
Under review as a conference paper at ICLR 2021

GRADIENT BASED MEMORY EDITING FOR TASK-FREE
CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning often assumes a knowledge of (strict) task boundaries and
identities for the instances in a data stream—i.e., a “task-aware” setting. However,
in practice it is rarely the case that practitioners can expose task information to
the model; thus needing “task-free” continual learning methods. Recent attempts
towards task-free continual learning focus on developing memory-construction and
replay strategies such that model performance over previously seen instances is
best retained. In this paper, looking from a complementary angle, we propose to
“edit” memory examples to allow for the model to better retain past performance
when memory is replayed. Such memory editing is achieved by making gradient
updates to memory examples so that they are more likely to be “forgotten” by the
model when viewing new instances in the future. Experiments on five benchmark
datasets show our proposed method can be seamlessly combined with baselines to
significantly improve performance and achieve state-of-the-art results. 1

1 INTRODUCTION

Accumulating past knowledge and adapting to evolving environments are one of the key traits in
human intelligence (McClelland et al., 1995). While contemporary deep neural networks have
achieved impressive results in a range of machine learning tasks Goodfellow et al. (2015), they
haven’t yet manifested the ability of continually learning over evolving data streams (Ratcliff, 1990).
These models suffer from catastrophic forgetting (McCloskey & Cohen, 1989; Robins, 1995) when
trained in an online fashion—i.e., performance drops over previously seen examples during the
sequential learning process. To this end, continual learning (CL) methods are developed to alleviate
catastrophic forgetting issue when models are trained on non-stationary data streams (Goodfellow
et al., 2013).

Most existing work on continual learning assume that, when models are trained on a stream of
tasks sequentially, the task specifications such as task boundaries or identities are exposed to the
models. These task-aware CL methods make explicit use of task specifications to avoid catastrophic
forgetting issue, including consolidating important parameters on previous tasks (Kirkpatrick et al.,
2017; Zenke et al., 2017; Nguyen et al., 2018), distilling knowledge from previous tasks (Li & Hoiem,
2017; Rannen et al., 2017), or separating task-specific model parameters (Rusu et al., 2016; Serrà
et al., 2018). However, in practice, it is more likely that the data instances comes in a sequential,
non-stationary fashion without task identity or boundary—a setting that is commonly termed as
task-free continual learning (Aljundi et al., 2018). To tackle this setting, recent attempts on task-free
CL methods have been made (Aljundi et al., 2018; Zeno et al., 2018; Lee et al., 2020). These
efforts revolve around regularization and model expansion based approaches, which rely on inferring
task boundaries or identities (Aljundi et al., 2018; Lee et al., 2020) and perform online paramater
importance estimation (Zeno et al., 2018), to consolidate or separate model parameters.

In another line of efforts, memory-based CL methods have achieved strong results in task-free set-
ting Aljundi et al. (2019b). These methods store a small set of previously seen instances in a fix-sized
memory, and utilize them for replay (Robins, 1995; Rolnick et al., 2019) or regularization (Lopez-Paz
& Ranzato, 2017; Chaudhry et al., 2019a). The core problem in memory-based CL methods is
how to manage the memory instances (e.g., which to replace with new instances) and replay them
given a restricted computation budget, so that the model performance can be maximally preserved or

1Code has been uploaded in the supplementary materials and will be published.

1

Under review as a conference paper at ICLR 2021

Reservoir
Sampling

Memory Construction Replay Strategy

Sampling from
Memory

Gradient Based
Memory Editing

(GMED)

Maximally Interfered
Retrieval (MIR)

Aljundi et al. (2019a)

Memory ExamplesStream Examples

Gradient Based Sample
Selection (GSS)

Aljundi et al. (2019b)

Hindsight Anchor
Learning (HAL)

Chaudhry et al. (2020)

Model 𝛳

Training Model

Figure 1: Categorization of memory-based methods on Task-free Continual Learning. Reservoir
sampling and Sampling from Memory are the ways that Experience Replay (ER) uses to construct and
replay memory respectively. In the recent line of works, Gradient based Sample Selection (GSS) and
Hindsight Anchor Learning (HAL) explored ways to construct memory, while Maximally Interfering
Retrieval (MIR) focused on replay strategy. Our method, Gradient-based Memory Editing (GMED)
falls under the former category but provides a new angle to memory construction.

enhanced. Prior work developing these methods have tried to either identify: 1) what instances to
include in memory from a data stream (Aljundi et al., 2019b; Rebuffi et al., 2017; Chaudhry et al.,
2019b); and 2) which instances in memory need to be replayed at what training step (Aljundi et al.,
2019a).

In this paper, we provide a new approach to solving the memory management problem in task-free
continual learning by studying how to make gradient updates on stored memory examples. We
develop a novel memory editing algorithm which complements existing memory-replay methods and
data-sampling strategies for memory management (updates). The challenge is to propose a plausible
and sound optimization objective of editing. We employ the same intuition as previous study (Toneva
et al., 2019; Chaudhry et al., 2020; Aljundi et al., 2019a): examples that are likely to be forgotten
should be prioritized. Our proposed method, named Gradient-based Memory EDiting (GMED),
edits examples stored in the memory with gradient-based updates so that they are more likely to be
forgotten. Specifically, we estimate the “forgetting” of a stored example by its loss increase in the
upcoming one online model update. Finally, we perform gradient ascent on stored examples so that
they are more likely to be forgotten.

