
Under review as a conference paper at ICLR 2019

STATISTICAL VERIFICATION OF NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a new approach to neural network verification based on estimating the
proportion of inputs for which a property is violated. Specifically, we estimate
the probability of the event that the property is violated under an input model.
This permits classic verification as a special case, for which one considers only
the question of whether this expectation is exactly zero or not. When the prop-
erty can be violated, our approach provides an informative notion of how robust
the network is, rather than just the conventional assertion that the network is not
verifiable. Furthermore, it provides an ability to scale to larger networks than
classical formal verification approaches. Key to achieving this is an adaptation
of multi-level splitting, a Monte Carlo approach for estimating the probability of
rare events, to our statistical verification framework. We demonstrate that our ap-
proach is able to emulate existing verification procedures on benchmark problems,
while scaling to larger networks and providing reliable additional information in
the form of accurate estimates of the violation probability.

1 INTRODUCTION

The robustness of deep neural networks must be guaranteed in mission-critical applications where
their failure could have severe real-world implications. This motivates the study of neural network
verification, in which one wishes to assert whether certain inputs in a given subdomain of the net-
work might lead to important properties being violated (Zakrzewski, 2001; Bunel et al., 2018). For
example, in a classification task, one might want to ensure that small perturbations of the inputs do
not lead to incorrect class labels being predicted (Szegedy et al., 2013; Goodfellow et al., 2015).
The classic approach to such verification has focused on answering the binary question of whether
there exist any counterexamples that violate the property of interest. We argue that this approach
has two major drawbacks. Firstly, it provides no notion of how robust a network is whenever a
counterexample can be found. Secondly, it creates a computational problem whenever no coun-
terexamples exist, as formally verifying this can be very costly and does not currently scale to the
size of networks used in many applications.
To give a demonstrative example, consider a neural network for classifying objects in the path of an
autonomous vehicle. It will almost certainly be infeasible to train such a network that is perfectly ro-
bust to misclassification. Furthermore, because the network will most likely need to be of significant
size to be effective, it is unlikely to be tractable to formally verify the network is perfectly robust,
even if such a network exists. Despite this, it is still critically important to assess the robustness of
the network, so that manufacturers can decide whether it is safe to deploy.
To address the shortfalls of the classic approach, we develop a new measure of intrinsic robustness
of neural networks based on the probability that a property is violated under an input distribution
model. Our measure is based on two key insights. The first is that for many, if not most, applications,
full formal verification is neither necessary nor realistically achievable, such that one actually desires
a notion of how robust a network is to a set of inputs, not just a binary answer as to whether it is
robust or not. The second is that most practical applications have some acceptable level of risk, such
that it is sufficient to show that the probability of a violation is below a certain threshold, rather than
confirm that this probability is exactly zero.
By providing a probability of violation, our approach is able to address the needs of applications such
as our autonomous vehicle example. If the network is not perfectly robust, it provides an explicit
measure of exactly how robust the network is. If the network is perfectly robust, it is still able to
tractability assert that a violation event is “probably-unsatisfiable”. That is it is able to statistically

1

Under review as a conference paper at ICLR 2019

conclude that the violation probability is below some tolerance threshold to true zero, even for large
networks for which formal verification would not be possible.
Calculating the probability of violation is still itself a computationally challenging task, correspond-
ing to estimating the value of an intractable integral. In particular, in most cases, violations of the
target property constitute (potentially extremely) rare events. Consequently, the simple approach
of constructing a direct Monte Carlo estimate by sampling from the input model and evaluating
the property will be expensive and only viable when the event is relatively common. To address
this, we adapt an algorithm from the Monte Carlo literature, adaptive multi-level splitting (AMLS)
(Guyader et al., 2011; Nowozin, 2015), to our network verification setting. AMLS is explicitly de-
signed for prediction of rare events and our adaptation means that we are able to reliably estimate
the probability of violation, even when the true value is extremely small.
Our resulting framework is easy to implement, scales linearly in the cost of the forward operation
of the neural network, and is agnostic both to the network architecture and input model. Assump-
tions such as piecewise linearity, Lipschitz continuity, or a specific network form are not required.
Furthermore, it produces a diversity of samples which violate the property as a side-product. To
summarize, our main contributions are:

• Reframing neural network verification as the estimation of the probability of a violation,
thereby providing a more informative robustness metric for non-verifiable networks;

• Adaptation of the AMLS method to our verification framework to allow the tractable esti-
mation of our metric for large networks and rare events;

• Validation of our approach on several models and datasets from the literature.

