
Under review as a conference paper at ICLR 2019

OVERCOMING CATASTROPHIC FORGETTING
VIA MODEL ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning multiple tasks sequentially is important for the development of AI and
lifelong learning systems. However, standard neural network architectures suffer
from catastrophic forgetting which makes it difficult to learn a sequence of tasks.
Several continual learning methods have been proposed to address the problem.
In this paper, we propose a very different approach, called model adaptation, to
dealing with the problem. The proposed approach learns to build a model, called
the solver, with two sets of parameters. The first set is shared by all tasks learned
so far and the second set is dynamically generated to adapt the solver to suit each
individual test example in order to classify it. Extensive experiments have been
carried out to demonstrate the effectiveness of the proposed approach.

1 INTRODUCTION

It is well-known that neural networks (NN) suffer from catastrophic forgetting (CF) (McCloskey &
Cohen, 1989), which refers to the phenomenon that when learning a sequence of tasks, the learning
of each new task may cause the NN to forget the models learned for the previous tasks. Without
solving this problem, an NN is hard to adapt to continual learning, which is important for AI.

Problem Statement: Given a sequence of supervised learning tasks T = (T1, T2, . . . , TN), we want
to learn them one by one in the given sequence such that the learning of each new task will not forget
the models learned for the previous tasks.

In recent years, many approaches (often called continual learning) have been proposed to lessen
the effect of CF (Parisi et al., 2018), e.g., dynamically expandable network (DEN) (Yoon et al.,
2018), learning without forgetting (LWF) (Li & Hoiem, 2016)), elastic weight consolidation (EWC)
(Kirkpatrick et al., 2017), incremental moment matching (IMM) (Lee et al., 2017), gradient episodic
memory (GEM) (Lopez-Paz et al., 2017), generative replay (GR) (Shin et al., 2017), etc. These
existing studies except DEN and LWF focused on learning a model parameterized by a single joint
set of parameters θ∗ which is assumed to work well for all tasks. We call them joint parameterization
(JP) methods. DEN and LWF required constantly increasing the number of parameters and thus can
result in a huge and complex model.

JP methods, however, suffer from accuracy deterioration. Assume we have two tasks A and B that
need to be learned sequentially. Let θ∗A and θ∗B be the optimal parameters for Task A and Task B
respectively where each of them is learned individually. Let θ∗ be the joint parameters learned by the
existing approaches to perform Tasks A and B in sequence. Inevitably, θ∗ is different from θ∗A and/or
θ∗B and is very likely to result in more errors for the two tasks than θ∗A and θ∗B individually.

In this paper, we propose a different approach, called model adaptation (MA), to deal with CF and to
significantly reduce accuracy deterioration. MA does not learn a joint parameter set θ∗, but learns
a parameter generator f(·) and a shared parameter set θ0. The key idea of MA is as follows: The
overall classification network, called the solver S, has two disjoint subsets/parts of parameters. The
first subset is θ0, which is shared by all tasks learned so far. The second subset is just a place holder
H , which will be filled by parameters generated by f(·) for each test instance. Specifically, in testing,
given a test instance, a set of parameters will be generated by the learned parameter generator f(·) to
replace H . Solver S then combines θ0 and the generated parameters for the test instance to classify it.
Clearly, unlike existing JP approaches, we do not have a network with a set of fixed parameters for S.

1

Under review as a conference paper at ICLR 2019

The idea is that θ0 contains the common features of all tasks, and the generated parameters for each
test instance adapt S for each test instance in order to classify it.

Since f(·) and the shared parameters θ0 will change during training for each new task, forgetting
can occur for previous tasks. To deal with it, in training f(·) and S for each task Ti, in addition to
the training data of Ti, a small number of replayed samples will be generated by a data generation
network for the previous tasks to ensure that the knowledge learned for previous tasks remain
stable/unforgotten. Compared with the existing generative replay methods, our method does not
need labels for the replayed data because we use the replayed data only to constrain the training of S
and f(·) rather than to treat them as surrogates of labeled training data from previous tasks. Further,
since in the existing replay methods, the labels are produced by the current learned network itself,
the labels can be noisy and biased, which can result in errors being accumulated and propagated to
subsequent tasks. Our method does not have this problem.