Experiments show that our algorithm consistently outperforms baselines on five benchmark datasets
under various memory sizes. Our ablation study shows the proposed editing mechanism outperforms
alternative editing strategies such as random editing. We demonstrate that the proposed algorithm
is general enough to be used with other strong (more recent) memory-based CL methods to further
enhance performance, thus allowing for improvements in many benchmark datasets.

2 RELATED WORKS

Task-aware Continual Learning. Most of continual learning algorithms are studied under “task-
aware” settings, where the model visits a sequence of clearly separated “tasks”. A great portion of
algorithms make explicit use of task boundaries (Kirkpatrick et al., 2017; Rusu et al., 2016; Lopez-Paz
& Ranzato, 2017), by learning separate parameters for each task, or discourage changes of parameters
that are important to old tasks. Existing continual learning algorithms can be summarized into
three categories: regularization-based, architecture-based and data-based approaches. Regularization
based approaches (Kirkpatrick et al., 2017; Zenke et al., 2017; Nguyen et al., 2018; Adel et al.,
2020) discourage the change of parameters that are important to previous data. Model expansion-
based approaches (Rusu et al., 2016; Serrà et al., 2018; Li et al., 2019) allows expansion of model
architecture to separate parameters for previous and current data. Data-based approaches (Robins,
1995; Shin et al., 2017; Lopez-Paz & Ranzato, 2017) replay or constrain model updates with real or
synthetic examples.

Task-free Continual Learning. Recently, task-free continual learning (Aljundi et al., 2018) have
drawn increasing interest, where we do not assume knowledge about task boundaries. To the best
of our knowledge, only a handful number of regularization based (Zeno et al., 2018; Aljundi et al.,
2018), model-expansion based (Lee et al., 2020), generative replay based (Rao et al., 2019), continual
meta-learning and meta-continual learning (He et al., 2019; Caccia et al., 2020; Harrison et al., 2020)
approaches are applicable in the task-free CL setting. Meanwhile, most memory based continual

2

Under review as a conference paper at ICLR 2021

(a) Estimate forgetting 𝑑!:!#$ 𝑥, 𝑦

𝑥, 𝑦 ~ 𝑀
Memory Examples

ℓ(𝑥, 𝑦; 𝜃!) ℓ(𝑥, 𝑦; 𝜃!%)

Train

(b) Update 𝑥

∇!𝑑":"$%(𝑥, 𝑦)

−∇!𝛽ℓ(𝑥, 𝑦 ; 𝜃")
𝑥

𝑥,

𝑥('), 𝑦(') ~ 𝐷
Stream Examples

Model
𝜃!

Temporally
Updated Model

𝜃!%

𝑑!:!#$ 𝑥, 𝑦 ≔ ℓ 𝑥, 𝑦; 𝜃!% − ℓ(𝑥, 𝑦; 𝜃!)

(c) Update 𝜃!

Model
𝜃!

Updated Model
𝜃!#$

𝑥&, 𝑦
Updated

Memory Examples

𝜃!#$ ≔ 𝜃! −∇) ℓ 𝑥%, 𝑦 , 𝑥 ' , 𝑦 ' ; 𝜃!

Stream Examples
𝑥('), 𝑦(') ~ 𝐷

Train

Figure 2: Overview of the (a) forgetting estimation, (b) example editing, (c) model updating in the
proposed GMED method. See detailed formulations for forgetting estimation and example editing at
Section 4.3.

learning algorithms are applicable to the task-free setting (Aljundi et al., 2019a;b). Memory-based CL
algorithms such as Experience Replay (ER) (Robins, 1995) store a subset of examples in a fix-sized
replay memory and utilize them later at training to alleviate forgetting. Recent research has studied
online strategies to improve the performance gain when examples get replayed from two dimensions:
in terms of which examples to store, and which examples to replay. For example, in terms of deciding
which examples to store, Gradient based Sample Selection (GSS) (Aljundi et al., 2019b) proposes to
store most diverse examples. In terms of deciding which examples to replay, maximally Interfering
Retrieval (MIR) (Aljundi et al., 2019a) select examples with the largest estimated forgetting. In
particular, a task-aware approach, Hindsight Anchor Learning (HAL) (Chaudhry et al., 2020), shares
the same assumption that forgettable examples should be prioritized more. However, HAL only
applies to task-aware settings and requires extra memory storage to keep track of the learned anchors.
Figure 1 shows a categorization of memory-based task-free continual learning.

3 PRELIMINARIES

In this section we first present the problem formulation of task-free continual learning and then
introduce preliminaries on memory-based continual learning methods.

3.1 PROBLEM FORMULATION

In task-free continual learning, we consider a (potentially infinite) stream of data examples D, which
have a non-stationary data distribution, i.e., the data distribution P (x, y) over time.At each time
step t, the model receives a single or a mini batch of labeled examples (xt, yt) from the data stream
D. For simplicity, here we assume that example (xt, yt) from D is generated by: first sampling
a latent “task” z ∼ P (z; t), followed by sampling a data example from a joint data distribution
P (x, y|z; t) that is conditioned on task z, i.e., (xt, yt) ∼ P (x, y|z; t). Here P (z; t) is non-i.i.d and
time-dependent. Similarly, P (x, y|z; t) also changes over time.