2 RELATED WORK

The literature on neural network robustness follows two main threads. In the optimization com-
munity, researchers seek to formally prove that a property holds for a neural network by framing it
as a satisfiability problem (Zakrzewski, 2001), which we refer to as the classical approach to ver-
ification. Such methods have only been successfully scaled beyond one hidden layer networks for
piecewise linear networks (Cheng et al., 2017; Katz et al., 2017), and even then these solutions do
not scale to, for example, common image classification architectures with input dimensions in the
hundreds, or apply to networks with nonlinear activation functions (Bunel et al., 2018). Other work
has sought approximate solutions in the same general framework but still does not scale to larger
networks (Pulina & Tacchella, 2010; Xiang et al., 2018; Huang et al., 2017b). As the problem is
NP-hard (Katz et al., 2017), it is unlikely that an algorithm exists with runtime scaling polynomially
in the number of network nodes.
In the deep learning community, research has focused on constructing and defending against adver-
sarial attacks, and by estimating the robustness of networks to such attacks. Weng et al. (2018b)
recently constructed a measure for robustness to adversarial attacks estimating a lower bound on the
minimum adversarial distortion, that is the smallest perturbation required to create an adversarial
example. Though the approach scales to large networks, the estimate of the lower bound is often
demonstratively incorrect: it is often higher than an upper bound on the minimum adversarial distor-
tion (Goodfellow, 2018). Other drawbacks of the method are that it cannot be applied to networks
that are not Lipschitz continuous, it requires an expensive gradient computation for each class per
sample, does not produce adversarial examples, and cannot be applied to non-adversarial proper-
ties. The minimum adversarial distortion is also itself a somewhat unsatisfying metric for many
applications, as it conveys little information about the prevalence of adversarial examples.
In other work spanning both communities (Gehr et al., 2018; Weng et al., 2018a; Wong & Kolter,
2018), researchers have relaxed the satisfiability problem of classical verification, and are able to
produce certificates-of-robustness for some samples (but not all that are robust) by giving a lower-
bound on the minimal adversarial distortion. Despite these methods scaling beyond formal verifica-
tion, we note that this is still a binary measure of robustness with limited informativeness.

3 MOTIVATING EXAMPLES

To help elucidate our problem setting, we consider the ACASXU dataset (Katz et al., 2017) from
the formal verification literature. A neural network is trained to predict one of five correct steering
decisions, such as “hard left,” “soft left,” etc., for an unmanned aircraft to avoid collision with a

2

Under review as a conference paper at ICLR 2019

second aircraft. The inputs x describe the positions, orientations, velocities, etc. of the two aircraft.
Ten interpretable properties are specified along with corresponding constraints on the inputs, for
which violations correspond to events causing collisions. Each of these properties is encoded in
a function, s, such that it is violated when s(x) ≥ 0. The formal verification problem asks the
question, “Does there exist an input x ∈ E ⊆ X in a constrained subset, E , of the domain such that
the property is violated?” If there exists a counterexample violating the property, we say that the
property is satisfiable (SAT), and otherwise, unsatisfiable (UNSAT).
Another example is provided by adversarial properties from the deep learning literature on datasets
such as MNIST. Consider a neural network fθ(x) = Softmax(z(x)) that classifies images, x, into
C classes, where the output of f gives the probability of each class. Let δ be a small perturbation
in an lp-ball of radius ε, that is, ‖δ‖p < ε. Then x = x′ + δ is an adversarial example for x′ if
argmaxi z(x)i 6= argmaxi z(x

′)i, i.e. the perturbation changes the prediction. Here, the property
function is s(x) = maxi 6=c (z(x)i − z(x)c), where c = argmaxj z(x

′)j and s(x) ≥ 0 indicates
that x is an adversarial example. Our approach subsumes adversarial properties as a specific case.

4 ROBUSTNESS METRIC

The framework for our robustness metric is very general, requiring only a) a neural network fθ,
b) a property function s(x; f, φ), and c) an input model p(x). Together these define an integration
problem, with the main practical challenge being the estimation of this integral. Consequently,
the method can be used for any neural network. The only requirement is that we can evaluate the
property function, which typically involves a forward pass of the neural network.
The property function, s(x; fθ, φ), is a deterministic function of the input x, the trained network fθ,
and problem specific parameters φ. For instance, in the MNIST example, φ = argmaxi fθ(x

′)i is
the true output of the unperturbed input. Informally, the property reflects how badly the network is
performing with respect to a particular property. More precisely, the event

E , {s(x; fθ, φ) ≥ 0} (1)

represents the property being violated. Predicting the occurrence of these, typically rare, events will
be the focus of our work. We will omit the dependency on fθ and φ from here on for notional
conciseness, noting that these are assumed to be fixed and known for verification problems.
The input model, p(x), is a distribution over the subset of the input domain that we are con-
sidering for counterexamples. For instance, for the MNIST example we could use p(x;x′) ∝
1 (‖x− x′‖p ≤ ε) to consider uniform perturbations to the input around an lp-norm ball with ra-
dius ε. More generally, the input model can be used to place restrictions on the input domain and
potentially also to reflect that certain violations might be more damaging than others.
Together, the property function and input model specify the probability of failure through the integral

I [p, s] , PX∼p(·) (s(X) ≥ 0) =

∫
X
1{s(x)≥0}p(x)dx. (2)

This integral forms our measure of robustness. The integral being equal to exactly zero corresponds
to the classical notion of a formally verifiable network. Critically though, it also provides a measure
for how robust a non-formally-verifiable network is.

