)(p−1)
sin θ(a,v1).

|e>v1| = 0.

Together we can bound Gn(a)−G(a) and finish the proof.

Proof of Lemma D.4. From Lemma D.1 we have: | tan θ(G(a),v1)| ≤ 1/2| tan θ(a,v1)|. Let
V = [v2, · · ·vk]. For any p ≥ 2, we have:

| tan θ(a+,v1)| =‖V
>a+‖2
|v>1 a+|

=
‖V >(G(a) + g)‖
|v>1 (G(a) + g)|

≤‖V
>G(a)‖+ ‖V >g‖
|v>1 G(a)| − |v>1 g|

≤1/2| tan θ(a,v1)||v>1 G(a)|+ ‖g‖
|v>1 G(a)| − |v>1 g|

=α| tan θ(a,v1)| S1

S1 − ‖v>1 g‖
+

‖g‖
S1 − ‖v>1 g‖

,

27

where S1 := v>1 G(a) = v>1 G(a) = λ1

∑b(p−3)/2c
s=0

(1− 1
2p)p−2s−1(1

2p)2s+1

ms

(
p

2s+1

)
(v>1 a)p−2s−1 ≥

λ1(1− 1
2p)p−1(1

2p)p(v>1 a)p−1 ≥ λ1

4 (v>1 a)p−1. The inequality comes from keeping only the first
term where s = 0. With the assumption that |v>1 g| ≤ 0.05λ1(v>1 a)p−1, we have |v>1 g| ≤ 0.2S1.
Therefore

| tan θ(a+,v1)| ≤1.25/2| tan θ(a,v1)|+ ‖g‖
S1 − |v>1 g|

≤1.25/2| tan θ(a,v1)|+ 5/4
‖g‖
S1

≤1.25/2| tan θ(a,v1)|+ 5
‖g‖

λ1(v>1 a)p−1
.

Notice when 5 ‖g‖
λ1(v>1 a)p−1 ≤ max{0.125| tan θ(a,v1)|, ε̃}, which will ensure | tan θ(G(a),v1)| ≤

(1.25/2 + 0.125)| tan θ(G(a),v1)| + ε̃. (We will prove this condition is satisfied when ‖g‖ ≤
min{ 0.025

p λ1(v>1 a)p−2, 0.1λ1ε̃}. We will handle the additional term in the upper bound of ‖g‖ later.)
We divide this requirement into the following two cases. On one hand, when |v>1 a| ≤ 1− 1/(p− 1),
‖V >a‖ ≥

√
1− (1− 1/(p− 1))2 > 1/p, therefore | tan θ(a,v1)| ≥ 1/p|v>1 a|. Therefore

5
‖g‖

λ1(v>1 a)p−1
≤ 0.125| tan θ(a,v1)|

⇐5
‖g‖

λ1(v>1 a)p−1
≤ 0.125/

(
p|v>1 a|

)
⇔‖g‖ ≤ 0.025λ1(v>1 a)p−2/p.

On the other hand, when |v>1 a| ≥ 1 − 1/(p − 1), |va1 |p−1 ≥ 1/4 when p = 3. Therefore
5 ‖g‖
λ1(v>1 a)p−1 ≤ 20‖g‖/λ1. Therefore we will need ‖g‖ ≤ 0.05λ1ε̃, and then the requirement that

5 ‖g‖
λ1(v>1 a)p−1 ≤ ε̃ is satisfied.

Altogether in both cases we have: | tan θ(G(a),v1)| ≤ 0.75| tan θ(G(a),v1)| + ε̃. Fi-
nally if we additionally increase ‖g‖ by 0.05λ1(v>1 a)p−1 we will have: | tan θ(G(a),v1)| ≤
0.8| tan θ(G(a),v1)|+ ε̃.

Proof of Corollary 3.16 . As shown in Theorem 3.14 at least one action a in AS , |AS | ≤ Õ(k)

satisfies tan θ(a,a∗) ≤ ε with a total of Õ(d
pk

λ2
1ε

2) steps. Therefore with Claim D.6 we have to get

ε̃-optimal reward we need Õ(d
pk
λ1ε̃

) steps. Notice the eluder dimension for symmetric polynomials is

dp and the size of AS is at most Õ(k). Then by applying Corollary D.9 we get that the total regret is
at most Õ(

√
dpkT +

√
|AS |T) = Õ(

√
dpkT).

D.2 PAC to Regret Bound Relation.

Claim D.6 (Connecting angle to regret). When 0 < tan θ(a,v1) ≤ ζ, we have regret r∗ − r(a) ≤
r∗min{2, pζ2}.

28

Proof.
| cos θ(a,v1)| =|a>v1| =: b,

| tan θ(a,v1)| =
√

1− b2
b

≤ ζ ⇔ b ≥ 1√
ζ2 + 1

.

⇒ r∗ − r(a) ≤λ1 − λ1b
p

≤λ1(1− (ζ2 + 1)−p/2)

=λ1
(ζ2 + 1)p/2 − 1

(ζ2 + 1)p/2

≤λ1((ζ2 + 1)p/2 − 1) (since denominator (ζ2 + 1)p/2 ≥ 1)

≤λ1pζ
2, when ζ2 ≤ 1/p.

Additionally by definition r∗ − r(a) ≤ λ1 − (−λ1) = 2λ1 and thus r∗ − r(a) ≤ λ1 min{2, pζ2}.
We now derive the last inequality. When ζ ≥ 1/p it is trivially true. When ζ ≤ 1/p, we have
(1 + ζ2)p/2 ≤ 1 + pζ2 for any p ≥ 2. Since the LHS is a convex function for ζ when p ≥ 2 and
when ζ = 0 LHS=RHS and when ζ2 = 1/p LHS is always smaller than RHS (=2).

Notice the argument is straightforward to extend to the setting where the angle is between a and
subspace V1 that satisfies ∀v ∈ V1, T (v) ≥ λ1− ε, then one also get r∗− r(a) ≤ λ1− (λ1− ε)bp ≤
min{λ1, λ1pζ

2 + εbp} ≤ min{λ1, λ1pζ
2 + ε}.

Claim D.7 (Connecting PAC to Cumulative Regret). Suppose we have an algorithm alg(ζ) that finds
ζ-optimal action â that satisfies 0 < tan θ(a,v1) ≤ ζ by taking Aζ−a actions. Here A can depend
on any parameters such as d, λ1, probability error δ, etc., that are not ζ . Then for large enough T , by
calling alg with ζ = A

1
a+2T−

1
a+2 p−

1
a+2 and playing its output action â for the remaining actions,

one can get a cumulative regret of:

R(T) . T
a

a+2 p
a

a+2A
2

a+2 r∗.