The goal of task-free online continual learning is to seek a classification model f(x; θ), parameterized
by θ, over new example(s) (x, y) from the data stream D that minimizes a predefined loss `(x, y; θ)
while not increasing the loss on previously seen examples. This capability is evaluated by testing the
model over a test set of all visited tasks.

3.2 MEMORY-BASED CL METHODS

Briefly, memory-based CL algorithms maintain a fix-sized replay memory M which is used to store
(subset of) previously seen examples (xt, yt) from the stream D. When the memory is full, the
algorithm needs to either identify a memory example (x, y) to be replaced by new example, or to
discard the new example it just received. Following the same setup in previous memory-based CL
methods, our experiments use reservoir sampling (Vitter, 1985) to determine how the memory will be
updated with new examples received from stream D. Every time the model receives a new example,
it draws an integer j between 0 and N randomly, where N is the number of examples visited so far.
If j < |M | (i.e., the memory size or budget), it replace the example at the j-th position in the memory
with the new example; otherwise, this newly received example will be discarded. Reservoir sampling
ensures at each time step each visited example is kept with an equal probability |M |/N .

3

Under review as a conference paper at ICLR 2021

At each time step t, the algorithm also needs to determine the memory examples to be used for replay.
Similar to previous methods, we randomly sample one or a mini-batch of examples (x, y) from the
memory M . As an alternative replay strategy, MIR (Aljundi et al., 2019a) identifies a subset of
memory examples based on a predefined optimization objective (i.e, perform one step of training on
(x, y)), and then replays the selected examples.

4 GRADIENT BASED MEMORY EDITING

We propose Gradient based Memory Editing (GMED), a novel algorithm for updating stored memory
examples in an online fashion. We state our hypothesis about which examples should be stored in
Sec. 4.1. We then formulate an online optimization objective for example editing in Sec. 4.2. In
Sec. 4.3, we introduce algorithmic details of GMED and its integration with MIR.

4.1 HYPOTHESIS FOR MEMORY EDITING

As there is no prior knowledge about the forthcoming examples in a data stream D, previous task-free
CL methods usually impose (implicit) assumptions regarding what kinds of examples may improve
model’s test performance after replaying these examples. For example, GSS (Aljundi et al., 2019b)
assumes that the diversity of memory examples contributes to the model performance; MIR (Aljundi
et al., 2019a) and HAL (Chaudhry et al., 2020) assume that replaying examples that are likely to
be “forgotten” can benefit the performance. Empirical study by Toneva et al. (2019) also shows that
there are constantly forgotten examples, which benefit overall performance when they get replayed
compared to other examples.

Our work is based on a similar hypothesis: replaying examples that are likely to be forgotten by the
current model helps retain its test performance. Specifically, suppose we train the model on D until
a time step T , the “forgetting” measurement of an example (x, y) for the model at t, denoted by
dt:T (x, y), is defined as the “loss increase” at time T compared to that at time t, shown as follows.

dt:T (x, y) = `(x, y; θT)− `(x, y; θt), (1)

where θt is the model parameters at the current time step t. A larger dt:T (x, y) indicates that the
example suffers more forgetting at the end of training. The hypothesis is formally stated as follows.

Hypothesis 1. Given a budget of C examples to replay at time t, in order to minimize the loss over
new examples from a (latent) task k (e.g., in test set), an ideal strategy is to replay the most forgettable
examples, denoted as Sk, selected from the training examples of the (latent) task k, denoted as Dk.

Following Hypothesis 1, the set of examples Sk can be obtained by solving the following optimization
problem.

Sk = arg max
Sk⊆Dk,|Sk|=C

∑
(x,y)∈Sk

dt:T (x, y), (2)

where Dk is the training examples of the latent task k. Unfortunately, the sample selection problem in
Eq. 2 cannot be solved in an online setting, even when we know task identities, because the objective
function in Eq. 2 can only be evaluated at a distant future time step T . Therefore, approximations are
necessary to enable online optimization.

4.2 ONLINE OPTIMIZATION FOR MEMORY EDITING

We propose an optimization problem that is tractable in an online fashion, which shares the same goal
of making memory examples used for replay more likely to be forgotten. We modify Eq. 2 where we
(1) relax the constraint Sk ⊆ Dk and edit individual examples stored in memory instead of selecting
the most forgettable examples from Dk to store, and (2) estimate the forgetting measure in an online
fashion.

Formally, suppose that the model is at the t-th time step and that (x, y) is an example from a certain
task k. In order to retain the performance on test examples from the same task k, we propose the
following objective:

x∗ = arg max
x

dt:t+1(x, y)− β`(x, y; θt), (3)

4

Under review as a conference paper at ICLR 2021

where d(·) is the forgetting defined in Eq. 1 and `(x, y; θt) is the loss of the example (x, y) at the
current time step t. β is a trade-off hyper-parameter deciding the regularization strength. The optimal
(x∗, y) has the same label y as the original example (x, y).

Specifically, we discuss two main differences in Eq. 3 compared to Eq. 2 in the Hypothesis 1.

