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ABSTRACT

Since its first appearance, transformers have been successfully used in wide rang-
ing domains from computer vision to natural language processing. Application of
transformers in Reinforcement Learning by reformulating it as a sequence mod-
elling problem was proposed only recently. Compared to other commonly ex-
plored reinforcement learning problems, the Rubik’s cube poses a unique set of
challenges. The Rubik’s cube has a single solved state for quintillions of possible
configurations which leads to extremely sparse rewards. The proposed model Cu-
beTR attends to longer sequences of actions and addresses the problem of sparse
rewards by giving more weightage to the connections between each position and
a plausible solved state. CubeTR learns how to solve the Rubik’s cube from ar-
bitrary starting states without any human prior, and after move regularisation, the
lengths of solutions generated by it are expected to be very close to those given by
algorithms used by expert human solvers. CubeTR provides insights to the gener-
alisability of learning algorithms to higher dimensional cubes and the applicability
of transformers in other relevant sparse reward scenarios.

1 INTRODUCTION

Originally proposed by Vaswani et al. (2017), transformers have gained a lot of attention over the
last few years. Transformers are widely used for sequence to sequence learning in NLP (Radford
et al., 2018; Devlin et al., 2018; Radford et al., 2019; Brown et al., 2020), and start to show promises
in other domains like image to classification (Dosovitskiy et al., 2020), instance segmentation (Wang
et al., 2021) in computer vision and the decision transformer (Chen et al., 2021) in reinforcement
learning. Transformers are capable of modeling long-range dependencies, and have tremendous
representation power. In particular, the core mechanism of Transformers, self-attention, is designed
to learn and update features based on all pairwise similarities between individual components of
a sequence. There have been great advances of the transformer architecture in the field of natural
language processing, with models like GPT-3 (Brown et al., 2020) and BERT (Devlin et al., 2018),
and drawing upon transformer block architectures designed in this domain has proven to be very
effective in other domains as well.

Although transformers have become widely used in NLP and Computer Vision, its applications in
Reinforcement Learning are still under-explored. Borrowing form well experimented and easily
scalable architectures like GPT (Radford et al., 2018), exploring applications of transformers in
other domains has started becoming easier. The use of transformers in core reinforcement learning
was first proposed by Chen et al. (2021). Reformulating the reinforcement learning objective as
learning of action sequences, they used transformers to generate the action sequence, i.e. the policy.

Reinforcement Learning is a challenging domain. Contrary to other learning paradigms like super-
vised, unsupervised and self-supervised, reinforcement learning involves learning an optimal policy
for an agent interacting with its environment. Rather than minimising losses with the expected
output, reinforcement learning approaches involve maximising the reward. Training deep reinforce-
ment learning (Li, 2017) architectures has been notoriously difficult, and the learning algorithm is
unstable or even divergent when action value function is approximated with a nonlinear function
like the activation functions common-place in neural networks. Various algorithms like DQN (Mnih
et al., 2013) and D-DQN (Van Hasselt et al., 2016) tackle some of these challenges involved with
deep reinforcement learning.
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Figure 1: Sparse rewards in the case of the Rubik’s cube. The state space is extremely large, but
only the final solved state has a non-zero reward, making the reward distribution extremely sparse.

Reinforcement learning has seen applications in learning many games like chess, shogi (Silver et al.,
2017), hex (Young et al., 2016) and Go (Silver et al., 2018). In October 2015, the distributed version
of AlphaGo (Silver et al., 2016) defeated the European Go champion, becoming the first computer
Go program to have beaten a professional human player on a full-sized board without handicap.
Reinforcement learning has also been used for solving different kinds of puzzles (Dandurand et al.,
2012), for protein folding (Jumper et al., 2021), for path planning (Zhang et al., 2015) and many
other applications.

The Rubik’s Cube is a particularly challenging single player game, invented in 1974 by Hungarian
architecture and design professor Erno Rubik. Starting from a single solved state, the simple 3x3
rubik’s cube can end up in 43 quintillion (43 x 1018) different configurations. The number of dif-
ferent configurations (God’s number) for a modified 4x4 cube is not even known. Thus, a random
set of moves from this tremendous state space is highly unlikely to end up in the solved space. It
is a marvel that humans have devised algorithms that can solve this challenging puzzle from any
configuration in bounded number of moves.

Computers have been able to solve the cube for a long time now (). By implementing in software,
an algorithm used by humans, very simple programs can be created to solve the cube very effi-
ciently. These algorithms are, however, deeply rooted in group theory. Enabling an algorithm to
learn to solve the cube on its own, without human priors is a much more challenging task. With its
inherent complexity, this problem can provide new insights into much harder reinforcement learning
problems, while also presenting new applications and interpretations of machine learning in abstract
subjects like group theory and basic maths.

