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Abstract

Layer normalization (LayerNorm) has been successfully applied to various deep1

neural networks to help stabilize training and boost model convergence because2

of its capability in handling re-centering and re-scaling of both inputs and weight3

matrix. However, the computational overhead introduced by LayerNorm makes4

these improvements expensive and significantly slows the underlying network, e.g.5

RNN in particular. In this paper, we hypothesize that re-centering invariance in6

LayerNorm is dispensable and propose root mean square layer normalization, or7

RMSNorm. RMSNorm regularizes the summed inputs to a neuron in one layer8

according to root mean square (RMS), giving the model re-scaling invariance prop-9

erty and implicit learning rate adaptation ability. RMSNorm is computationally10

simpler and thus more efficient than LayerNorm. We also present partial RMS-11

Norm, or pRMSNorm where the RMS is estimated from p% of the summed inputs12

without breaking the above properties. Extensive experiments on several tasks13

using diverse network architectures show that RMSNorm achieves comparable14

performance against LayerNorm but reduces the running time by 7%∼64% on15

different models. We will release our source code soon.16

1 Introduction17

How to train deep neural networks efficiently is a long-standing challenge. To accelerate model18

convergence, Ba et al. [3] propose the layer normalization (LayerNorm) which stabilizes the training19

of deep neural networks by regularizing neuron dynamics within one layer via mean and variance20

statistics. Due to its simplicity and requiring no dependencies among training cases, LayerNorm21

has been widely applied to different neural architectures, which enables remarkable success on22

various tasks ranging from computer vision [17, 24], speech recognition [34] to natural language23

processing [29]. In some cases, LayerNorm was found to be essential for successfully training a24

model [5]. Besides, the decouple from batch-based samples endows LayerNorm with the superiority25

over batch normalization (BatchNorm) [11] in handling variable-length sequences using RNNs.26

Unfortunately, the incorporation of LayerNorm raises computational overhead. Although this is27

negligible to small and shallow neural models with few normalization layers, this problem becomes28

clearly severe when underlying networks grow larger and deeper. As a result, the efficiency gain29

from faster and more stable training (in terms of number of training steps) is counter-balanced by an30

increased computational cost per training step, which diminishes the net efficiency, as show in Figure31

1. One major feature of LayerNorm that is widely regarded as contributions to the stabilization is its32

re-centering invariance property: the summed inputs after LayerNorm remain intact when the inputs33

or weight matrix is shifted by some amount of noise. We argue that this mean normalization does not34

reduce the variance of hidden states or model gradients, and hypothesize that it has little impact on35

the success of LayerNorm.36

In this paper, we propose root mean square layer normalization (RMSNorm), which regularizes the37

summed inputs to a neuron in one layer with the root mean square (RMS) statistic alone. RMSNorm38
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(b) Training loss vs. training time.

Figure 1: Training procedure of a GRU-based RNNSearch [4] for the first 10k training steps. Baseline means the
original model without any normalization. When the Baseline training loss arrives at 7.0, the loss of LayerNorm
reaches 5.4 after the same number of training steps 1(a), but only 5.9 after the same training time 1(b).

reduces the amount of computation and increases efficiency over LayerNorm. Despite the simpler39

formulation, the RMS normalizer helps reduce covariate shift of layer activations, ensuring invariance40

to the re-scaling of both weights and datasets. We also show the possibility of estimating RMS on a41

subset of the summed inputs, maintaining this invariance property. Assuming that the summed inputs42

have an independent identically distributed structure, we propose partial RMSNorm, where only the43

first p% summed inputs are utilized for RMS estimation.44

We thoroughly examine our model on various tasks, including machine translation, image-caption45

retrieval and question answering. Experimental results show that across different models, pRMSNorm46

yields comparable performance against LayerNorm but shows superiority in terms of running speed47

with a speed-up of 7%∼64%. When estimating the RMS with partial (6.25%) summed inputs,48

pRMSNorm achieves competitive performance compared to RMSNorm.49

2 Related Work50

Deep neural networks suffer from the internal covariate shift issue [25], where a layer’s input51

distribution changes as previous layers are updated, which significantly slows the training. One52

promising direction to solve this problem is normalization. Ioffe and Szegedy [11] introduce batch53

normalization (BatchNorm) to stabilize activations based on mean and variance statistics estimated54

from each training mini-batch. Unfortunately, the reliance across training cases deprives BatchNorm55