5 METRIC ESTIMATION

Our primary goal is to estimate (2) in order to obtain a measure of robustness. Ideally, we also wish
to generate example inputs which violate the property. Unfortunately, the event E is typically very
rare in verification scenarios. Consequently, the estimating the integral directly using Monte Carlo,

P̂X∼p(·) (s(X) ≥ 0) =
1

N

∑N

n=1
1{s(xn)≥0}, where xn

i.i.d.∼ p(·) (3)

is typically not feasible for real problems, requiring an impractically large number of samples to
achieve a reasonable accuracy. Even whenE is not a rare event, we desire to estimate the probability
using as few forward passes of the neural network as possible to reduce computation. Furthermore,
the dimensionality of x is typically large for practical problems, such that it is essential to employ a
method that scales well in dimensionality. Consequently many of the methods commonly employed

3

Under review as a conference paper at ICLR 2019

for such problems, such as the cross-entropy method (Rubinstein, 1997; De Boer et al., 2005), are
inappropriate due to relying on importance sampling, which is well known to scale poorly.
As we will demonstrate empirically, a less well known but highly effective method from the statistics
literature, adaptive multi-level splitting (AMLS) (Kahn & Harris, 1951; Guyader et al., 2011), can
be readily adapted to address all the aforementioned computational challenges. Specifically, AMLS
is explicitly designed for estimating the probability of rare events and our adaptation is able to
give highly accurate estimates even when the E is very rare. Furthermore, as will be explained
later, AMLS also allows the use of MCMC transitions, meaning that our approach is able to scale
effectively in the dimensionality of x. A further desirable property of AMLS is that it produces
property-violating examples as a side product, namely, it produces samples from the distribution

π(x) , p(x | E) = p(x)1{s(x)≥0}
/
I [p, s] . (4)

Such samples could, in theory, be used to perform robust learning, in a similar spirit to Goodfellow
et al. (2015) and Madry et al. (2017).

5.1 MULTI-LEVEL SPLITTING

Multi-level splitting (Kahn & Harris, 1951) divides the problem of predicting the probability of a
rare event into several simpler ones. Specifically, we construct a sequence of intermediate targets,

πk(x) , p(x | {s(x) ≥ Lk}) ∝ p(x)1{s(x)≥Lk}, k = 0, 1, 2, . . . ,K,

for levels, −∞ = L0 < L1 < L2 < · · · < LK = 0, to bridge the gap between the input model
p(x) and the target π(x). For any choice of the intermediate levels, we can now represent equation
(2) through the following factorization,

PX∼p(·) (s(X) ≥ 0) =
∏K

k=1
P (s(X) ≥ Lk | s(X) ≥ Lk−1) =

∏K

k=1
Pk,

where Pk , EX∼πk−1(·)
[
1{s(X)≥Lk}

]
.

(5)

Provided consecutive levels are sufficiently close, we will be able to reliably estimate each Pk by
making use of the samples from one level to initialize the estimation of the next.

Our approach starts by first drawing N samples, {x(0)
n }Nn=1, from π0(·) = p(·), noting that this

can be done exactly because the perturbation model is known. These samples can then be used to
estimate P1 using simple Monte Carlo,

P1 ≈ P̂1 ,
1

N

∑N

n=1
1{s(x(0)

n)≥L1}
where x(0)

n ∼ π0(·).

In other words, P1 is the fraction of these samples whose property is greater than L1. Critically,
by ensuring the value of L1 is sufficiently small for {s(xn) ≥ L1} to be a common event, we can
ensure P̂1 is a reliable estimate for moderate numbers of samples N .
To estimate the other Pk, we need to be able to draw samples from πk−1(·). For this we note that
if {x(k−2)

n }Nn=1 are distributed according to πk−2(·), then the subset of these samples for which
s(x

(k−2)
n) ≥ Lk−1 are distributed according to πk−1(·). Furthermore, setting Lk−1 up to ensure

this event is not rare means a significant proportion of the samples will satisfy this property.
To avoid our set of samples shrinking from one level to the next, it is necessary to carry out a rejuve-
nation step to convert this smaller set of starting samples to a full set of size N for the next level. To
do this, we first carry out a uniform resampling with replacement from the set of samples satisfying
s(x

(k−1)
n) ≥ Lk to generate a new set of N samples which are distributed according to πk(·), but

with a large number of duplicated samples. Starting with these samples, we then successively apply
M Metropolis–Hastings (MH) transitions targeting πk(·) separately to each sample to produce a
fresh new set of samples {x(k)

n }Nn=1 (see Appendix A for full details). These samples can then in
turn be used to form a Monte Carlo estimate for Pk,

Pk ≈ P̂k ,
1

N

∑N

n=1
1{s(x(k−1)

n)≥Lk}
where x(k−1)

n ∼ πk−1(·), (6)

along with providing the initializations for the next level. Running more MH transitions decreases
the correlations between the set of samples, improving the performance of the estimator.