Estimating Forgetting Online. We maximize the forgetting of the example (x, y) in the upcoming
update (time step t+ 1, noted as dt:t+1(x, y)), instead of the forgetting when the model get evaluated,
i.e., dt:T (x, y). The former can be evaluated online efficiently without any overhead on the replay
memory.

Relaxed Constraints. Eq. 3 do not constrain (x, y) ∈ Dk. It allows (x∗, y) to be an arbitrary
example in the input space without being a real example from Dk; the sample selection problem
is posed as an optimization problem in the continuous space. Nevertheless, the editing is made
conservatively, so that the edited example is still likely to be an example from the original latent
task. In practice, (x, y) is initialized as different input examples, and we perform only one or a few
gradient updates each time it is drawn from memory for replay. We also add a regularization term
β`(x, y; θt) to discourage the loss increase on the example.

The objective in Eq. 3 is differientiable with respect to x, allowing us to update x with gradient ascent.
In the rest of this section, we introduce algorithmic details of GMED.

4.3 THE GMED ALGORITHM

Algorithm 1: ER with Memory Editing
Input: learning rate τ , edit stride α,
regularization strength β, model parameters θ;
Receives: stream example (x(D), y(D));
Initialize: replay memory M ;
for t = 1 to T do

(x, y) ∼M ;
`before ← loss(x, y, θt);
`stream ← loss(x(D), y(D), θt);
//update model parameters with

stream examples, discarded later;

θ′t ← SGD(`stream, θt, τ);
//evaluate forgetting of memory

examples;
`after ← loss(x, y, θ′t);
d← `after − `before;
//edit memory examples;

x′ ← x+ α∇x(d− β`before);
` = loss((x′, y) ∪ (x(D), y(D)), θt);
θt+1 ← SGD(`, θt, τ);

replace (x, y) with (x′, y) in M ;

reservoir update(x(D), y(D),M);

end

We start by introducing the algorithm of building
GMED upon the ER (Experience Replay) idea. It in-
troduces an additional “editing” step before replaying
examples drawn from the memory.

We assume at time step t the model receives a stream
example (x(D), y(D)) from the training stream D,
and randomly draws a memory example (x, y) from
the memory M . We first compute the forgetting (i.e.,
loss increase) on the memory example (x, y) when
the model performs one gradient update on parame-
ters with the stream example (x(D), y(D)).

θ′t = θt −∇θ`(x(D), y(D); θt); (4)

dt:t+1(x, y) = `(x, y; θ′t)− `(x, y; θt), (5)

where θt and θ′t are model parameters before and
after the gradient update respectively. Figure 2(a)
visualize the steps to compute forgetting.

Following the optimization objective proposed in
Eq. 2, we perform a gradient update on x to increase
its forgetting, while using a regularization term to
discourage the loss increase on the example at the
current time step.

x′ = x+ α∇x[dt:t+1(x, y)− β`(x, y; θt)], (6)

where α is a hyperparameter for the stride of the
update. Figure 2(b) visualize the editing step.

The algorithm then discards the updated parameter θ′t, and updates model parameters θt with the
updated memory example (x′, y) and the stream example (x(D), y(D)), in a similar way to ER.

θt+1 = θt −∇θ`({(x′, y), (x(D), y(D))}; θt). (7)

We replace the original examples in the memory with the edited example. In this way, we continuously
edit examples stored in the memory alongside training. Algorithm 1 summarize the proposed
ER+GMED algorithm.

5

Under review as a conference paper at ICLR 2021

GMED is studied from a complementary direction compared to most prior approaches. Therefore, we
can combine GMED with existing memory-based CL algorithms without much effort. We illustrate
the point by proposing a hybrid approach of GMED and MIR. We include the details of the algorithm
in the Appendix.

5 EXPERIMENTS

We compare the performance of GMED against state-of-the-art CL algorithms on five benchmark
datasets. We introduce our experimental setup and discuss our results on comparisons with baselines
and performance analysis.

5.1 DATASETS

We consider six public CL datasets in our experiments.

Split / Permuted / Rotated MNIST are constructed from the MNIST (LeCun et al., 1998) dataset
of handwritten digit classification. Split MNIST (Goodfellow et al., 2013) partitions the dataset into
5 disjoint subsets by their labels as different tasks. The goal is to classify over all 10 digits when the
training ends. Permuted MNIST (Goodfellow et al., 2013) applies a fixed random pixel permutation
to the MNIST dataset as different tasks. The dataset consists of 10 tasks. The models classify over
10 digits without knowing the permutation applied. Rotated MNIST (Lopez-Paz & Ranzato, 2017)
applies a fixed image rotation between 0 to 180 degree to the MNIST dataset. Similarly, the goal is to
classify over 10 digits without knowing the rotation applied. Following Aljundi et al. (2019a), for
MNIST experiments, each task consists of 1,000 training examples.

Split CIFAR-10 and Split CIFAR- 100 (Zenke et al., 2017) are constructed by splitting the CIFAR-
10 or CIFAR-100 (Krizhevsky, 2009) of image classification into 5 or 20 disjoint subsets by their
labels. The model classifies over all 10 or 100 classes when the training ends.

Split mini-ImageNet (Aljundi et al., 2019a) splits the mini-ImageNet (Deng et al., 2009; Vinyals
et al., 2016) image classification dataset into 20 disjoint subsets by their labels. Similarly, the models
classify over all 100 classes.