of the capability in handling variable-length sequences, though several researchers develop different56

strategies to enable it in RNNs [14, 7]. Instead, Salimans and Kingma [20] propose weight normal-57

ization (WeightNorm) to reparameterize weight matrix so as to decouple the length of weight vectors58

from their directions. Ba et al. [3] propose layer normalization which differs from BatchNorm in that59

statistics are directly estimated from the same layer without accessing other training cases. Due to its60

simplicity and effectiveness, LayerNorm has been successfully applied to various deep neural models,61

and achieves state-of-the-art performance on different tasks [17, 34, 29, 5].62

These studies pioneer the research direction that integrates normalization as a part of the model63

architecture. This paradigm ensures encouraging performance by shorting model convergence but64

at the cost of consuming more time for each running step. To improve efficiency, Arpit et al. [2]65

employ a data-independent method to approximately estimate mean and variance statistics, thus66

avoiding calculating batch statistics. Ioffe [10] propose batch renormalization so as to reduce the67

dependence of mini-batches in BatchNorm. Ulyanov et al. [28] replace batch normalization with68

instance normalization for image generation. Hoffer et al. [9] and Wu et al. [31] observe that l1-norm69

can act as an alternative of variance in BatchNorm with the benefit of fewer nonlinear operations and70

higher computational efficiency. Nevertheless, all these work still follow the original normalization71

structure and utilize mean statistic estimated from the whole summed inputs to handle re-centering72

invariance.73

Different from these related work, the proposed RMSNorm modifies the normalization structure by74

removing the re-centering operation and regularizing the summed inputs with RMS alone. Our model75
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only maintains the re-scaling invariance property which we find can be inherited when the RMS is76

estimated from only subset of the summed inputs, partially inspired by the group normalization [32].77

As a side effect, our model reduces the computational overhead and increases efficiency. Recently,78

Zhang et al. [33] show that with careful initialization, residual networks can be trained as stable as79

those with normalization. However, the approach mainly aims at improving residual networks and80

can not be freely switched without modifying all initialization layers. Besides, it is not trivial to81

be adapted to other general neural networks, such as RNNs where model depth expands along the82

variable sequence length. By contrast, our model is simple, effective and can be used as a drop-in83

replacement of LayerNorm.84

3 Background85

We briefly review LayerNorm in this section based on a standard feed-forward neural network. Given86

an input vector x ∈ Rm, a feed-forward network projects it into an output vector y ∈ Rn through a87

linear transformation followed by a non-linear activation as follows:88

a = Wx, y = f (a + b) , (1)

where W is weight matrix, b is bias term which is usually initialized by 0, and f(·) is an element-wise89

non-linear function. a ∈ Rn denotes the weight-summed inputs to neurons, which is also the target90

of normalization.91

This vanilla network suffers from internal covariate shift issue [11], where a layer’s input distribution92

changes as previous layers are updated. This could negatively affect the stability of parameters’93

gradients, delaying model convergence. To reduce this shift, LayerNorm normalizes the summed94

inputs so as to fix their mean and variance as follows:95

āi =
ai − µ
σ

gi, yi = f (āi + bi) , (2)

where āi is the i-th value of vector ā ∈ Rn, which acts as the normalized alternative of ai for layer96

activation. g ∈ Rn is the gain parameter used to re-scale the standardized summed inputs, and is set97

to 1 at the beginning. µ and σ2 are the mean and variance statistic respectively estimated from raw98

summed inputs a:99

µ =
1

n

n∑
i=1

ai, σ =

√√√√ 1

n

n∑
i=1

(ai − µ)2. (3)

In this way, LayerNorm forces the norm of neurons to be decoupled from both the inputs and weight100

matrix.101

4 RMSNorm102

A well-known explanation of the success of LayerNorm is its re-centering and re-scaling invariance103

property. The former enables the model to be insensitive to shift noises on both inputs and weights,104

and the latter keeps the output representations intact when both inputs and weights are randomly105

scaled. In this paper, we hypothesize that the re-scaling invariance is the reason for success of106

LayerNorm, rather than re-centering invariance.107

We propose RMSNorm which only focuses on re-scaling invariance and regularizes the summed108

inputs simply according to the root mean square (RMS) statistic:109

āi =
ai

RMS(a)
gi, where RMS(a) =

√√√√ 1

n

n∑
i=1

a2i . (4)