4

Under review as a conference paper at ICLR 2019

Algorithm 1 Adaptive multi-level splitting with termination criterion

1: Input: Input model p(x), sample quantile ρ, MH proposal g(x′|x), number of MH steps M , termination
threshold log(Pmin)

2: Sample {x(0)
n }Nn=1 i.i.d. from p(·)

3: Initialize L← −∞, Lprev ← −∞, log(I)← 0, k ← 0

4: while L < 0 do
5: k ← k + 1

6: Evaluate and sort {s(x(k−1)
n)}Nn=1 in descending order

7: Lk ← min{0, s(x(k−1)

bρNc)} . Updating the level

8: P̂k ← #{x(k−1)
n | s(x(k−1)

n) ≥ L} /N
9: log(I)← log(I) + log(P̂k) . Updating integral estimate

10: if log(I) < log(Pmin) then return (∅,−∞) end if . Final estimate will be less than log(Pmin)

11: Initialize {x(k)
n }Nn=1 by resampling with replacement N times from {x(k−1)

n | s(x(k−1)
n) ≥ L}

12: Apply M MH updates separately to each x
(k)
n using g(x′|x)

13: [Optional] Adapt g(x′|x) based on MH acceptance rates
14: end while
15: return ({x(k)

n }Nn=1, log(I))

We have thus far omitted to discuss how the levels Lk are set, other than asserting the need for
the levels to be sufficiently close to allow reliable estimation of each Pk. Presuming that we are
also free to choose the number of levels K, there is inevitably a trade-off between ensuring that
each {s(X) ≥ Lk} is not rare given {s(X) ≥ Lk−1}, and keeping the number of levels small to
reduce computational costs and avoid the build-up of errors. AMLS (Guyader et al., 2011) builds
on the basic multi-level splitting process, providing an elegant way of controlling this trade-off by
adaptively selecting the level to be the minimum of 0 and some quantile of the property under the
current samples. The approach terminates when the level reaches zero, such that LK = 0 and K is
a dynamic parameter chosen implicitly by the adaptive process.
Choosing the ρth quantile of the values of the property results in discarding a fraction (1− ρ) of the
chains at each step of the algorithm. This allows explicit control of the rarity of the events to keep
them at a manageable level. We note that if all the sample property values are distinct, then this
approach gives Pk = ρ, ∀k < K. To give intuition to this, we can think about splitting up log(I)
into chunks of size log(ρ). For any value of log(I), there is always a unique pair of values {K,PK}
such that log(I) = K log(ρ) + log(PK), K ≥ 0 and PK < ρ. Therefore the problem of estimating
I is equivalent to that of estimating K and PK .

5.2 TERMINATION CRITERION

The application of AMLS to our verification problem presents a significant complicating factor in
that the true probability of our rare event might be exactly zero. Whenever this is the case, the
basic AMLS approach outlined in (Guyader et al., 2011) will never terminate as the quantile of the
property will never rise above zero; the algorithm simply produces closer and closer intermediate
levels as it waits for the event to occur.
To deal with this, we introduce a termination criterion based on the observation that AMLS’s running
estimate for I monotonically decreases during running. Namely, we introduce a threshold probabil-
ity, Pmin, below which the estimates will be treated as being numerically zero. We then terminate
the algorithm if I < Pmin and return I = 0, safe in the knowledge that even if the algorithm would
eventually generate a finite estimate for I, this estimate is guaranteed to be less than Pmin.
Putting everything together, gives the complete method as shown in Algorithm 1. See Appendix B
for low-level implementation details.

6 EXPERIMENTS

6.1 EMULATION OF FORMAL VERIFICATION

In our first experiment, we aim to test whether our statistical verification framework is able to ef-
fectively emulate formal verification approaches, while providing additional robustness information

5

Under review as a conference paper at ICLR 2019

0 50 100 150

property id

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

1
0
(I

)

naive MC

M = 1000, ρ = 0.1

(a)

50 100 150

property id

0.00

0.05

0.10

0.15

0.20

∆
lo

g
1
0
I

M = 1000

ρ = 0.5

ρ = 0.25

ρ = 0.1

(b)

50 100 150

property id

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

∆
lo

g
1
0
I

ρ = 0.1

M = 100

M = 250

M = 1000

(c)

Figure 1: (a) Estimate of I for all SAT properties of COLLISIONDETECTION problem. Error bars
indicating ± three standard errors from 30 runs are included here and throughout, but the variance
of the estimates was so small that these are barely visible. We can further conclude low bias of our
method for the properties where naive MC estimation was feasible, due to the fact that naive MC
produces unbiased (but potentially high variance) estimates. (b) Mean AMLS estimate relative to
naive MC estimate for different ρ holdingM = 1000 fixed, for those properties with log10 I > −6.5
such that they could be estimated accurately. The bias decreases both as ρ and the rareness of the
event decrease. (c) As per (b) but with varying M and holding ρ = 0.1 fixed.

for SAT properties. In particular, we want to test whether it reliably identifies properties as being
UNSAT, for which I = 0, or SAT, for which I > 0. We note that the method still provides a formal
demonstration for SAT properties because having a non-zero estimate for I indicates that at least
one counterexample has been found. Critically, it further provides a measure for how robust SAT
properties are, through its estimate for I.
We used the COLLISIONDETECTION dataset introduced in the formal verification literature by
(Ehlers, 2017). It consists of a neural network with six inputs that has been trained to classify
two car trajectories as colliding or non-colliding. The architecture has 40 linear nodes in the first
layer, followed by a layer of max pooling, a ReLU layer with 19 hidden units, and an output layer
with 2 hidden units. Along with the dataset, 500 properties are specified for verification, of which
172 are SAT and 328 UNSAT. This dataset was chosen because the model is small enough so that the
properties can be formally verified. These formal verification methods do not calculate the value of
I, but rather confirm the existence of a counterexample for which s(x) > 0.
We ran our approach on all 500 properties, setting ρ = 0.1, N = 104, M = 1000 (the choice
of these hyperparameters will be justified in the next subsection), and using a uniform distribution
over the input constraints as the perturbation model, along with a uniform random walk proposal.
We compared our metric estimation approach against the naive Monte Carlo estimate using 1010