Similarly, if an oracle finds ε-optimal action â that satisfies r∗ − r(a) ≤ ε with Bε−b samples, then
by setting ε = (Br∗/T)

1
1+b , and playing the output arm for the remaining actions, one can get

cumulative regret of:

R(T) . B
1

1+bT
b

1+b r
1

1+b .

Proof. For the chosen ζ, write T1 = Aζ−a be the number of actions that finds ζ-optimal action.
Therefore T1 = A

2
a+2T

a
a+2 p

a
a+2 . First, when T ≥ Apa/2, ζ2 ≤ 1/p, namely r∗ − r(a) ≤ r∗pζ2.

We have:

R(T) ≤
T1∑
t=1

2r∗ +

T∑
t=T1+1

r∗pζ2

≤2r∗T1 + Tr∗pζ2

≤3T
a

a+2 p
a

a+2A
2

a+2 r∗.

When T < Apa/2, it trivially holds that R(T) ≤ 2r∗T < 2T
a

a+2 p
a

a+2A
2

a+2 r∗.

Algorithm 7 UCB (Algorithm 1 in Section 5 of [5])

1: Input: Stochastic reward function f , failure probability δ, action set A with finite size K.
2: for t from 1 to T − 1−K do
3: Execute arm It = arg maxi∈[K]

(
µ̂t(i) +

√
log(TK/δ)
Nt(i)

)
. Here N t(a) = 1 +

∑t
i=1 1{Ii =

a}; and µ̂t(a) = 1
Nt(a)

(
ra +

∑t
i=1 1{Ii = a}ri

)
.

4: Observe rIt

29

Theorem D.8 (Theorem 5.1 from [5]). With UCB algorithm on action set with size K, we have with
probability 1− δ,

R(T) = Õ(min{
√
KT}+K).

Corollary D.9. With the same setting of Claim D.7, except that now the algorithm alg(ε) finds a set
A of size S where at least one action a ∈ A satisfies r∗ − f(a) ≤ ε. Then all argument in Claim
D.7 still hold by adding Õ(

√
ST) on the RHS of each regret bound.

Proof. Suppose we run alg for T1 steps and achieve ε-optimal reward.

Let rε := maxa∈A f(a). Therefore with UCB on mutiarm bandit we have:
∑T
t=T1+1 rε − f(at) ≤

Õ(
√
ST) by Theorem D.8.

From the statement rε ≥ r∗−ζ . Therefore
∑T
t=T1+1 r

∗−f(at) ≤ Õ(
√
ST)+ε(T−T1). Therefore

R(T) ≤
T1∑
t=1

2r∗ + ε(T − T1) + Õ(
√
ST).

With the same choices of T1 in Claim D.7, the same conclusion still holds with an additional term of
Õ(
√
ST).

For symmetric tensor problems the set size is Õ(k) and therefore we will have an additional
√
kT

term which will be subsumed in our regret bound.

D.3 Variance and Noise Concentration

Lemma D.10 (Vector Bernstein; adapted from Theorem 7.3.1 in [64]). Consider a finite sequence
{xk}nk=1 be i.i.d randomly generated samples, xk ∈ Rd, and assume that E[xk] = 0, ‖xk‖ ≤ L,
and covariance matrix of xk is Σ. Then it satisfies that when n ≥ log d/δ, we have:∥∥∥∥∑n

i=1 xi
n

∥∥∥∥ ≤ C
√

(‖Σ‖+ L2) log d/δ

n
,

with probability 1− δ.

Claim D.11 (Noise concentration). Let independent samples zi ∼ N (0, 1/mId) and εi ∼ N (0, 1).
With probability 1− δ, δ ∈ (0, 1):∥∥∥∥∥mn

n∑
i=1

εizi

∥∥∥∥∥ ≤C
√
m log(n/δ)(d+ log(n/δ)) log(d/δ)

n∣∣∣∣∣mn
n∑
i=1

εiz
>
i v1

∣∣∣∣∣ ≤C ′
√
m log2(n/δ) log(d/δ)

n
.

Proof. We use the Vector Bernstein Lemma D.10. The covariance matrix for xi = εizi satisfies
E[xix

>
i] = 1/mId. xi is mean zero. ‖εizi‖2 = ε2i ‖zi‖2. Notice ε2i ∼ χ(1) . 1 + log(1/δ)

and mz>i zi ∼ χ(d) . d + log(1/δ). Therefore by directly applying Vector Bernstein ‖εizi‖ ≤
c
√

(1+log(1/δ))(d+log(1/δ))
m with probability 1 − δ. By union bound we have: for all i, ‖εizi‖ ≤

c
√

log(n/δ)(d+log(n/δ))
m with probability 1− δ. Therefore∥∥∥∥∥ 1

n

n∑
i=1

εizi

∥∥∥∥∥ ≤ C
√

log(n/δ)(d+ log(n/δ)) log(d/δ)

mn
,

with probability 1− δ. Similarly∣∣∣∣∣ 1n
n∑
i=1

εiz
>
i v1

∣∣∣∣∣ ≤C
√

log(n/δ)(1 + log(n/δ)) log(d/δ)

mn

=C ′

√
log2(n/δ) log(d/δ)

mn
,

30

Claim D.12. Let {zi}ni=1 be i.i.d samples from N (0, 1/mId). Let gn,s(j) := 1
n

∑n
i=1(z>i vj)

szi −
E[(z>vj)

sz]. We have:

‖gn,0(j)‖ .
√
d+ log(1/δ)

nm
,

|v>1 gn,0(j)| .
√

1 + log(1/δ)

nm
,

|v>1 gn,1(j)| ≤ ‖gn,1(j)‖ .
√
d+ log(1/δ)

m2n
, when n ≥ d log(1/δ),

|v>1 gn,s(j)| ≤ ‖gn,s(j)‖ .
√

log(d/δ)

dsn
, when n ≥ log(d/δ),m ≥ c0d log(n/δ), s ≥ 2.

For any j ∈ [k].

We mostly care about the correct concentration for smaller s. For larger s a very loose bound will
already suffice our requirement.

Proof of Claim D.12. For s = 0, nm‖ 1
n

∑n
i=1 zi‖2 ∼ χ(d), therefore ‖ 1

n

∑n
i=1 zi‖ .√

d+log(1/δ)
nm . nm(1

n

∑n
i=1 z

>
i v1)2 ∼ χ(1). Therefore | 1n

∑n
i=1 z

>
i v1| .

√
1+log(1/δ)

nm .

For s = 1, due to standard concentration for covariance matrices (see e.g. [64, 22]), we have:

m‖(1

n

n∑
i=1

ziz
>
i − E[zz>])‖ ≤ max{

√
d+ log(2/δ)

n
,
d+ log(2/δ)

n
}.