Intuitively, RMSNorm simplifies LayerNorm by totally removing the mean statistic in Eq. (3) at110

the cost of sacrificing the invariance that mean normalization affords. When the mean of summed111

inputs is zero, RMSNorm is exactly equal to LayerNorm. Although RMSNorm does not re-center112

the summed inputs as in LayerNorm, we demonstrate through experiments that this property is not113

fundamental to the success of LayerNorm, and that RMSNorm is similarly effective.114
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Weight matrix Weight matrix Weight vector Dataset Dataset Single training case
re-scaling re-centering re-scaling re-scaling re-centering re-scaling

BatchNorm 3 7 3 3 3 7
WeightNorm 3 7 3 7 7 7
LayerNorm 3 3 7 3 7 3

RMSNorm 3 7 7 3 7 3
pRMSNorm 3 7 7 3 7 3

Table 1: Invariance properties of different normalization methods. “3” indicates invariant, while “7” denotes
the opposite.

RMS measures the quadratic mean of inputs, which in RMSNorm forces the summed inputs into115

a
√
n-scaled unit sphere. By doing so, the output distribution remains regardless of the scaling of116

input and weight distributions, tackling the issue of internal covariate shift. Although Euclidean norm117

which only differs from RMS by a factor of
√
n has been successfully explored [20], we empirically118

find that it does not work for layer normalization. We hypothesize that scaling the sphere with the119

size of the input vector is important because it makes the normalization more robust across vectors of120

different size. As far as we know, the idea of employing RMS for neural network normalization has121

not been investigated before.122

4.1 Invariance Analysis123

Invariance measures whether model output after normalization changes highly in accordance with124

its input and weight matrix. Ba et al. [3] show that different normalization methods reveal different125

invariance properties, which contributes considerably to the model’s robustness. In this section, we126

theoretically examine the invariance properties of RMSNorm.127

We consider the following general form of RMSNorm:128

y = f

(
Wx

RMS(a)
� g + b

)
, (5)

where � denotes element-wise multiplication. Our main results are summarized in Table 1. RMS-129

Norm is invariant to both weight matrix and input re-scaling, because of the following linearity130

property of RMS:131

RMS(αx) = αRMS(x), (6)
where α is a scale value. Suppose the weight matrix is scaled by a factor of δ, i.e. W′ = δW, then132

this change does not affect the final layer output:133

y′ = f

(
W′x

RMS(a′)
� g + b

)
= f

(
δWx

δRMS(a)
� g + b

)
= y. (7)

By contrast, if the scaling is only performed on individual weight vectors, this property does not hold134

anymore as different scaling factors break the linearity property of RMS. Similarly, if we enforce135

a scale on the input with a factor of δ, i.e. x′ = δx, the output of RMSNorm remains through an136

analysis analogous to that in Eq. 7. We can easily extend the equality to batch-based inputs as well as137

the whole dataset. Therefore, RMSNorm is invariant to the scaling of its inputs.138

The main difference to LayerNorm is that RMSNorm is not re-centered and thus does not show139

similar linearity property for variable shifting. It is not invariant to all re-centering operations.140

4.2 Gradient Analysis141

The above analysis only considers the effect of scaling inputs and the weight matrix on the layer142

output. In a general setting, however, a RMSNorm-enhanced neural network is trained via standard143

stochastic gradient descent approach, where the robustness of model gradient is very crucial to144

parameters’ update and model convergence (see also Santurkar et al. [21] who argue that the success145

of normalization methods does not come from the added stability to layer inputs, but due to increased146

smoothness of the optimization landscape). In this section, we investigate the properties of model147

gradients in RMSNorm.148

Given a loss function L, we perform back-propagation through Eq. (4) to obtain the gradient with149

respect to parameters g,b as follows:150

∂L
∂b

=
∂L
∂v

,
∂L
∂g

=
∂L
∂v
� Wx

RMS(a)
, (8)
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where v is short for the whole expression inside f(·) in Eq. (4), and ∂L/∂v is the gradient back-151

propagated from L to v. Both gradients ∂L/∂b and ∂L/∂g are invariant to the scaling of inputs x and152

the weight matrix W (in the case of ∂L/∂g because of the linearity property in Eq. (6)). Besides, the153

gradient of g is proportional to the normalized summed inputs, rather than raw inputs. This powers154

the stability of the magnitude of g.155

Unlike these vector parameters, the gradient of the weight matrix W is more complicated due to the156

quadratic computation in RMS. Formally,157

∂L
∂W

=

n∑
i=1

[
xT ⊗

(
diag

(
g � ∂L

∂v

)
×R

)]
i

,where R =
1

RMS(a)