We do not provide information about task identities or boundaries to the model at both training and
test time. Under the taxonomy of the prior literature (van de Ven & Tolias, 2019), our Split MNIST,
Split CIFAR-10, and Split mini-ImageNet experiments are under the class-incremental setup, while
Permuted MNIST and Rotated MNIST experiments are under the domain-incremental setup.

5.2 COMPARED METHODS

For our methods, we report the performance of ER + GMED and MIR + GMED, where we build
GMED upon ER or MIR as introduced in section 4.3. We compare with several task-free memory
based continual learning methods: Experience Replay (ER) (Robins, 1995; Rolnick et al., 2019),
Averaged Gradient Episodic Memory (AGEM) (Chaudhry et al., 2019a), Gradient based Sample
Selection (GSS) (Aljundi et al., 2019b), Maximally Interfering Retrieval (MIR) (Aljundi et al., 2019a).
We also compare with Bayesian Graident Descent (BGD) (Zeno et al., 2018) and Neural Dirichlet
Process Mixture Model (CN-DPM) (Lee et al., 2020), which are regularization and model-expansion
based approaches respectively. We also include Graident Episodic Memory (GEM) (Lopez-Paz &
Ranzato, 2017) and Hindsight Anchor Learning (HAL) (Chaudhry et al., 2020), which are task-aware
methods. We also reports the results of simple fine tuning, which performs online updates on model
parameters without applying continual learning algorithms; and iid Online, where we randomly
shuffle the data stream, so that the model visits an i.i.d. stream of examples; and also iid Offline,
where we further allow multiple pass over the dataset. See appendix for detailed descriptions of
compared methods and their implementation details.

By default, we set the size of replay memory as 10,000 for split CIFAR-100 and split mini-ImageNet,
and 500 for all other datasets. We also report performance under various memory sizes. Follow-
ing Chaudhry et al. (2019a), we tune the hyperparameters with only the training and validation
set of first three tasks. We mostly follow the training setup of Aljundi et al. (2019a). For three
MNIST datasets, we use a MLP classifier with 2 hidden layers with 400 hidden units each. For Split
CIFAR-10, Split CIFAR-100 and Split mini-ImageNet datasets, we use a ResNet-18 classifier. See
Appendix for the details of the hyperparameter tuning and model achitectures.

6

Under review as a conference paper at ICLR 2021

Methods / Datasets Split
MNIST

Permuted
MNIST

Rotated
MNIST

Split
CIFAR-10

Split
CIFAR-100

Split
mini-ImageNet

Fine tuning 18.80 ± 0.6 66.34 ± 2.6 41.24 ± 1.5 18.49 ± 0.2 3.06 ± 0.2 2.84 ± 0.4
iid online 85.99 ± 0.3 73.58 ± 1.5 81.30 ± 1.3 62.23 ± 1.5 18.13 ± 0.8 17.53 ± 1.6
AGEM (Chaudhry et al., 2019a) 29.02 ± 5.3 72.17 ± 1.5 50.77 ± 1.9 18.49 ± 0.6 2.40 ± 0.2 2.92 ± 0.3
GEM (Lopez-Paz & Ranzato, 2017) 87.18 ± 1.3 78.23 ± 1.2 76.49 ± 0.8 20.05 ± 1.4 8.75 ± 0.4 11.27 ± 3.4
GSS-Greedy (Aljundi et al., 2019b) 84.16 ± 2.6 77.43 ± 1.4 73.66 ± 1.1 28.02 ± 1.3 19.53 ± 1.3 16.19 ± 0.7
BGD (Zeno et al., 2018) 13.54 ± 5.1 19.38 ± 3.0 77.94 ± 0.9 18.23 ± 0.5 3.11 ± 0.2 24.71 ± 0.8
HAL (Chaudhry et al., 2020) 77.92 ± 4.2 77.55 ± 4.2 78.48 ± 1.5 32.06 ± 1.5 21.11 ± 1.4 21.18 ± 2.1
ER (Robins, 1995) 80.96 ± 2.3 79.69 ± 1.0 76.95 ± 1.7 33.34 ± 1.5 20.65 ± 1.3 26.00 ± 1.0
MIR (Aljundi et al., 2019a) 84.88 ± 1.7 79.96 ± 1.3 78.30 ± 1.0 34.47 ± 2.0 20.18 ± 1.7 25.01 ± 1.3

ER + GMED 82.68∗∗ ± 2.1 79.70 ± 1.1 77.89∗ ± 0.9 35.01∗ ± 1.5 20.87 ± 1.4 27.79∗∗ ± 0.7
MIR + GMED 87.86∗∗ ± 1.1 80.11∗ ± 1.2 79.16∗∗ ± 0.9 35.54± 1.9 21.49∗ ± 0.6 26.29∗ ± 1.2

iid offline (upper bound) 93.87 ± 0.5 87.40 ± 1.1 91.38 ± 0.7 75.17 ± 0.7 41.45 ± 0.9 36.54 ± 1.4

Table 1: Mean and standard deviation of final accuracy(%) in 10 runs. For Split mini-ImageNet and
Split CIFAR-100 datasets, we set the memory size to 10,000 examples; we use 500 for other datasets.
∗ and ∗∗ indicate significant improvement over the counterparts without GMED with p-values less
than 0.05 and 10−3 respectively in single-tailed paired t-tests.