Therefore when n ≥ d log(1/δ), both results

‖gn,1(j)‖ .
√
d+ log(1/δ)

m2n
‖vj‖,

=

√
d+ log(1/δ)

m2n
, and

‖v>1 gn,1(j)‖ .
√
d+ log(1/δ)

m2n
‖v1‖‖vj‖

=

√
d+ log(1/δ)

m2n
hold.

For larger s ≥ 2, with probability 1 − δ, |z>i vj | ≤ C
√

log(n/δ)/m = Cc0/
√
d ≤ 1/

√
d. When

m ≥ c0d log(n/δ), for small enough c0 we have |z>i vj | ≤ 1/
√
d and ‖zi‖ ≤ 1 for all i ∈ [n].

Therefore ‖(z>i vj)szi‖ ≤ d−s/2 We can use vector Bernstein, i.e., Lemma D.10 to get:

‖gn,s(j)‖ ≤C1

√
log(d/δ)

dsn
.

Therefore we have:

|gn,s(j)>v1| ≤C1

√
log(d/δ)

dsn
.

D.3.1 The asymmetric setting

Now we consider the asymmetric tensor problem with reward f : A → R. The input space
A consists of p vectors in a unit ball: ~a = (a(1),a(2), · · ·a(p)) ∈ A, ‖a(s)‖ ≤ 1,∀s ∈ [p].
f(~a) = T (⊗ps=1a(s)) + η. Tensor T =

∑k
j=1 λjvj(1) ⊗ vj(2) · · · ⊗ vj(p). For each s ∈ [p],

{v1(s),v2(s), · · ·vk(s)} are orthonormal vectors. We order the eigenvalues such that λ1 ≥
|λ2| · · · ≥ |λk|. Therefore the optimal reward is λ1 and can be achieved by a∗(s) = v1(s), s ∈ [p].

31

In this section we only consider p ≥ 3 and leave the quadratic and low-rank matrix setting to the next
section.

Theorem D.13. For p ≥ 3, by conducting alternating power iteration, one can get a ε-optimal
reward with a total Õ

(
(2k)p logp(p/δ)dpλ−1

1 ε−1
)

actions; therefore the regret bound is at most
Õ(
√
kpdpT).

This setting is actually much easier than the symmetric setting. Notice by replacing one slice of
~a by random Gaussian zi ∼ N (0, 2/d log(d/δ)), one directly gets T (a(1), · · ·a(s − 1), I,a(s +
1), · · ·a(p)) on each slice with 1/n

∑
i f(a(1), · · ·a(s−1), zi,a(s+1), · · ·a(p))zi which is tensor

product. We defer the proof to Appendix D.4.

D.4 Omitted Details for Asymmetric Tensors

Algorithm 8 Phased elimination with alternating tensor product.

1: Input: Stochastic reward r : (Bd1)⊗p → R of polynomial degree p, failure probability δ, error ε.
2: Initialization: L0 = CLk log(1/δ); Total number of stages S = CSdlog(1/ε)e + 1, A0 =

{a(1)
0 ,a

(2)
0 , · · ·a(L0)

0 } ⊂ (Bd1)⊗p where each a(l)
0 (j), j ∈ [p] is uniformly sampled on the unit

sphere Sd−1. ε̃0 = 1.
3: for s from 1 to S do
4: ε̃s ← ε̃s−1/2, ns ← Cnd

p log(d/δ)/ε̃2
s, ns ← ns · log3(ns/δ), ms ← Cmd log(n/δ),

As = ∅.
5: for l from 1 to Ls−1 do
6: Tensor product update:
7: Locate current arm ã = a

(l)
s−1.

8: for d(λ1/∆) log(2d)e times do
9: for j from 1 to p do

10: Sample zi ∼ N (0, 1/msId), i = 1, 2, · · ·ns.
11: Calculate tentative arm ai ← ã,ai(j) = (1− ε̃s)ã(j) + ε̃szi
12: Conduct estimation y ← 1/ns

∑ns

i=1 rεi(ai)zi.
13: Update the current arm ã(j)← y/‖y‖.
14: Estimate the expected reward for ã through ns samples: rn = 1/ns

∑ns

i=1 rεi(ã).
15: Candidate Elimination:
16: if rn ≥ λ1(1− pε̃s) then
17: Keep the arm As ← As ∪ {ã}
18: Label the arms: Ls = |As|,At =: {a(1)

s , · · ·a(Ls)
s }.

19: Run Algorithm 7 with AS .

Lemma D.14 (Asymmetric Tensor Initialization). With probability 1 − δ, with L =

Θ̃((2k)p logp(p/δ)) random initializations A0 = {a(0)
0 ,a

(1)
0 , · · ·a(L)

0 }, there exists an initialization
a0 ∈ A0 that satisfies:

αa0(s)>v
(s)
1 ≥ |a0(s)>v

(s)
j |,∀j ≥ 2&j ∈ [k],∀s ∈ [p], (8)

a0(s)>v
(s)
1 ≥ 1/

√
d.

with some constant α < 1.

Proof. This lemma simply comes from applying Lemma D.3 for p times and we need ≥ 2k log2(pδ)
to ensure the condition for each a0(s), s ∈ [p] holds. Therefore together we will need (2k log2(p/δ))p

samples.

Lemma D.15 (Asymmetric tensor progress). For each a that satisfies Eqn. (8) with constant α < 1,
we have:

tan θ(T (a(1), · · ·a(s− 1), I,a(s+ 1), · · ·a(p)),v
(s)
1) ≤ α tan θ(aj ,v

(j)
1),

32

for any j that is in [p] but is not s.When n ≥ Θ(dp log(d/δ) log3(n/δ)/ε̃2) andm = Θ(d log(n/δ)),
we have:

tan θ(T (a(1), · · ·a(s− 1), I,a(s+ 1), · · ·a(p)),v
(s)
1)

≤(1 + α)/2 tan θ(aj ,v
(j)
1) + ε̃, ∀j ∈ [p]&j 6= s.

The remaining proof is a simpler version for the symmetric tensor setting on conducting noisy power
method with the good initialization and iterative progress.

Finally due to the good initialization that satisfies (8) and together with Lemma D.15 we can finish
the proof for Theorem D.13.

E Proof of Theorem G.3

E.1 Additional Notations

Here, we briefly introduce complex and real algebraic geometry. This section is based on [55, 63, 12,
68].