(
I− (Wx) (Wx)T

nRMS(a)2

)
, (9)

diag(·) denotes the diagonal matrix of input, ⊗ denotes the Kronecker product, and “I” indicates158

identity matrix. For clarity, we explicitly use “×” to represent matrix multiplication. The matrix term159

R associates the gradient of W with both inputs x and weight matrix W. With a thorough analysis,160

we can demonstrate that this term is negatively correlated with both input and weight matrix scaling.161

After assigning a scale of δ to either input x (x′ = δx) or weight matrix (W′ = δW), we have162

R′ =
1

δRMS(a)

(
I− (δWx) (δWx)T

nδ2RMS(a)2

)
=

1

δ
R. (10)

If we put the scaled term R′ back into Eq. (9), we can easily prove that the gradient ∂L/∂W is163

invariant to input scaling, but keeps the negative correlation with weight matrix scaling. Reducing164

the sensitivity of gradient ∂L/∂W to the scaling of inputs ensures its smoothness and improves the165

stability of learning. On the other hand, the negative correlation acts as an implicit learning rate166

adaptor and dynamically controls the norm of gradients which avoids large-norm weight matrix and167

improves model convergence.168

5 pRMSNorm169

The re-scaling invariance property of RMSNorm ascribes to the linearity property of RMS. Consider-170

ing that neurons in one layer often have independent identically distributed structure, we argue that171

the RMS can be estimated on a subset of these neurons rather than all of them. We propose partial172

RMSNorm (pRMSNorm). Given the unnormalized input a, pRMSNorm infers the RMS statistic173

from first-p% elements of a: RMS(a) =
√

1
m

∑m
i=1 a

2
i , where m = dn · pe denotes the number of174

elements used for RMS estimation. Obviously, the linearity property still holds for the estimated175

RMS, which indicates pRMSNorm shares the same invariance properties as RMSNorm as shown in176

Table 1.177

RMS is a biased estimation of the RMS which is often inaccurate. Though theoretically pRMSNorm178

approximates to RMSNorm, we observe gradient instability where the gradient tends to explode with179

small m. In practice, however, models with pRMSNorm can succeed in satisfactory convergence180

with a partial ratio of 6.25%.181

6 Experiments182

To test the efficiency of layer normalization across different implementations, we perform experiments183

with Tensorflow [1], PyTorch [18] and Theano [27]. We add RMSNorm to different models, com-184

paring against an unnormalized baseline and LayerNorm. Unless otherwise noted, all speed-related185

statistics are measured on one TITAN X (Pascal). Reported time is averaged over 3 runs.186

6.1 Machine Translation187

Machine translation aims at transforming a sentence from one (source) language to another (target)188

language. We focus on neural machine translation based on an attention-enhanced encoder-decoder189

framework. We train two different models, a GRU-based RNNSearch [4] and a self-attention190

based neural Transformer [29] on WMT14 English-German translation task. More details about the191

experimental settings are listed in Appendix A.1192

We first experiment with RNNSearch. In this experiment, we set the embedding size and hidden size193

to be 512 and 1024 respectively. Normalization is added to the recurrent connections and feedforward194
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Figure 2: SacreBLEU score on newstest2013 for
the RNNSearch. Models are implemented accord-
ing to Nematus [23] in Tensorflow.

Model Test2014 Test2017 Time
Baseline 21.7 23.4 399s
LayerNorm 22.6 23.6 665s
L2-Norm 20.7 22.0 482s
RMSNorm 22.4 23.7 501s (24.7%)
pRMSNorm 22.6 23.1 493s (25.9%)

Table 2: SacreBLEU score on newstest2014 (Test2014) and
newstest2017 (Test2017) for RNNSearch using Tensorflow-
version Nematus. “Time”: the time in second per 1k training
steps. We set p to 6.25%. We highlight the best results in
bold, and show the speedup of RMSNorm against Layer-
Norm in bracket.

0.2 0.4 0.6 0.8 1.0

p (%)

22.0

22.5

23.0

23.5

24.0

24.5

25.0

V
al

id
B

L
E

U
sc

or
e

Figure 3: SacreBLEU score on newstest2013
(development set) for the RNNSearch with
pRMSNorm. We use Tensorflow-version Ne-
matus, and change p by a constant step size of
10%.