samples. The generated estimates of I for all SAT properties are shown in Figure 1a.
Both our approach and the naive MC baseline correctly identified all of the UNSAT properties by
estimating I as exactly zero. However, despite using substantially more samples, naive MC failed
to find a counterexample for 8 of the rarest SAT properties, thereby identifying them as UNSAT,
whereas our approach found a counterexample for all the SAT properties. As shown in Figure 1a,
the variances in the estimates for I of our approach were also very low and matched the unbiased
MC baseline estimates for the more commonly violated properties, for which the latter approach
still gives reliable, albeit less efficient, estimates. Along with the improved ability to predict rare
events, our approach was also significantly faster than naive MC throughout, with a speed up of
several orders of magnitude for properties where the event is not rare—a single run with naive MC
took about 3 minutes, whereas a typical run of ours took around 3 seconds.

6.2 SENSITIVITY TO PARAMETER SETTINGS

As demonstrated by Bréhier et al. (2015), AMLS is unbiased under the assumption that perfect sam-
pling from the targets, {πk}K−1k=1 , is possible, and that the cumulative distribution function of s(X)
is continuous. In practice, finite mixing rates of the Markov chains and the dependence between the
initialization points for each target means that sampling is less than perfect, but improves with larger
values of M and N . The variance, on the other hand, theoretically strictly decreases with larger
values of N and ρ (Bréhier et al., 2015).

6

Under review as a conference paper at ICLR 2019

MNIST

0.25 0.30 0.35 0.40 0.45

ε

−20

−15

−10

−5

0

lo
g

1
0
(I

)

M = 1000

naive MC

0.25 0.30 0.35 0.40 0.45

ε

−1.5

−1.0

−0.5

0.0

0.5

1.0

∆
lo

g
1
0
(I

)

M = 100

M = 250

CIFAR–10

0.04 0.05 0.06 0.07 0.08

ε

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g

1
0
(I

)

M = 2000

naive MC

0.04 0.05 0.06 0.07 0.08

ε

−1

0

1

2

3

4

5

6

∆
lo

g
1
0
(I

)

M = 100

M = 250

M = 500

M = 1000

CIFAR–100

0.02 0.03 0.04 0.05 0.06 0.07 0.08

ε

−8

−7

−6

−5

−4

−3

−2

−1

0

lo
g

1
0
(I

)

M = 2000

naive MC

0.02 0.03 0.04 0.05 0.06 0.07 0.08

ε

0

1

2

3

4

∆
lo

g
1
0
(I

)
M = 100

M = 250

M = 500

M = 1000

Figure 2: [Left] Estimates for I on adversarial properties of a single datapoint with ρ = 0.1, and
N ∈ {10000, 10000, 300} for MNIST/CIFAR–10/CIFAR–100 respectively. As in Figure 1, the error
bars from 30 runs are barely visible, highlighting a very low variance in the estimates, while the
close matching to the naive MC estimates when ε is large enough to make the latter viable, indicate a
very low bias. For CIFAR–100 the error bars are shown for the naive estimates, as well, from 10 runs.
[Right] The difference in the estimate for the other values of M from M ∈ {1000, 2000, 2000} for
MNIST/CIFAR–10/CIFAR–100, respectively. The estimate steadily converges as M increases, with
larger M more important for rarer events.

In practice, we found that while larger values of M and N were always beneficial, setting ρ too high
introduced biases into the estimate, with ρ = 0.1 empirically providing a good trade-off between
bias and variance. Furthermore, this provides faster run times than large values of ρ, noting that the
smaller values of ρ lead to larger gaps in the levels.
To investigate the effect of the parameters more formally, we further ran AMLS on the SAT
properties of COLLISIONDETECTION, varying ρ ∈ {0.1, 0.25, 0.5}, N ∈ {103, 104, 105} and
M ∈ {100, 250, 1000}, again comparing to the naive MC estimate for 1010 samples. We found
that the value of N did not make a discernible difference in this range regardless of the values for
ρ and M , and thus all presented results correspond to setting N = 104. As shown in Figure 1b,
we found that the setting of ρ made a noticeable difference to the estimates for the relatively rarer
events. All the same, these differences were small relative to the differences between properties. As
shown in Figure 1c, the value of M made little difference when ρ = 0.1,. Interesting though, we
found that the value of M was important for different values of ρ, as shown in Appendix C.1, with
larger values of M giving better results as expected.