An (affine) algebraic variety is the common zero loci of a set of polynomials, defined as V =
Z(S) = {x ∈ Cn : f(x) = 0,∀f ∈ S} ⊆ An = Cn for some S ⊆ C[x1, · · · , xn]. A projective
variety U is a subset of Pn = (Cn+1 \ {0})/ ∼, where (x0, · · · , xn) ∼ k(x0, · · · , xn) for k 6= 0
and S is a set of homogeneous polynomials of (n+ 1) variables.

For an affine variety V , its projectivization is the variety P(V) = {[x] : x ∈ V } ⊆ Pn−1, where
[x] is the line corresponding to x.

The Zariski topology is the topology generated by taking all varieties to be the closed sets.

A set is irreducible if it is not the union of two proper closed subsets.

A variety is irreducible if and only if it is irreducible under the Zariski topology.

The algebraic dimension d = dimV of a variety V is defined as the length of the longest chain
V0 ⊂ V1 ⊂ · · · ⊂ Vd = V , such that each Vi is irreducible.

A variety V is said to be admissible to a set of linear functions {`α : Cd → C}α∈I}, if for every `α,
we have dim(V ∩ {x ∈ Cd : `α(x) = 0}) < dimV .

A map f = (f1, · · · , fm) : An → Am is regular if each fi is a polynomial.

A algebraic set is the common real zero loci of a set of polynomials.

For a complex variety V ⊆ An, its real points form a algebraic set VR.

For an algebraic set VR, its real dimension d = dimR VR is the maximum number d such that VR is
locally semi-algebraically homeomorphic to the unit cube (0, 1)d, details can be found in [12].

E.2 Proof of Sample Complexity

Lemma E.1 ([68], Theorem 3.2). For i = 1, . . . , T , let Li : Cn × Cm → C be bilinear functions
and Vi be varieties given by homogeneous polynomials in Cn. Let V = V1× · · ·×VT ⊆ (Cn)N . Let
W ⊆ Cm be a variety given by homogeneous polynomials. In addition, we assume Vi is admissible
with respect to the linear functions {fw(·) = Li(·,w) : w ∈ W \ {0}}. When T ≥ dimW , let
δ = T − dimW + 1 ≥ 1. Then there exists a subvariety Z ⊆ V with dimZ ≤ dimV − δ such that
for any (x1, . . . ,xT) ∈ V \ Z and w ∈W , if L1(x1,w) = · · · = LT (xT ,w) = 0, then w = 0.

Lemma E.2 ([68], Lemma 3.1). Let V be an algebraic variety in Cd. Then dimR VR ≤ dimV .

Lemma E.3. Let W be a vector space. For vectors x1, · · · ,xT , if the map f : w 7→
(〈x1, w〉, . . . , 〈xT ,w〉) is not injective over W −W := {w1−w2 : w1,w2 ∈W}, then there exists
v ∈W such that f(v) = 0.

Proof. Suppose f(w1) = f(w2). Let v = w1 − w2. Then v ∈ W −W and f(v) = f(w1) −
f(w2) = 0.

33

Definition E.4 (Tensorization). Let f be a polynomial of x1, · · · , xd with degree deg f ≤ p. Then
every p-tensor Wf satisfying 〈Wf ,Xx〉 = f(x) is said to be a tensorization of the polynomial f ,
where Xx is the tensorization of x itself:

Xx =

(
1
x

)⊗p
. (9)

Let F be a class of polynomials. A variety of tensorization of F is defined to be an irredicuble closed
variety defined by homogeneous polynomials W , such that for every f ∈ F , there is a tensorization
Wf of f , such that W 3 Wf contains its tensorization. Note that neither tensorization of f nor
variety of tensorization of F is unique.

We define the variety of tensorization of x as follows. (Note that this is uniquely defined.) Consider
the regular map

ϕ1 : Cd → C(d+1)p , x 7→
(

1
x

)⊗p
, (10)

the tensorization of x is defined as Vi = P(Imϕ1).

Note that Vi is irreducible because ϕ1 is regular and Cd is irreducible. By [55, Theorem 9.9], its
dimension is given by

dimVi ≤ dim Imϕ1 + 1 ≤ dimCd + 1 = d+ 1. (11)

Lemma E.5. For any non-zero polynomial f 6= 0 with deg f ≤ p. Let Wf be a tensorization of f .
Then Vi is admissible with respect to {Li(·) = 〈·,Wf 〉}.

Proof. Since Vi is irredicuble and Li is a linear function, it suffices to verify that 〈Xx,Wf 〉 6= 0 [68].
But according to Definition E.4, 〈Xx,Wf 〉 6= 0 is equivalent to

f(x) =

〈
Wf ,

(
1
x

)⊗p〉
6= 0. (12)

Since f 6= 0, we must have f(x) 6= 0 for some x, which gives a non-zero Xx 6= 0 for the above
equation: 〈Xx,Wf 〉 6= 0, and we conclude that Vi is admissible.

Lemma E.6. Let V ⊂ Cn be a (Zariski) closed proper subset, V 6= Cn. Then V is a null set, i.e. it
has (Lebesgue) measure zero.

Proof. Suppose V = Z(S) is the vanishing set for some S ⊆ C[x1, · · · , xn]. Since V 6= Cn,
let f ∈ S, we have V ⊆ Z(f), so it suffices to show Leb(Z(f)) = 0, which is because
Z(f) = f−1(0),Leb({0}) = 0, f is a continuous function (under Euclidean topology), and
Leb({x : ∇f(x) = 0}) = 0.

Theorem E.7. Assume that the reward function class is a class of polynomials F . Let W be (one
of) its variety of tensorization. If we sample T ≥ dimW times, and the sample points satisfying
(x1, · · · ,xT) ∈ (Cd)T \Z for some null set Z. Then we can uniquely determine the reward function
f from the observed rewards (f(x1), · · · , f(xT)).

Proof. Let n = m = (d+ 1)p, Li(x,w) = 〈x,w〉, V = V1× · · · ×VT , where Vi is as in Definition
E.4. By [63, Example 1.33], we have dimV ≤ (d+ 1)T . Since W is a vareity of tensorization, by
Lemma E.5, Vi is admissible with respect to {Li(·,W) : W ∈W}.
We are now ready to apply Lemma E.1, which gives that when T ≥ dimW , there exists subvariety
Z ⊂ V with dimZ < dimV ≤ rT , and for any (X1, · · · ,XT) ∈ V \ Z and any W ∈ W , if
〈X1,W〉 = · · · = 〈XT ,W〉 = 0, then W = 0. By Lemma E.3, we have for every (X1, · · · ,XT) ∈
V \ Z, the map W 7→ (〈X1,W〉, · · · , 〈XT ,W〉) is injective, so Wf and thus f can be uniquely
recovered from the observed rewards.