Model Test2014 Test2017 Time

Th
Baseline 21.8 22.9 596s
LayerNorm 22.3 23.8 988s
RMSNorm 22.5 23.2 652s (34.0%)
pRMSNorm 22.7 24.0 658s (33.4%)

Py
Baseline 22.7 24.7 427s
LayerNorm 23.2 24.3 857s
RMSNorm 22.9 24.5 763s (11.0%)
pRMSNorm 23.2 24.6 754s (12.0%)

Table 3: SacreBLEU score on newstest2014 (Test2014)
and newstest2017 (Test2017) for RNNSearch. “Th”:
Theano-version Nematus, “Py”: an in-house PyTorch-based
RNNSearch.

layers. Apart from RNNSearch without any normalization (Baseline) and with LayerNorm, we also195

compare against the same model equipped with L2-Norm (i.e. replacing RMS with L2-Norm), which196

has been observed to improve lexical selection [16].197

Figure 2 illustrates the evolution of BLEU score on our development set after every 30k training198

steps, and Table 2 summarizes the test results. In short, both LayerNorm and RMSNorm outperform199

the Baseline by accelerating model convergence: they reduce the number of training steps until con-200

vergence by about 50%, and improve test accuracy, with RMSNorm being comparable to LayerNorm.201

This supports our hypothesis that re-scaling invariance is the core property of LayerNorm, and that202

RMSNorm is an effective substitute. Our results with L2-Norm show that it fails to improve the203

model.1 Results in Table 2 highlight the challenge that RNN with LayerNorm in Tensorflow suffers204

from serious computational inefficiency, where LayerNorm is slower than the Baseline by about 67%.205

In this respect, RMSNorm performs significantly better, improving upon LayerNorm by ∼25%.206

Table 3 further lists translation results of different models implemented in Theano and Pytorch.207

Overall, RMSNorm yields comparable translation quality compared with LayerNorm but incurs less208

computational overhead, outperforming LayerNorm with speedups ranging from 11%∼34%. In209

addition, we observe that though in theory the amount of computation in pRMSNorm is less than210

that in RMSNorm, pRMSNorm (p = 6.25%) sometimes tends to be slower. We ascribe this to the211

non-optimal implementation of tensor slicing operation in these computational frameworks, which212

can be improved with specific low-level coding.213

In pRMSNorm, the partial ratio p directly controls the accuracy of estimated RMS, thereby affecting214

the stability of model training. Figure 3 shows the effect of p on model performance. Surprisingly, we215

find that the scale of p has little influence on the final translation quality in RNNSearch: using a small216

ratio does not significantly degenerate BLEU score. We set p to 6.25% for all following experiments.217

We also experiment with Transformer, which is based on self-attention, avoiding recurrent connec-218

tions and allowing a higher degree of parallelization. Still, layer normalization is an important part of219

the architecture. We use an in-house Tensorflow implementation of the Transformer, and employ the220

base setting as in [29] with all models trained for 300K steps. We treat Transformer with no normal-221

1We note that Nguyen and Chiang [16] only applied L2-Norm to the last layer, and treat the scaling factor as
a hyperparameter. While not a replication of their experiment, we still found it worth testing L2-Norm as an
alternative to LayerNorm.
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Model Test2014 Test2017 Time
Baseline - - 210s
LayerNorm 26.6 27.7 248s
RMSNorm 26.8 27.7 231s (6.9%)
pRMSNorm 26.5 27.8 225s (9.3%)

Table 4: SacreBLEU score on newstest2014
(Test2014) and newstest2017 (Test2017) for the
Transformer. “Time”: the time in second per 1k
training steps, which is measured using Tesla
V100. “-” indicates that we fail to train this
model and BLEU score is 0.

Model 1 2 3 4 ALL

Baseline M -2.60 -1.19 -1.43 -1.53 -1.60
S 7.35 2.33 2.61 2.73 3.04

LayerNorm M -0.43 -0.48 -0.50 -0.50 -0.51
S 1.19 1.51 1.51 1.51 1.51

RMSNorm M -0.40 -0.60 -0.69 -0.74 -0.73
S 1.27 1.51 1.50 1.49 1.50

Table 5: Mean (M) and standard deviation (S) statistics esti-
mated on the hidden-to-hidden mapping of decoder-part GRU
cell in RNNSearch model. We use the newstest2013 dataset.
ALL: the statistics averaged across all token positions. Num-
bers 1,2,3,4 indicate the statistic estimated for specific token
positions.
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Figure 4: Error rate on validation set for the
attentive reader model.