100 200 500 1000
Memory size

70

75

80

85

Ac
cu

ra
cy

 (%
)

ER
GMED-ER

(a) Split MNIST

100 200 500 1000
Memory size

65

70

75

80

Ac
cu

ra
cy

 (%
)

ER
GMED-ER

(b) Rotated MNIST

100 200 500 1000
Memory size

20

30

40

Ac
cu

ra
cy

 (%
)

ER
GMED-ER

(c) Split CIFAR-10

1000 5000 10000 20000
Memory size

10

20

30

Ac
cu

ra
cy

 (%
)

ER
GMED-ER

(d) Split mini-ImgNet

Figure 3: Performance of ER and GMED-ER in different memory sizes. For mini-ImageNet dataset,
we use memory sizes of 1,000, 5,000, 10,000, and 20,000 examples; for other datasets, we use 100,
200, 500, and 1,000.

5.3 RESULTS AND PERFORMANCE ANALYSIS

We report the final accuracy achieved by different methods in Table 1. We summarize the following
findings.

Overall Performance. From the results, we see MIR + GMED achieves best performance among
memory based continual learning algorithms. The improvement of GMED differs by datasets.
ER+GMED clearly improves over ER by an absolute margin of 1.72%, 1.67%, and 1.79% accuracy
respectively in Split MNIST, Split CIFAR-10, and Split mini-ImageNet datasets. On Rotated MNIST
and Split CIFAR-100 the improvement is less significant, with an absolute accuracy improvement
of 0.94% and 0.22%, while we do not see a meaningful improvement on Permuted MNIST dataset.
MIR+GMED improves performance on all the datasets. The improvement is clear on Split MNIST,
Split CIFAR-10, Split CIFAR-100, and Split mini-ImageNet with an absolute accuracy improvement
of 2.98%, 1.07%, 1.31%.

Performance Under Various Memory Sizes. Figure 3 shows the performance under various mem-
ory sizes. We see in Split MNIST, Rotated MNIST, Split CIFAR-10 and Split mini-ImageNet, the
improvement of ER+GMED over ER is consistent under various memory sizes.

Methods / Datasets Split
MNIST

Permuted
MNIST

Rotated
MNIST

Split
CIFAR-10

Split
CIFAR-100

Split
mini-ImageNet

ER + GMED 82.68 ± 2.1 79.70 ± 1.1 77.89 ± 0.9 35.01 ± 1.5 20.87 ± 1.4 27.79 ± 0.7
ER + Random Edit 81.04 ± 2.1 78.99 ± 0.5 77.59 ± 1.0 32.26 ± 1.9 20.73 ± 1.1 26.23 ± 2.1

MIR + GMED 87.86 ± 1.1 80.11 ± 1.2 79.16 ± 0.9 35.54 ± 1.9 21.49 ± 0.6 26.29 ± 1.2
MIR + Random Edit 84.76 ± 1.4 79.76 ± 0.6 78.19 ± 1.0 35.39 ± 3.0 19.77 ± 1.1 24.86 ± 0.7

Table 2: Performance when we updates memory examples to a random direction (Random Edit),
compared to ER+GMED and MIR+GMED.

7

Under review as a conference paper at ICLR 2021

Method Split MNIST Split CIFAR-10 Split CIFAR-100
Acc. #. Mem Acc. #. Mem Acc. #. Mem

ER 92.67 2,581 62.96 6,024 21.79 21,295
ER+GMED 94.16 2,581 63.28 6,024 22.12 21,295
CN-DPM 93.23 500 + Gen. 45.21 1,000 + Gen. 20.10 1,000 + Gen.

Table 3: Comparison with CN-DPM under the same memory overhead. The overhead is the size of
the replay memory plus the extra model components (e.g. a generator (Gen.)), shown in the equivalent
number of memory examples (#. Mem).

Label 0
Label 1
Label 2
Label 3

Figure 4: A t-SNE visualization of the editing
performed on data examples. We use labels
from the first two tasks in Split MNIST.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Figure 5: Visualization of the editing on exam-
ples in Split MNIST. The first two rows show
examples before and after editing, and the third
row shows the differences.

Comparison with Random Editing. As an ablation study, we show the result of a random editing
baseline in Table 2. The baseline edits memory examples to a random direction with a fix stride,
tuned in a similar way as GMED. We see GMED outperforms random editing in all cases. We further
notice ER+Random Edit outperforms ER on split CIFAR-10 and CIFAR-100. We conjecture the
reason is that the random editing alleviates the overfitting to memory examples.

Comparison with Model Expansion Approach (CN-DPM). Non-memory based continual learning
approaches introduce extra overhead in storing model parameters — for example, CN-DPM introduces
extra overhead by employing a generative model component and a short-term memory (STM) in
addition to the classifier. Following Hsu et al. (2018), we set the memory size for GMED so that two
methods introduces the same amount of the overhead. Table 3 show the results of ER, ER+GMED
and the reported results of CN-DPM. We see ER+GMED outperforms CN-DPM.