Finally, we show that (ϕ−1
1 × · · · × ϕ−1

1)(Z) is a null set, where ϕ1 is as in (10). According to
the proof of Lemma E.1 by [68], we find that Z is also defined by homogeneous polynomials. We
take the slice Z ′ = {x ∈ Z : x11 = · · · = xT1 = 1}, V ′ = {x ∈ V : x11 = · · · = xT1 = 1},
(here xij is the j-th coordinate of xi), then Z ′, V ′ are varieties. Since dimZ < dimV , we have
dimZ ′ = dimZ − T < dimV − T = dimV ′ and Z ′ ⊂ V ′.

34

Now consider the regular map ϕ′1 : V ′ → (Cd)T ,((
1
x1

)⊗p
, · · · ,

(
1
x1

)⊗p)
7→ (x1, · · · ,xT). (13)

Then ϕ′1(Z ′), ϕ′1(V ′) are both varieties. By [55, Lemma 9.9], we have dimϕ′1(Z ′) ≤ dimZ.
Since ϕ′1(V) = (Cd)T and dimϕ′1(V ′) ≤ dimV ′ = dimV − T ≤ (d + 1)T − T , we have
dimV = dimϕ′1(V) = dT and as a result, dimϕ′1(Z) ≤ dimZ < dimV = dT . By Lemma
E.6, ϕ′1(Z) is a null set. Since (x1, · · · ,xT) /∈ ϕ′4(Z) implies that (ϕ1(x1), · · · , ϕ1(xT)) /∈ Z, we
conclude the proof.

Theorem E.7 is stated for complex sample points. Next we extend it to the real case.

Lemma E.8. In Lemma E.1, if we assume in addition that dimR VR = dimV , then the conclusion
can be enhanced to ensure that Z is a real subvariety and dimR Z < dimR VR.

Lemma E.9. Let V ⊂ Rn be a (Zariski) closed proper subset, V 6= Rn. Then V is a null set.

The proof of Lemma E.9 is the same as that of Lemma E.6.

Theorem E.10. We can additionally assume xi ∈ Rd in Theorem E.7.

Proof. We verify that dimV = dimR VR, where V is defined in the proof of Theorem E.7, but this
follows clearly by [12, Corollary 2.8.2]. We conclude the proof by applying Lemma E.8.

Finally, we apply Theorem E.10 to two concrete classes of polynomials, namely Examples G.4 and
G.5. For Example G.4, we construct its variety of tensorization ofRV as follows. We first construct
the tensorization of each polynomial. We define

Wf =

r∑
i=1

ai

(
1
wi

)⊗pi
⊗
(

1
0

)⊗(p−pi)

. (14)

Next we construct the variety of tensorization W . Consider the map ϕ2 : (Cd)r → C(d+1)p ,

ϕ2(w1, · · · ,wr) =

r∑
i=1

(
1
wi

)⊗pi
⊗
(

1
0

)⊗(p−pi)

, (15)

and let Y = P(Imϕ2). Similar to Vi, we can prove that Y is an irredicuble closed variety defined by
homogeneous polynomials with dimY ≤ dr + 1. Next consider the map ϕ′2 : (Cd)2r → C(d+1)p ,

ϕ′2(w1, · · · ,w2r) = ϕ2(w1, · · · ,wr)− ϕ2(wr+1, · · · ,w2r) (16)
and let W = P(Imϕ′2). Similar to Y , we can prove that W is an irredicuble closed variety defined
by homogeneous polynomials with dimW ≤ 2dr+ 1. Together with Theorem E.10, we can conlude
that the optimal action for Example G.4 can be uniquely determined using at most 2dr + 1 samples.

For Example G.5, we construct W as follows. Let

U = (w1 · · · wk), q =
∑

I⊆[k]:|I|≤p

aIx
I ,

then we construct the tensorization of each polynomial by

Wf =
∑

I⊆[k]:|I|≤p

aI
⊗
i∈I

(
1
wi

)
⊗
(

1
0

)⊗(p−|I|)

. (17)

Then we have f(x) = 〈Wf ,Xx〉. To reduce the dimension of W and get better sample complexity
bound, we construct in a manner slightly different from what we did for Example G.4. Consider the
map ϕ3 : (Cd)k × C(k+1)p → C(d+1)p ,

(w1, · · · ,wk)× (aI : I ⊆ [k], |I| ≤ p) 7→Wf , (18)
where Wf is as defined in (17). Let Y = P(Imϕ3) and W = P(Imϕ3 − Imϕ3). We end up with
dimY =≤ dk + (k + 1)p + 1,dimW ≤ 2(dk + (k + 1)p) + 1. So we conlude that the optimal
action for Example G.5 can be uniquely determined using at most 2dk + 2(k + 1)p + 1 samples.

35

F Omitted Proof for Lower Bounds with UCB Algorithms

In this section, we provide the proof for the lower bounds for learning with UCB algorithms in
Subsection G.1.2.

Notation Recall that we use Λ to denote the subset of the p-th multi-indices Λ =
{(α1, . . . , αp)|1 ≤ α1 < · · · < αp ≤ d}. For an α = (α1, . . . , αp) ∈ Λ, denote Mα =
eα1
⊗ · · · ⊗ eαp

, Aα = (eα1
+ · · · + eαp

)⊗p. The model space M is a subset of rank-1 p-th

order tensors, which is defined as M =
{
Mα|α ∈ Λ

}
. We define the core action set A0 as

A0 = {eα1 + · · ·+eαp |α ∈ Λ}. The action setA is the convex hull ofA0: A = conv(A0). Assume
that the ground-truth parameter isM∗ = Mα∗ ∈M. At round t, the algorithm chooses an action
at ∈ A, and gets the noiseless reward rt = r(M∗,at) = 〈M∗, (at)

⊗p〉 =
∏p
i=1〈eα∗i ,at〉.

F.1 Proof for Theorem G.6

We introduce a lemma showing that if the action set is restricted to the core action set A0, then at
least |A0| − 1 =

(
d
p

)
− 1 actions are needed to identify the ground-truth.

Lemma F.1. If the actions are restricted to A0, then for the noiseless degree-p polynomial bandits,
any algorithm needs to play at least

(
d
p

)
− 1 actions to determineM∗ in the worst case. Furthermore,

the worst-case cumulative regret at round T can be lower bounded by

R(T) ≥ min{T,
(
d

p

)
− 1}.

proof of Lemma F.1. For any α and α′, the reward of playing eα1 + · · ·+ eαp when the ground-truth
model isM ′

α is

〈M ′
α, (eα1

+ · · ·+ eαp
)⊗p〉 =

p∏
i=1

〈eα′i , eα1
+ · · ·+ eαp

〉

=

p∏
i=1

I{α′i ∈ α}

=

{
1, if α = α′

0, otherwise .