Model Time
Baseline 315s
BatchNorm-Everywhere 348s
BatchNorm-LSTM 345s
LayerNorm 392s
RMSNorm 333s (15.1%)
pRMSNorm 330s (15.8%)

Table 6: Time in seconds per 0.1k training steps for the
attentive reader model.

ization as our Baseline, and compare RMSNorm-enhanced Transformer with LayerNorm-equipped222

Transformer. Table 4 shows the results, from which we observe the importance of normalization223

for Transformer, without which training fails. RMSNorm achieves BLEU scores comparable to224

LayerNorm, and yields a speedup of 7%∼9%. Compared with RNNSearch, the relative cost of225

normalization is lower because there are significantly fewer sequential normalization operations in226

Transformer.227

Effect of Normalization on Mean and Standard Deviation Table 5 shows the distribution of mean228

and standard deviation of hidden representations across token positions for an RNNSearch model.229

Mean and standard deviation are unstable in the baseline, as observed by Ba et al. [3]. Due to their230

normalization properties, both RMSNorm and LayerNorm stabilize standard deviation. Although the231

mean in RMSNorm is not normalized, in practice it is more stable than the mean of the baseline. This232

supports our hypothesis that RMSNorm stabilizes recurrent activations without the need to explicitly233

normalize the mean.234

6.2 CNN/Daily Mail Reading Comprehension235

This reading comprehension task is a cloze-style question answering task, where models are required236

to answer a question regarding to a passage, and the answer is an anonymized entity from the237

passage [8]. We train a bidirectional attentive reader model proposed by Hermann et al. [8] on the238

CNN corpus. More details about the experimental settings are given in Appendix A.2. We compare239

RMSNorm with both LayerNorm and BatchNorm.240

Figure 4 and Table 6 show the results. After normalizing RNN by BatchNorm with separate statistics241

for each time step in a sequence, both BatchNorm-LSTM and BatchNorm-Everywhere help speed up242

the convergence of training process. By contrast, LayerNorm and RMSNorm not only converge faster243

than BatchNorm, but also reach lower validation error rate, though pRMSNorm performs slightly244

worse than RMSNorm. Although in Figure 4 the performance of RMSNorm and LayerNorm is245

comparable, RMSNorm is around 15% faster than LayerNorm as shown in Table 6.2246

6.3 Image-Caption Retrieval247

Image-caption retrieval is a cross-modal task aiming at learning a joint embedding space of images248

and sentences, which consists of two sub-tasks: image retrieval and caption retrieval. The former249

ranks a set of images according to a query caption, and the latter ranks a set of captions based250

on a query image. We train an order-embedding model (OE) proposed by Vendrov et al. [30] on251

2Notice that the implementation of BatchNorm is cuDNN-based, so time cost of BatchNorm in Table 6 can
not be directly compared with others.
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Figure 5: Recall@K values on validation set for the order-embedding models.

Model Caption Retrieval Image Retrieval
R@1 R@5 R@10 Mean r R@1 R@5 R@10 Mean r

Sym [30] 45.4 88.7 5.8 36.3 85.8 9.0
Existing OE [30] 46.7 88.9 5.7 37.9 85.9 8.1

Work OE [3] 46.6 79.3 89.1 5.2 37.8 73.6 85.7 7.9
OE + LayerNorm [3] 48.5 80.6 89.8 5.1 38.9 74.3 86.3 7.6
OE + Baseline 45.8 79.7 88.8 5.4 37.6 73.6 85.8 7.7

This OE + LayerNorm 47.9 79.5 89.2 5.3 38.4 74.6 86.7 7.5
Work OE + RMSNorm 48.7 79.7 89.5 5.3 39.0 74.8 86.3 7.5

OE + pRMSNorm 46.8 79.8 90.3 5.2 39.0 74.5 86.3 7.4
Table 7: Average R@K values across 5 test sets from Microsoft COCO. R@K: Recall @ K, higher is better.
Mean r: mean rank, lower is better. The number in bold highlights the best result.

the Microsoft COCO dataset [15] using their public source code in Theano. Model details about252

experimental settings are provides in Appendix A.3. We compare RMSNorm with two models: one253

without any normalization (Baseline) and one with LayerNorm.254

Model Time
Baseline 2.11s
LayerNorm 12.02s
RMSNorm 7.12s (40.8%)
pRMSNorm 4.34s (63.9%)

Table 8: Time in seconds per 0.1k
training steps for the order-embedding
model.