7

Under review as a conference paper at ICLR 2019

6.3 CONVERGENCE WITH HIGHER-DIMENSIONAL INPUTS AND LARGER NETWORKS

To validate the algorithm on a higher-dimensional problem, we first tested adversarial properties on
the MNIST and CIFAR–10 datasets using a dense ReLU network with two hidden-layer of size 256.
An l∞-norm ball perturbation around the data point with width ε was used as the uniform input
model, with ε = 1 representing an l∞-ball filling the entire space (the pixels are scaled to [0, 1]),
together with a uniform random walk MH proposal. After training the classifiers, multilevel splitting
was run on ten samples from the test set at multiple values of ε, with N = 10000 and ρ = 0.1, and
M ∈ {100, 250, 1000} for MNIST andM ∈ {100, 250, 500, 1000, 2000} for CIFAR–10. The results
for naive MC were also evaluated using 5× 109 samples—less than the previous experiment as the
larger network made estimation more expensive—in the cases where the event was not too rare. This
took around twenty minutes per naive MC estimate, versus a few minutes for each AMLS estimate.
As the results were similar across datapoints, we present the result for a single example in the top
two rows of Figure 2. As desired, a smooth curve is traced out as ε decreases, for which the event E
becomes rarer. For MNIST, acceptable accuracy is obtained for M = 250 and high accuracy results
for M = 1000. For CIFAR–10, which has about four times the input dimension of MNIST, larger
values of M were required to achieve comparable accuracy. The magnitude of ε required to give a
certain value of log(I) is smaller for CIFAR–10 than MNIST, reflecting that adversarial examples for
the former are typically more perceptually similar to the datapoint.
To demonstrate that our approach can be employed on large networks, we tested adversarial prop-
erties on the CIFAR–100 dataset and a much larger DenseNet architecture (Huang et al., 2017a),
with depth and growth-rate 40 (approximately 2 × 106 parameters). Due to the larger model size,
we set N = 300, the largest minibatch that could be held in memory (a larger N could be used by
looping over minibatches). The naive Monte Carlo estimates used 5 × 106 samples for about an
hour of computation time per estimate, compared to between five to fifteen minutes for each AMLS
estimate. The results are presented in the bottom row of Figure 2, showing that our algorithm agrees
with the naive Monte Carlo estimate.

6.4 ROBUSTNESS OF PROVABLE DEFENSES DURING TRAINING

We now examine how our robustness metric varies for a ReLU network as that network is trained to
be more robust against norm bounded perturbations to the inputs using the method of Wong & Kolter
(2018). Roughly speaking, their method works by approximating the set of outputs resulting from
perturbations to an input with a convex outer bound, and minimizing the worst case loss over this
set. The motivation for this experiment is twofold. Firstly, this training provides a series of networks
with ostensibly increasing robustness, allowing us to check if our approach produces robustness
estimates consistent with this improvement. Secondly, it allows us to investigate whether the training
to improve robustness for one type of adversarial attack helps to protect against others. Specifically,
whether training for small perturbation sizes improves robustness to larger perturbations.
We train a CNN model on MNIST for 100 epochs with the standard cross-entropy loss, then train the
network for a further 100 epochs using the robust loss of Wong & Kolter (2018), saving a snapshot
of the model at each epoch. The architecture is the same as in (Wong & Kolter, 2018), containing
two strided convolutional layers with 16 and 32 channels, followed by two fully connected layers
with 100 and 10 hidden units, and ReLU activations throughout. The robustification phase trains the
classifier to be robust in an l∞ ε-ball around the inputs, where ε is annealed from 0.01 to 0.1 over
the first 50 epochs. At a number of epochs during the robust training, we calculate our robustness
metric with ε ∈ {0.1, 0.2, 0.3} on 50 samples from the test set. The results are summarized in Figure
3a with additional per-sample results in Appendix C.2. We see that our approach is able to capture
variations in the robustnesses of the network.
As the method of Wong & Kolter (2018) returns the maximum value of the property for each sample
over a convex outer bound on the perturbations, it is able to produce certificates-of-robustness for
some datapoints. If the result returned is less than 0 then no adversarial examples exist in an l∞ ball
of radius ε around that datapoint. If the result returned is greater than 0, then the datapoint may or
may not be robust in that l∞ ball, due to fact that it optimizes over an outer bound.
Though we emphasize that the core aim of our approach is in providing richer information for SAT
properties, this provides an opportunity to see how well it performs at establishing UNSAT properties
relative to a more classical approach. To this end, we compared the fraction of the 50 samples from
the test set that are verified by the method of Wong & Kolter (2018), to the fraction that have a

8

Under review as a conference paper at ICLR 2019

0 20 40 60 80 100

epoch

−100

−80

−60

−40

−20

0

lo
g

1
0
(I

)

ε = 0.3

ε = 0.2

ε = 0.1

(a) Variation in I during robustness training

0 20 40 60 80 100

epoch

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n

ce
rt

ifi
ed

AMLS ε = 0.3

AMLS ε = 0.2

AMLS ε = 0.1

W&K ε = 0.1

(b) Fraction of datapoints declared UNSAT

Figure 3: (a) Variation in I during the robustness training of on a CNN model for MNIST for three
different perturbation sizes ε. Epoch 0 corresponds to the network after conventional training, with
further epochs corresponding to iterations of robustness training. The solid line indicates the median
over 50 datapoints, and the limits of the shaded regions the 25 and 75 percentiles. Our measure is
capped at Pmin = exp(−250). We see that while training improves robustness for ε = 0.2, the initial
network is already predominantly robust to perturbations of size ε = 0.1, while the robustness to
perturbations of size ε = 0.3 actually starts to decrease after around 20 epochs. (b) Comparing the
fraction of 50 datapoints for which Wong & Kolter (2018) produces a certificate-of-robustness for
ε = 0.1 (“W&K”), versus the fraction of those samples for which I = Pmin for ε ∈ {0.1, 0.2, 0.3}
(“AMLS”). Due to very heavy memory requirements, it was computationally infeasible to calculate
certificates-of-robustness for ε = {0.2, 0.3}, and ε = 0.1 before epoch 32 with the method of Wong
& Kolter (2018). Our metric, however, suffers no such memory issues.