Hence, no matter how the algorithm adaptively chooses the actions, in the worst case
(
d
p

)
− 1 actions

are needed to determine M∗. Also notice that the reward for eα1
+ · · · + eαp

is zero if α 6= α∗.
Therefore the regret lower bound follows.

Next, we show that even when the action set is unrestricted, any UCB algorithm fails to explore
in an unrestricted way. This is because the optimistic mechanism forbids the algorithm to play an
informative action that is known to be low reward for all models in the confidence set. We first recall
the definition of UCB algorithms.

UCB Algorithms The UCB algorithms sequentially maintain a confidence set Ct after playing
actions a1, . . . ,at. Then UCB algorithms play

at+1 ∈ arg max
a∈A

UCBt(a),

where
UCBt(a) = max

M∈Ct
〈M , (a)⊗p〉.

proof of Theorem G.6. We prove that even if the action set is unrestrcited, the optimistic mechanism
in the UCB algorithm above forces it to choose actions in the restricted action set A0.

Assume M∗ = Mα∗ . Next we show that for all a ∈ A − A0 (where the minus sign should be
understood as set difference), we have

UCBt(a) < 1.

36

For all a ∈ A, since A = conv(A0), we can write

a =
∑
α∈Λ

pα(eα1
+ · · ·+ eαp

),

where
∑
α∈Λ pα = 1 and pα ≥ 0. Therefore,

UCBt(a) = max
M∈Ct

〈M , (a)⊗p〉

≤ max
M∈M

〈M , (a)⊗p〉

= max
α′
〈Mα′ , (a)⊗p〉

= max
α′

p∏
i=1

〈eα′i ,a〉.

Plug in the expression of a, we have

〈eα′i ,a〉 =
∑
α

pα〈eα′i , eα1 + · · ·+ eαp〉

=
∑
α

pαI{α′i ∈ α}

≤
∑
α

pα = 1.

Therefore, for any fixed α′ = (α′1, . . . , α
′
p),

p∏
i=1

〈eα′i ,a〉 =
(∑

α

pαI{α′1 ∈ α}
)
· · ·
(∑

α

pαI{α′p ∈ α}
)

≤ 1,
where the equality holds if and only if for any pα > 0, α = α′, which is equivalent to a =
eα′1 + · · ·+eα′p . Therefore, if a ∈ A−A0, for any α′ ∈ Λ, we have

∏p
i=1〈eα′i ,a〉 < 1. This means

UCBt(a) < 1.

Meanwhile, we can see that for the action a∗ = eα∗1 + · · ·+ eα∗p ∈ A0,

UCBt(a
∗) = max

M∈Ct
〈M , (a∗)⊗p〉

≥ 〈M∗, (a∗)⊗p〉 (M∗ ∈ Ct)
= 〈M∗,Aα∗〉 = 1.

Therefore, we see that (A − A0) ∩ arg maxa∈AUCBt(a) = ∅, which means at+1 ∈ A0 for all
t ≥ 0. Therefore, by Lemma F.1, the theorem holds.

F.2 O(d) Actions via Solving Polynomial Equations

Firstly, we verify that the model falls into the category of Example G.5 with k = p. For every α ∈ Λ,
the reward of playing a when the ground-truth model isMα is

〈Mα, (a)⊗p〉 =

p∏
i=1

〈eαi
,a〉,

which can be written as q0(Uαa), where q0(x1, . . . , xp) = x1x2 · · ·xp and Uα ∈ Rp×d is a matrix
with eαi as the i-th row.

Secondly, we show that since the ground-truth model is p-homogenous, we can extend the action
set to conv(A,0). This is because for every action of the form ca, where 0 ≤ c ≤ 1 and a ∈ A, the
reward is cp times the reward at a. Therefore, to get the reward at ca, we only need to play at a and
multiply the reward by cp.

Notice that conv(A,0) is of positive Lebesgue measure. By Theorem G.3, we know that only
2(dk + (p+ 1)p) = O(d) actions are needed to determine the optimal action almost surely.

37

G Proof of Section 3.3.2

We present the proof of Theorem 3.18 in the following.

Proof. We overload the notation and use [d] to denote the set {e1, e2, . . . , ed}. The hard instances
are chosen in ∆ · [d]p, i.e. (θ1, . . . ,θp) = ∆ · (θ̂1, . . . , θ̂p) where (θ̂1, . . . , θ̂p) ∈ [d]p. For a group
of vectors θ1, . . . ,θp ∈ [d], we use

supp(θ1, . . . ,θp) := (max
i∈[p]

(θi)1, . . . ,max
i∈[p]

(θi)d) ∈ {0, 1}d

to denote the support of these vectors. We use a(t) ∈ Rd to denote the action in t-th episode.

We use P(θ1,...,θp) to denote the measure on outcomes induced by the interaction of the fixed policy
and the bandit paramterised by r =

∏p
i=1(θ>i a) + ε. Specifically, We use P0 to denote the measure

on outcomes induced by the interaction of the fixed policy and the pure noise bandit r = ε.
R(d, p, T)

≥ 1

dp

∑
(θ1,...,θp)∈∆·[d]p

E(θ1,...,θp)

[
T∆p/pp/2 −

T∑
t=1

p∏
i=1

(θ>i a
(t))

]

=
∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

(
T/pp/2 − E(θ1,...,θp)

[
T∑
t=1

p∏
i=1

(θ̂>i a
(t))

])

≥ ∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

(
T/pp/2 − E0

[
T∑
t=1

p∏
i=1

(θ̂>i a
(t))

]
− T‖P0 − P(θ1,...,θp)‖TV

)

≥ ∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

(
T/pp/2 − E0

[
T∑
t=1

p∏
i=1

(θ̂>i a
(t))

]
− T

√
DKL(P0||P(θ1,...,θp))

)

≥ ∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

T/pp/2 − E0

[
T∑
t=1

p∏
i=1

(θ̂>i a
(t))

]
− T

√√√√∆2pE0

[
T∑
t=1

p∏
i=1

(θ̂>i a
(t))2

]
≥ ∆p

dp

dpT
p

p
2

− E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂>i a
(t))

− Td p
2 ∆p

√√√√√E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂>i a
(t))2

where the first step comes from

Regret ≥ E(θ1,...,θp)

[
T∆p/pp/2 −

T∑
t=1

p∏
i=1

(θ>i a
(t))

]
(the optimal action in hindsight is a = supp(θ1, . . . ,θp)/

√
p); the second step comes from

(θ1, . . . ,θp) = ∆ · (θ̂1, . . . , θ̂p) and algebra; the third step comes from
∣∣∣∑T

t=1

∏p
i=1(θ̂>i a

(t))
∣∣∣ ≤ T ;

the fourth step comes from Pinsker’s inequality; the fifth step comes from

DKL(P0||Pθ1,...,θp) = E0

[
T∑
t=1

DKL

(
N(0, 1)||N(

p∏
i=1

(θ>i a
(t)), 1)

)]

= ∆2pE0

[
T∑
t=1

p∏
i=1

(θ̂>i a
(t))2

]
and the final step comes from Jensen’s inequality and algebra.