Figure 5 shows the R@K curve on validation set after every255

300 training steps, and Table 7 lists the final test results. Across256

all these metrics, RMSNorm and LayerNorm consistently out-257

perform the Baseline in terms of model convergence as shown258

in Figure 5. We observe that on the validation set, RMSNorm259

slightly exceeds LayerNorm with respect to recall value. For260

the final test results as shown in Table 7, both RMSNorm and261

LayerNorm improve the model performance, reaching higher262

recall values (except LayerNorm on R@5) and lower mean rank, though RMSNorm reveals better263

generalization than LayerNorm. Besides, results in Table 8 show that RMSNorm accelerates training264

speed by 40%∼64% compared with LayerNorm, highlighting better efficiency of pRMSNorm.265

6.4 Conclusion and Future Work266

This paper presents RMSNorm, a novel normalization approach that normalizes the summed inputs267

according to the RMS. RMSNorm preserves the re-scaling invariance property of LayerNorm but268

eschews the re-centering invariance property which contributes less to the model training. Compared269

with LayerNorm, models with RMSNorm suffers from less computational overhead. RMSNorm can270

be easily applied to different model architectures as a drop-in replacement of LayerNorm. Experiments271

on several NLP tasks show that RMSNorm is comparable to LayerNorm in quality, but accelerates272

the running speed. Actual speed improvements depend on the framework, hardware, neural network273

architecture and relative computational cost of other components, and we empirically observed274

speedups of 7%∼64% across different models and implementations. Our efficiency improvement275

come from simplifying the computation, and we thus expect them to be orthogonal to other means276

of increasing training speed, such as low-precision arithmetic and GPU kernel fusion. We also277

experimented with pRMSNorm which estimates the RMS on a subset of the summed inputs. While278

theoretically faster, we did not observe empirical speed improvements for pRMSNorm. We leave it279

to future work to investigate if the performance can be improved via code optimization.280

In the future, we would like to take more analysis about the success behind RMSNorm. Inspired by281

recent success of l1-norm for BatchNorm, we are also interested in exploring different norms for282

RMSNorm, and in simplifying other normalization techniques such as BatchNorm.283
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A Appendix378

A.1 Machine Translation379

We experiment on the WMT14 English-German translation task, where the training corpus consists380

of 4.5M aligned sentence pairs. We use newstest2013 as the development set for model selection,381

newstest2014 and newstest2017 as the test set. We evaluate translation quality with case-sensitive382

detokenized BLEU score reported by sacrebleu [19]3. Byte pair encoding algorithm is applied to383

reduce out-of-vocabulary tokens with 32k merge operations [22]. All models are trained based on384

maximum log-likelihood relaxed by label smoothing with a factor of 0.1.4385

A.2 CNN/Daily Mail Reading Comprehension386

The model is trained on the CNN corpus based on the public source code in Theano [7]. We adopt387

the top4 setting, where each passage in the pre-processed dataset contains at most 4 sentences. For388

fair comparison with LayerNorm, we only employ RMSNorm within LSTM. We set hidden size of389

LSTM to be 240. Models are optimized via Adam optimizer [12] with a batch size of 64 and learning390

rate of 8e−5.391

A.3 Image-Caption Retrieval392

In OE model, sentences are encoded through a GRU-based RNN [6] and images are represented by393

the output of a pretrained VGGNet [26]. OE treats the caption-image pairs as a two-level partial394

order, and trains the joint model using the pairwise ranking loss [13].395

We adopt the 10crop feature from VGGNet as image representation, and set word embedding size and396

GRU hidden size to be 300 and 1024 respectively. All models are trained with Adam optimizer, with a397

batch size of 128 and learning rate of 1e−3. We employ Recall@K (R@K) values for evaluation, and398

report averaged results on five separate test sets (each consisting of 1000 images and 5000 captions)399

as our final test results.400

3Sacrebleu hash: BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt14+tok.13a+version.1.2.12
and BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.2.12.

4Note that there are minor differences between different frameworks, both in implementation details and
setup, explaining performance differences between the baselines.
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