negligible volume of adversarial examples, I = Pmin, in their l∞ ε-ball neighbourhood. The results
are presented in Figure 3b.
Our method forms an upper bound on the fraction of robust samples, which can be made arbitrarily
tighter by taking Pmin → 0. Wong & Kolter (2018), on the other hand, forms a lower bound on the
fraction of robust samples, where the tightness of the bound depends on the tightness of the convex
outer bound, which is unknown and cannot be controlled. Though the true value must lie somewhere
between the two bounds, our bound still holds physical meaning it its own right in a way that Wong
& Kolter (2018) does not: it is the proportion of samples for which the prevalence of violations is
less than an a given acceptable threshold Pmin.
This experiment also highlights an important shortcoming of Wong & Kolter (2018). The memory
usage of their procedure depends on how many ReLU activations cross their threshold over per-
turbations. This is high during initial training for ε = 0.1 and indeed the reason why the training
procedure starts from ε = 0.01 and gradually anneals to ε = 0.1. The result is that it is infeasible
(the GPU memory is exhausted)—even for this relatively small model—to calculate the maximum
value of the property on the convex outer bound for ε ∈ {0.2, 0.3} at all epochs, and ε = 0.1 for
epochs before 32. Even in this restricted setting where our metric has been reduced to a binary one,
it appears to be more informative than that of Wong & Kolter (2018) for this reason.

7 DISCUSSION

We have introduced a new measure for the intrinsic robustness of a neural network, and have val-
idated its utility on several datasets from the formal verification and deep learning literatures. Our
approach was able to exactly emulate formal verification approaches for satisfiable properties and
provide high confidence, accurate predictions for properties which were not. The two key advan-
tages it provides over previous approaches are: a) providing an explicit and intuitive measure for
how robust networks are to satisfiable properties; and b) providing improved scaling over classical
approaches for identifying unsatisfiable properties.
Going forward, an interesting avenue that could be exploited further is the fact that our approach
has the highly desirable property of producing a diverse set of counterexamples as a by-product. In
many cases these are likely to be of notable interest in themselves, for example, potentially paving
the way for new approaches to training robust networks and protecting against adversarial attacks.

9

Under review as a conference paper at ICLR 2019

REFERENCES

Charles-Edouard Bréhier, Tony Lelièvre, and Mathias Rousset. Analysis of adaptive multilevel
splitting algorithms in an idealized case. ESAIM: Probability and Statistics, 19:361–394, 2015.

Rudy Bunel, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli, and M. Pawan Kumar. A unified
view of piecewise linear neural network verification. arXiv preprint arXiv:1711.00455v3 [cs.AI],
2018.

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Verification of binarized neural networks.
arXiv preprint arXiv:1710.03107, 2017.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Interna-
tional Symposium on Automated Technology for Verification and Analysis, pp. 269–286. Springer,
2017.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar-
tin Vechev. Ai 2: Safety and robustness certification of neural networks with abstract interpreta-
tion. In Security and Privacy (SP), 2018 IEEE Symposium on, 2018.

Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain Monte Carlo in practice.
Chapman and Hall/CRC, 1995.

Ian Goodfellow. Gradient masking causes clever to overestimate adversarial perturbation size. arXiv
preprint arXiv:1804.07870, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2015.

Arnaud Guyader, Nicolas Hengartner, and Eric Matzner-Løber. Simulation and estimation of ex-
treme quantiles and extreme probabilities. Applied Mathematics & Optimization, 64(2):171–196,
2011.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, volume 1, pp. 3, 2017a.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep neu-
ral networks. In International Conference on Computer Aided Verification, pp. 3–29. Springer,
2017b.

H. Kahn and T.E. Harris. Estimation of particle transmission by random sampling. National Bureau
of Standards applied mathematics series, 12:27–30, 1951.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In International Conference on Computer
Aided Verification, pp. 97–117. Springer, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Sebastian Nowozin. Multilevel splitting. http://www.nowozin.net/sebastian/blog/
multilevel-splitting.html, 2015.

Luca Pulina and Armando Tacchella. An abstraction-refinement approach to verification of artificial
neural networks. In International Conference on Computer Aided Verification, pp. 243–257.
Springer, 2010.

Gareth O Roberts, Andrew Gelman, Walter R Gilks, et al. Weak convergence and optimal scaling
of random walk metropolis algorithms. The annals of applied probability, 7(1):110–120, 1997.