38

Notice that

E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂>i a
(t))

 = E0

 ∑
(j1,...,jp)∈[d]p

T∑
t=1

p∏
i=1

(a
(t)
ji

)

= E0

 T∑
t=1

p∏
i=1

(

d∑
j=1

a
(t)
j)

≤ E0

[
T∑
t=1

p∏
i=1

‖a(t)‖1

]
≤ dp/2T

and

E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂>i a
(t))2

 = E0

 ∑
(j1,...,jp)∈[d]p

T∑
t=1

p∏
i=1

(a
(t)
ji

)2

= E0

[
T∑
t=1

p∏
i=1

‖a(t)‖22

]
≤ T

where we used ‖a(t)‖2 ≤ 1,∀t ∈ [T]. Therefore plugging back we have

R(d, p, T) ≥ ∆p

dp

(
dpT

p
p
2

− d
p
2 T − Td

p
2 ∆p
√
T

)
and finally letting ∆p =

√
dp

4Tpp leads to

R(d, p, T) ≥ O(
√
dpT/pp).

Remark G.1. Better result O(
√
dpT) holds for bandits r =

∏p
i=1(θ>i ai) + ε where ai ∈

Rd, ‖ai‖2 ≤ 1.

For completeness, we show the proof of the above remark.

Proof. We overload the notation and use [d] to denote the set {e1, e2, . . . , ed}. The hard instances
are chosen in ∆ · [d]p, i.e. (θ1, . . . ,θp) = ∆ · (θ̂1, . . . , θ̂p) where (θ̂1, . . . , θ̂p) ∈ [d]p. We use
a

(t)
i ∈ Rd to denote the i-th action in t-th episode, where i ∈ [p], t ∈ [T].

We use P(θ1,...,θp) to indicate the measure on outcomes induced by the interaction of the fixed policy
and the bandit paramterised by r =

∏p
i=1(θ>i ai) + ε. Specifically, We use P0 to indicate the measure

39

on outcomes induced by the interaction of the fixed policy and the pure noise bandit r = ε.
R(d, p, T)

≥ 1

dp

∑
(θ1,...,θp)∈∆·[d]p

E(θ1,...,θp)

[
T∆p −

T∑
t=1

p∏
i=1

(θ>i a
(t)
i)

]

=
∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

(
T − E(θ1,...,θp)

[
T∑
t=1

p∏
i=1

(θ̂>i a
(t)
i)

])

≥ ∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

(
T − E0

[
T∑
t=1

p∏
i=1

(θ̂>i a
(t)
i)

]
− T‖P0 − P(θ1,...,θp)‖TV

)

≥ ∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

(
T − E0

[
T∑
t=1

p∏
i=1

(θ̂>i a
(t)
i)

]
− T

√
DKL(P0||P(θ1,...,θp))

)

≥ ∆p

dp

∑
(θ1,...,θp)∈∆·[d]p

T − E0

[
T∑
t=1

p∏
i=1

(θ̂>i a
(t)
i)

]
− T

√√√√∆2pE0

[
T∑
t=1

p∏
i=1

(θ̂>i a
(t)
i)2

]
≥ ∆p

dp

dpT − E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂>i a
(t)
i)

− Td p
2 ∆p

√√√√√E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂>i a
(t)
i)2

where the first step comes from

Regret ≥ E(θ1,...,θp)

[
T∆p −

T∑
t=1

p∏
i=1

(θ>i a
(t)
i)

]
(the optimal action in hindsight is ai = θ̂i); the second step comes from (θ1, . . . ,θp) = ∆ ·
(θ̂1, . . . , θ̂p) and algebra; the third step comes from

∣∣∣∑T
t=1

∏p
i=1(θ̂>i a

(t)
i)
∣∣∣ ≤ T ; the fourth step

comes from Pinsker’s inequality; the fifth step comes from

DKL(P0||Pθ1,...,θp) = E0

[
T∑
t=1

DKL

(
N(0, 1)||N(

p∏
i=1

(θ>i a
(t)
i), 1)

)]

= ∆2pE0

[
T∑
t=1

p∏
i=1

(θ̂>i a
(t)
i)2

]
and the final step comes from Jensen’s inequality and algebra.

Notice that

E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂>i a
(t)
i)

 = E0

 ∑
(j1,...,jp)∈[d]p

T∑
t=1

p∏
i=1

(
(a

(t)
i)ji

)
= E0

 T∑
t=1

p∏
i=1

 d∑
j=1

(a
(t)
i)j

≤ E0

[
T∑
t=1

p∏
i=1

‖a(t)
i ‖1

]
≤ dp/2T

40

and

E0

 ∑
(θ̂1,...,θ̂p)∈[d]p

T∑
t=1

p∏
i=1

(θ̂>i a
(t)
i)2

 = E0

 ∑
(j1,...,jp)∈[d]p

T∑
t=1

p∏
i=1

(
(a

(t)
i)ji

)2

= E0

[
T∑
t=1

p∏
i=1

‖a(t)
i ‖

2
2

]
≤ T

where we used ‖a(t)
i ‖2 ≤ 1,∀t ∈ [T]. Therefore plugging back we have

R(d, p, T) ≥ ∆p

dp

(
dpT − d

p
2 T − Td

p
2 ∆p
√
T
)

and finally letting ∆p =
√

dp

4T leads to

R(d, p, T) ≥ O(
√
dpT).

We present the proof of Theorem 3.19 in the following.

Proof. Denote the optimal action in hindsight as a∗ = supp(θ1, . . . ,θp)/
√
p. From the proof of

Theorem 3.18 we know that if T ≤ 1
4pp ·

dp

∆2p , then

1

dp

∑
(θ1,...,θp)∈∆·[d]p

E(θ1,...,θp)

[
p∏
i=1

(θ>i a
∗)−

p∏
i=1

(θ>i a
(t))

]

≥ ∆p

dp

(
dp

p
p
2

− d
p
2 − d

p
2 ∆p
√
T

)
≥ ∆p

4p
p
2

≥ 1

4
· 1

dp

∑
(θ1,...,θp)∈∆·[d]p

E(θ1,...,θp)

[
p∏
i=1

(θ>i a
∗)

]
which indicates the following

inf
π

sup
(θ1,...,θp)

E(θ1,...,θp)

[
3

4
·
p∏
i=1

(θ>i a
∗)−

p∏
i=1

(θ>i a
(t))

]
≥ 0.