5.4 CASE STUDY AND DISCUSSION

Visualization of Edited Examples. Figure 5 visualize the editing on memory examples. We show
examples from first two task (0/1, 2/3) in the Split MNIST dataset. The first and second rows show the
original and edited examples, noted as xbefore and xafter. The third row shows the difference between
two ∆x = xafter − xbefore. We see no significant visual differences between original and edited
examples. However, by looking at the difference ∆x, we see there are examples whose contours get
exaggerated, e.g., examples 1 and 12, and some get blurred, e.g., examples 2, 3, 5, and 6. Intuitively,
to make an ambiguous example more forgettable, the editing should exaggerate its features; while to
make a typical example more forgettable, the editing should blur its features. Our visualizations align
with the intuition above: examples 1 and 12 are not typically written digits, while examples like 2, 3,
5, and 6 are typical.

Visualization of Editing Directions. In Figure 4, we show the t-SNE Maaten & Hinton (2008)
visualization of the editing vector ∆x = xafter−xbefore for examples from first 2 tasks in Split MNIST.
We see the editing vectors cluster by the labels of the examples. It implies the editing performed is
correlated with the labels and is clearly not random.

6 CONCLUSION

In this paper, we propose Gradient based Memory Editing for task-free continual learning. The
approach estimates forgetting of stored examples online and edit them so that they are more likely
to be forgotten in upcoming updates. Experiments on benchmark datasets show our method can be
combined with existing approaches to significantly improve over baselines on several benchmark

8

Under review as a conference paper at ICLR 2021

datasets. Our analysis further show the method is robust under various memory sizes, and outperforms
alternative editing methods.

REFERENCES

Tameem Adel, Han Zhao, and Richard E. Turner. Continual learning with adaptive weights (claw).
In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=Hklso24Kwr.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In CVPR,
2018.

Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, and
Tinne Tuytelaars. Online continual learning with maximally interfered retrieval. In NeurIPS,
2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
online continual learning. In NeurIPS, 2019b.

Massimo Caccia, P. Rodrı́guez, O. Ostapenko, Fabrice Normandin, Min Lin, L. Caccia, Issam H.
Laradji, I. Rish, Alexande Lacoste, D. Vázquez, and Laurent Charlin. Online fast adaptation and
knowledge accumulation: a new approach to continual learning. NeurIPS, 2020.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-GEM. In International Conference on Learning Representations, 2019a.
URL https://openreview.net/forum?id=Hkf2_sC5FX.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K.
Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. 2019b.

Arslan Chaudhry, Albert Gordo, Puneet Kumar Dokania, Philip H. S. Torr, and David Lopez-Paz.
Using hindsight to anchor past knowledge in continual learning. ArXiv, abs/2002.08165, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach. Uncertainty-guided
continual learning with bayesian neural networks. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HklUCCVKDB.

I. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep learning. Nature, 521:436–444, 2015.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

J. Harrison, Apoorva Sharma, Chelsea Finn, and M. Pavone. Continuous meta-learning without tasks.
NeurIPS, 2020.

Xu He, Jakub Sygnowski, Alexandre Galashov, Andrei A. Rusu, Yee Whye Teh, and Razvan Pascanu.
Task agnostic continual learning via meta learning. ArXiv, abs/1906.05201, 2019.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning
scenarios: A categorization and case for strong baselines. arXiv preprint arXiv:1810.12488, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

9

https://openreview.net/forum?id=Hklso24Kwr
https://openreview.net/forum?id=Hklso24Kwr
https://openreview.net/forum?id=Hkf2_sC5FX
https://openreview.net/forum?id=HklUCCVKDB

Under review as a conference paper at ICLR 2021

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digits,
1998. URL http://yann. lecun. com/exdb/mnist, 10:34, 1998.

Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture model
for task-free continual learning. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=SJxSOJStPr.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. ArXiv, abs/1904.00310,
2019.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
NIPS, 2017.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

James L. McClelland, Bruce L. McNaughton, and Randall C. O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological review, 102 3:419–457, 1995.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learning.
In International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=BkQqq0gRb.

Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. Encoder based lifelong
learning. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1320–1328,
2017.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. In Advances in Neural Information Processing
Systems, pp. 7645–7655, 2019.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Sylvestre-Alvise Rebuffi, Alexander I Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl:
Incremental classifier and representation learning. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5533–5542, 2017.

Anthony V. Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci., 7:123–146,
1995.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experience
replay for continual learning. In NeurIPS, 2019.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. ArXiv,
abs/1606.04671, 2016.

Joan Serrà, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In ICML, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In NIPS, 2017.

10

https://openreview.net/forum?id=SJxSOJStPr
https://openreview.net/forum?id=BkQqq0gRb
https://openreview.net/forum?id=BkQqq0gRb

Under review as a conference paper at ICLR 2021

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network learning.
In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=BJlxm30cKm.

Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learning. ArXiv,
abs/1904.07734, 2019.

Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. In NIPS, 2016.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57, 1985.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3987–
3995. JMLR. org, 2017.

Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task agnostic continual learning using
online variational bayes. 2018.

A DETAILS OF COMPARED METHODS

We included detailed descriptions, and implementation details of some selected baselines in this
section.

• Experience Replay (ER) Robins (1995); Rolnick et al. (2019) stores examples in a fix-sized
memory for future replay. We use reservoir sampling to decide which examples to store and replace.
Following prior works Aljundi et al. (2018; 2019a); Chaudhry et al. (2020), at each time step we draw
the same number of examples as the batch size from the memory to replay, which are both set to 10.
The algorithm applies to the task-free scenario.