10

http://www.nowozin.net/sebastian/blog/multilevel-splitting.html
http://www.nowozin.net/sebastian/blog/multilevel-splitting.html

Under review as a conference paper at ICLR 2019

Reuven Y Rubinstein. Optimization of computer simulation models with rare events. European
Journal of Operational Research, 99(1):89–112, 1997.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit S
Dhillon, and Luca Daniel. Towards fast computation of certified robustness for relu networks.
arXiv preprint arXiv:1804.09699, 2018a.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and
Luca Daniel. Evaluating the robustness of neural networks: An extreme value theory approach.
arXiv preprint arXiv:1801.10578, 2018b.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning, pp. 5283–5292, 2018.

Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. Output reachable set estimation and
verification for multilayer neural networks. IEEE transactions on neural networks and learning
systems, (99):1–7, 2018.

Radosiaw R Zakrzewski. Verification of a trained neural network accuracy. In Neural Networks,
2001. Proceedings. IJCNN’01. International Joint Conference on, volume 3, pp. 1657–1662.
IEEE, 2001.

11

Under review as a conference paper at ICLR 2019

APPENDIX

A METROPOLIS–HASTINGS

Metropolis–Hastings (MH) is an MCMC method that allows for sampling when one only has ac-
cess to an unnormalized version of the target distribution (Gilks et al., 1995). At a high-level, one
attempts iteratively proposes local moves from the current location of a sampler and then accepts or
rejects this move based on the unnormalized density. Each iteration of this process is known as a
MH transition.
The unnormalized targets distributions of interest for our problem are γk(x) where

πk(x) ∝ γk(x) = p(x)1{s(x)≥Lk}, k = 1, 2, . . . ,K.

A MH transition now consists of proposing a new sample using a proposal x′ ∼ g(x′ | x), where
x indicates the current state of the sampler and x′ the proposed state, calculating an acceptance
probability,

Ak(x
′ | x) , min

{
1,
γk(x

′)g(x | x′)
γk(x)g(x′ | x)

}
, (7)

and accepting the new sample with probability Ak(x′ | x), returning the old sample if the new one
is rejected. The proposal, g(x′ | x), is a conditional distribution, such as a normal distribution cen-
tred at x with fixed covariance matrix. Successive applications of this transition process generates
samples which converge in distribution to the target πk(x) and whose correlation with the starting
sample diminishes to zero.
In our approach, these MH steps are applied independently to each sample in the set, while the only
samples used for the AMLS algorithm are the final samples produced from the resulting Markov
chains.

B IMPLEMENTATION DETAILS

Algorithm 1 has computational cost O(NMK), where the number of levels K will depend on
the rareness of the event, with more computation required for rarer ones. Parallelization over N
is possible provided that the batches fit into memory, whereas the loops over M and K must be
performed sequentially.
One additional change we make from the approach outlined by Guyader et al. (2011) is that we
perform MH updates on all chains in Lines 12, rather than only those that were previously killed off.
This helps reduce the build up of correlations over multiple levels, improving performance.
Another is that we used an adaptive scheme for g(x′|x) to aid efficiency. Specifically, our proposal
takes the form of a random walk, the radius of which, ε′, is adapted to keep the acceptance ratio
roughly around 0.234 (see Roberts et al. (1997)). Each chain has a separate acceptance ratio that is
average across MH steps, and after M MH steps, for those chains whose acceptance ratio is below
0.234 it is halved, and conversely for those above 0.234, multiplied by 1.02.

C ADDITIONAL RESULTS

C.1 VARYING M FOR FIXED ρ ON COLLISIONDETECTION

Whereas the exact value of M within the range considered proved to not be especially important
when ρ = 0.1, it transpires to have a large impact in the quality of the results for larger values of ρ
as shown in Figure 4.

C.2 PER-SAMPLE ROBUSTNESS MEASURE DURING ROBUST TRAINING

Figure 5 illustrates the diverse forms that the per-sample robustness measure can take on the 40
datapoints averaged over in Experiment §5.3. We see that different datapoints have quite varying
initial levels of robustness, and that the training helps with some points more than others. In one
case, the datapoint was still not robust add the end of training for the target perturbation size ε = 0.1.

12

Under review as a conference paper at ICLR 2019

50 100 150

property id

−0.20

−0.15

−0.10

−0.05

0.00

0.05

∆
lo

g
1
0
I

ρ = 0.25

M = 100

M = 250

M = 1000

50 100 150

property id

−0.6

−0.4

−0.2

0.0

0.2
∆

lo
g

1
0
I

ρ = 0.5

M = 100

M = 250

M = 1000

Figure 4: Mean AMLS estimate relative to naive (unbiased) MC estimate for differentM = holding
ρ fixed to 0.25 (left) and 0.5 (right), for those properties whose naive MC estimate was greater than
log10 I = −6.5 such that they could be estimated accurately.

13

Under review as a conference paper at ICLR 2019

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−6

−4

−2

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

Figure 5: Convergence of individual datapoints used in forming Figure 3.

14

	Introduction
	Related work
	Motivating Examples
	Robustness Metric
	Metric Estimation
	Multi-level splitting
	Termination Criterion

	Experiments
	Emulation of formal verification
	Sensitivity to Parameter Settings
	Convergence with higher-dimensional inputs and larger networks
	Robustness of provable defenses during training

	Discussion
	Metropolis–Hastings
	Implementation Details
	Additional results
	Varying M for fixed on CollisionDetection
	Per-sample robustness measure during robust training