G.1 Noiseless Polynomial Reward

In this subsection, we study the regret bounds for learning bandits with noiseless polynomial rewards.
First we present the definition of admissible polynomial families.

Definition G.2 (Admissible Polynomial Family). For a ∈ Rd, define ã = [1,a>]>. For a algebraic
variety V ⊆ (Rd+1)⊗p, define RV := {rθ(a) = 〈θ, ã⊗p〉 : θ ∈ V} as the polynomial family with
parameters in V . We define the dimension of the familyRV as the algebraic dimension of V . Next,
define X :=

{
ã⊗p : a ∈ Rd

}
. An polynomial familyRV is said to be admissible5 w.r.t. X if for any

θ ∈ V , dim(X ∩ {X ∈ X : 〈X,θ〉 = 0〉}) < dim(X) = d.

G.1.1 Upper Bounds via Solving Polynomial Equations

We show that if the action set A is of positive measure with respect to the Lebesgue measure µ,
then by playing actions randomly, we can uniquely solve for the ground-truth reward function rθ(a)
almost surely with samples of size that scales with the intrinsic algebraic dimension of V , provided
that V is an admissible algebraic variety.

5Intuitively, admissibility means the dimension of X decreases by one when there is an additional linear
constraint 〈θ, X〉 = 0

41

Theorem G.3. Assume that the reward function class is an admissible polynomial familyRV , and
the maximum reward is upper bounded by 1. If µ(A) > 0, where µ is the Lebesgue meaure, then
by randomly sample actions a1, . . . ,aT from Pa∼N (0,Id)(·|a ∈ A), when T ≥ 2dim(V), we can
uniquely solve for the ground-truth θ and thus determine the optimal action almost surely. Therefore,
the cumulative regret at round T can be bounded as

R(T) ≤ min{T, 2dim(V)}.

We state two important examples of admissible polynomial families with O(d) dimensions.
Example G.4 (low-rank polynomials). The function classRV of possibly inhomogeneous degree-p
polynomials with k summandsRV = {r(a) =

∑k
i=1 λi〈vi,a〉pi | λi ∈ R,vi ∈ Rd} is admissible

with dim(RV) ≤ dk, where p = max{pi}. Neural network with monomial/polynomial activation
functions are low-rank polynomials.
Example G.5 ([18]). The function class RV = {r(a) = q(Ua) | U ∈ Rk×d,deg q(·) ≤ p} is
admissible with dim(V) ≤ dk + (k + 1)p.

G.1.2 Lower Bounds with UCB Algorithms

In this subsection, we construct a hard bandit problem where the rewards are noiseless degree-p
polynomial, and show that any UCB algorithm needs at least Ω(dp) actions to learn the optimal
action. On the contrary, Theorem G.3 shows that by playing actions randomly, we only need
2(dk + (p+ 1)p) = O(d) actions.

Hard Case Construction Let ei denotes the i-th standard orthonormal basis of Rd, i.e., ei
has only one 1 at the i-th entry and 0’s for other entries. We define a p-th multi-indices set Λ
as Λ = {(α1, . . . , αp)|1 ≤ α1 < · · · < αp ≤ d}. For an α = (α1, . . . , αp) ∈ Λ, denote Mα =

eα1
⊗· · ·⊗eαp

. Then the model spaceM is defined asM =
{
Mα|α ∈ Λ

}
, which is a subset of rank-

1 p-th order tensors. The action set A is defined as A = conv({eα1
+ · · ·+ eαp

|α ∈ Λ}). Assume
that the ground-truth parameter is M∗ = Mα∗ ∈ M. The noiseless reward rt = r(M∗,at) =
〈M∗, (at)

⊗p〉 =
∏p
i=1〈eα∗i ,at〉 is a polynomial of at and falls into the case of Example G.5.

UCB Algorithms The UCB algorithms sequentially maintain a confidence set Ct after playing
actions a1, . . . ,at. Then UCB algorithms play at+1 ∈ arg maxa∈AUCBt(a), where UCBt(a) =
maxM∈Ct〈M , (a)⊗p〉.
Theorem G.6. Assume that for each t ≥ 0, the confidence set Ct contains the ground-truth model,
i.e.,M∗ ∈ Ct. Then for the noiseless degree-p polynomial bandits, any UCB algorithm needs to play
at least

(
d
p

)
− 1 actions to distinguish models inM. Furthermore, the worst-case cumulative regret

at round T can be lower bounded by

R(T) ≥ min{T,
(
d

p

)
− 1}.

Theorem G.6 shows the failure of the optimistic mechanism, which forbids the algorithm to play
an informative action that is known to be of low reward for all models in the confidence set. On
the contrary, the reward function class falls into the form of q(Ua), therefore, by playing actions
randomly6, we only need O(d) actions as Theorem G.3 suggests.

6Careful readers may notice that A is of measure zero in this setting. However, since the reward function is a
homogenous polynomial of degree p, we can actually obtain the rewards on conv(A,0), which is of positive
measure.

42

	Introduction
	Related Work

	Preliminaries
	Setup: Structured Polynomial Bandit
	Warm-up: Adapting Existing Algorithms

	Main results
	Stochastic Eigenvalue Reward (FEV)
	Stochastic Low-rank Linear Bandits (FLR)
	RL with Simulator: Q-function is Quadratic and Bellman Complete

	Stochastic High-order Homogeneous Polynomial Reward
	The symmetric setting
	Lower Bounds for Stochastic Polynomial Bandits

	Omitted Related Work
	Additional Preliminaries
	Omitted Proofs for Quadratic Reward
	Omitted Proofs of Main Results for Stochastic Bandit Eigenvector Problem
	Omitted Details of Main Results of Low-Rank Linear Reward
	Technical Details for Quadratic Reward
	Omitted Proof for RL with Quadratic Q function

	Technical details for General Tensor Reward
	Technical Details for Symmetric Setting
	Proof Sketch of Theorem 3.14

	PAC to Regret Bound Relation.
	Variance and Noise Concentration
	The asymmetric setting

	Omitted Details for Asymmetric Tensors

	Proof of Theorem G.3
	Additional Notations
	Proof of Sample Complexity

	Omitted Proof for Lower Bounds with UCB Algorithms
	Proof for Theorem G.6
	O(d) Actions via Solving Polynomial Equations

	Proof of Section 3.3.2
	Noiseless Polynomial Reward
	Upper Bounds via Solving Polynomial Equations
	Lower Bounds with UCB Algorithms