• Gradient Episodic Memory (GEM) Lopez-Paz & Ranzato (2017) also stores examples in a
memory. Before each model parameter update, GEM project gradients of model parameters so that
the update does not incur loss increase on any previous task. The approach is not task-free.

• Averaged Gradient Episodic Memory (AGEM) Chaudhry et al. (2019a) prevents the average
loss increase on a randomly drawn subsets of examples from the memory. We draw 256 examples to
compute the regularization at each iteration. The approach is task-free.

• Bayesian Gradient Descent (BGD) Zeno et al. (2018) is a regularization-based continual learning
algorithm. It adjust learning rate for parameters by estimating their certainty, which notes for their
importance to previous data. The approach is task-free.

• Gradient based Sample Selection (GSS) Aljundi et al. (2019b) builds upon ER by encouraging
the diversity of stored examples. We use GSS-Greedy, which is the best performing variant in the
paper. The approach is task-free.

• Hindsight Anchor Learning (HAL) Chaudhry et al. (2020) learns an pseudo “anchor” example
per task per class in addition to the replay memory by maximizing its estimated forgetting, and tries
to fix model outputs on the anchors at training. However, unlike GMED, they estimate forgetting with
loss increase on examples when the model train for a pass on the replay memory (and thus forgetting
is estimated with “hindsight”). The approach is not task-free.

• Maximally Interfering Retrieval (MIR) Aljundi et al. (2019a) improves ER by selecting top
forgettable examples from the memory for replay. Following the official implementation, we evaluate
forgetting on a candidate set of 25 examples for mini-ImageNet dataset, and 50 examples for others.
While the approach is task-free, the official implementation filter out memory examples that belong
to the same task as the current data stream, which assumes knowledge about tasks boundaries. We
remove this operation to adapt the method to the task-free setup. Therefore, our results are not directly
comparable to the official results.

11

https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJlxm30cKm

Under review as a conference paper at ICLR 2021

• Neural Dirichlet Process Model for Continual Learning (CN-DPM) Lee et al. (2020) is a
task-free model-expansion based continual learning algorithm. We report the official results in the
paper. In the comparison study between ER/ER+GMED with CN-DPM, for the base model in
ER/ER+GMED, we use the full expanded model in CN-DPM (i.e., the model architecture when the
training ends in CN-DPM). We use the same optimizer and the learning rate as CN-DPM in this set
of experiments.

B HYPERPARAMETER SETUP

Dataset / Hyper-param Editing
stride α

Regularization
strength β

Split MNIST 5.0 0.01
Permuted MNIST 0.05 0.001
Rotated MNIST 1.0 0.01
Split CIFAR-10 0.05 0.001
Split CIFAR-100 0.05 0.001
Split mini-ImageNet 1.0 0.1

Table 4: Hyperparamters of the editing stride and
the regularization strength selected for GMED.

We use a batch size of 10 throughout the exper-
iment. We use SGD optimizer with a learning
rate of 0.05 for MNIST datasets, 0.1 for Split
CIFAR-10 and Split mini-ImageNet datasets,
and 0.03 for the Split CIFAR-100 dataset. We
perform three steps of model parameter up-
dates for each example we visit in the Split
mini-ImageNet dataset, following Aljundi et al.
(2019a), and one step for others.

GMED introduces two hyperparameters: the
stride of the editing α, and the regularization
strength β. As we assume no access to the full
data stream in the online learning setup, we cannot select hyperparameters according to validation
performance after training on the full stream. Therefore, We tune the hyperparameters with only
the training and validation set of first three tasks, following Chaudhry et al. (2019a). The models
are trained until convergence before they proceed to the next task. The tasks used for hyperpa-
rameter search are included for reporting final accuracy, following Ebrahimi et al. (2020). We
perform a grid search over all combinations of α and β and select the one with the best validation
performance on the first three tasks. We select α from [0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0], and se-
lect β from [0, 10−3, 10−2, 10−1, 1]. We tune hyperparameters for ER-GMED and apply the same
hyperparameters on MIR+GMED. Table 4 show the optimal hyperparameters selected for each
dataset.

C IMPLEMENTATION DETAILS OF THE HYBRID METHOD OF GMED AND MIR

As mentioned in Sec. 4.3, GMED can be built upon MIR to further improve the performance. At
each time step, MIR retrieves the most forgettable examples from the memory with the forgetting
defined as Eq. 1. We do not edit the selected examples directly; instead, we additionally draw another
random mini-batch from the memory to apply editing. The motivation is that examples drawn by
MIR are already most forgettable ones; if we directly perform editing on them, we would fall into a
loop that letting forgettable examples more forgettable, which is not desired.

12

	Introduction
	Related Works
	Preliminaries
	Problem formulation
	Memory-based CL Methods

	Gradient Based Memory Editing
	Hypothesis for Memory Editing
	Online Optimization for Memory Editing
	The GMED Algorithm

	Experiments
	Datasets
	Compared Methods
	Results and Performance Analysis
	Case Study and Discussion

	Conclusion
	Details of Compared Methods
	Hyperparameter Setup
	Implementation Details of the Hybrid Method of GMED and MIR