One of the biggest challenges in solving the Rubik’s cube using reinforcement learning is that of
sparse rewards. Since there is a single solved state, there is a single state with a non zero reward.
All other 43 quintillion - 1 states have no reward. Reinforcement learning algorithms that rely very
heavily on the rewards to decide optimal policies suffer since even large action sequences may end
up with no reward. The method developed in this paper should be easy to generalise to many other
problems suffering with sparse rewards, and may help provide deeper insights of the usefulness of
transformers in more complicated reinforcement learning tasks. Although there have been some
works solving this problem using deep reinforcement learning, this work also provides insights into
the relationship between reinforcement learning policies and natural language processing sequential
data generation.

This work is the first to explore the use of transformers in solving the rubik’s cube, or in general any
sparse reward reinforcement learning scenarios. Improving upon the decision transformer, CubeTR
is able to effectively propagate the reward to actions far away from the final goal state. The trans-
former is further biased to generate smaller solutions by using a move regularisation factor. This is
done to allow it to learn more efficient solutions, bridging the gap to human algorithms.

In the next section, some past work related to transformers, algorithms used for solving the rubik’s
cube and in general reinforcement learning are discussed. The methodology used in CubeTR is dis-
cussed in Section 3, along with description of data generation and representation. The experimental
results of CubeTR and its comparison with other human based algorithms is discussed in Section 4,
followed by the conclusions in Section 5.
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2 RELATED WORK

Transformers were first proposed by Vaswani et al. (2017), where they worked with machine transla-
tion, but later apply it to constituency parsing to demonstrate the generalisability of the transformer
architecture. Consisting of only attention blocks, the authors demonstrate that the transformer can
replace recurrence and convolutions entirely. Along with superior performance, they demonstrated
that transformers also lead to lower resource requirements, with more parallelizability. They laid the
foundations for many subsequent works in NLP (Radford et al., 2018; Devlin et al., 2018; Radford
et al., 2019; Brown et al., 2020) as well as computer vision (Dosovitskiy et al., 2020).

In GPT (Radford et al., 2018) the process of generative pre-training was first proposed. They showed
that pre-training on a large scale unlabelled dataset gives significant performance boost over previous
methods. Many other works (Ham et al., 2020; Ethayarajh, 2019; Budzianowski & Vulić, 2019) have
experimented with and adopted this approach, including GPT-2 (Radford et al., 2019) and GPT-3
(Brown et al., 2020). In (Hu et al., 2020), the GPT architecture was applied to graph neural networks.
The GPT-2 architecture has been used for applications like data augmentation (Papanikolaou &
Pierleoni, 2020), generating poetry (Meyer, 2019), patent claim generation (Lee & Hsiang, 2020)
and many others. The recently proposed GPT-3 architecture had taken the NLP community by
storm, and has also seen many applications (Branwen, 2020; Floridi & Chiriatti, 2020; Dale, 2021;
McGuffie & Newhouse, 2020). Elkins & Chun (2020) even experimented with whether GPT-3 can
pass the writer’s Turing’s test.
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Figure 2: Some applications of transformers in different fields of machine learning.

Reinforcement Learning has been gaining a lot of popularity in recent times. With the advent of deep
reinforcement learning, many other methods have been proposed in this field. Deep Q-Learning
(Mnih et al., 2013; Hausknecht & Stone, 2015; Wang et al., 2016; Hessel et al., 2018) is a natural
extension to the vanilla Q-learning algorithm where a neural network is used to predict the expected
reward for each action from a particular state. Policy gradients (Schulman et al., 2015a; Mnih et al.,
2016; Schulman et al., 2015b) uses gradient descent and other optimisation algorithms on the policy
space to find optimal policies. Value iteration (Jothimurugan et al., 2021; Ernst et al., 2005; Munos,
2005) is another popular approach, where the expected value of each state is either calculated or
approximated. The value of a state is the maximum reward that can be obtained from that state
using some optimal policy.

A typical situation for reinforcement learning is a situation where an agent has to reach a goal and
only receives a positive reward signal when he either reaches or is close enough to the target. This
situation of sparse rewards is challenging for usual reinforcement learning that depend too much on
the rewards to decide exploration and policies. Several methods have been proposed to deal with
sparse reward situations (Riedmiller et al., 2018; Trott et al., 2019). Curiosity driven approaches
(Pathak et al., 2017; Burda et al., 2018; Oudeyer, 2018) use curiosity as an intrinsic reward signal
to enable the agent to explore its environment and learn skills that might be useful later in its life.
Curriculum learning methods (Florensa et al., 2018) use a generative approach to getting new or
auxiliary tasks that the agent solves. Reward Shaping (Mataric, 1994; Ng et al., 1999) is another
commonly used approach in which the primary reward of the environment is enhanced with some
additional reward features.
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