Apart from reducing the effect of accuracy deterioration of the existing approaches, the proposed
approach also has some other advantages. First, no parameter increase or network expansion is
needed to learn new tasks. Second, no previous data needs to be stored to enable the system to
remember the previous learned models or knowledge.

Experiments conducted using two image datasets (MNIST and CIFAR-10) and two text datasets
(DBPedia ontology (Lehmann et al., 2015) and THUCNews (Li et al., 2006)) show that the proposed
approach works well for different scenarios and different types of datasets, and outperforms the
existing state-of-the art baselines markedly.

2 PROPOSED MODEL ADAPTATION FRAMEWORK

Let the sequence of supervised learning tasks be T = (T1, T2, . . . , TN). Each task Ti is represented
by Ti = {xij , yij |j ∈ (1, . . . , Ni)}, where xij is the j-th example/sample of Ti, and yij is its label.
We use (xt, yt) to denote a test instance/example. To simplify the notation, we will just use (xi, yi)
to denote a training example from task Ti omitting the second subscript j. Note that in the paper, we
use the terms example, sample, and instance interchangeably.

The proposed Model Adaptation (MA) model has three main components:

• Solver S: It is the main classification model. As mentioned in Section 1, the parameter set of
S consists of two subsets, θ0 that is shared by all tasks (and instances) and H , a parameter place
holder, which will be replaced by the generated parameters set pi (or pt) for each training (or testing)
example xi (or xt). pi (or pt) basically serves to adapt the solver S to classify the example in
training or testing. This is the key idea of our approach. We adopt this parameter split as several
studies (Yoon et al., 2018; Li & Hoiem, 2016; Kirkpatrick et al., 2017) have shown that only part of
parameters of a neural network needs to be adjusted when learning a new task. See Section 2.2
• Dynamic Parameter Generator (DPG) f(·): It takes the embedding zi (or zt) of each input
training (or testing) example xi (or xt) to generate the parameters pi (or pt) for solver S. Note that
we use zi (or zt) rather than the raw data xi (or xt) because the raw data’s dimension can be very
high. The embedding zi (or zt) as a low dimensional dense representation reduces the mapping space
for DPG and thus reduces the difficulty in its parameter generation. See Section 2.2.
• Data Generator (DG): It has two functions. The main function is to generate a set of replayed data
or samples {x′m}Mm=1 using its decoder DGD for previous tasks to deal with catastrophic forgetting.
The other function is to generate the embedding zi (or zt) of each input training (or testing) example
data xi (or xt) using its encoder DGE . See Section 2.3.

2.1 OVERALL APPROACH

We work backward by describing testing first before training. Given a test instance xt, DGE first
generates its embedding zt, which is fed to f(·) to generate a set of parameters pt. Solver S then
takes xt as input and uses the trained/learned shared parameters θ0 and pt to classify xt. θ0 contains
the common features of all tasks learned so far. pt simply adapts S for xt in order to classify xt.

Figure 1 shows the pipeline of the proposed MA framework for training. Given a new task Ti with its
data (xi, yi), solver S and DPG f(·) are jointly trained to learn Ti and also not to forget the previously

2

Under review as a conference paper at ICLR 2019

learned tasks. In each iteration, a set of parameters pi is generated by the current DPG f(zi, µ) for
each training instance xi, where µ is the set of parameters of the DPG network, which is trained.

Solver S

Data Generator

Encoder

Decoder
Randomly
sampled

DPG

Used as
constraint

see Formula 8

Inputs

Figure 1: Sequential training in the proposed MA framework.

In training the solver S and DPG
for the new task Ti, both f(·) and
the shared parameters θ0 will change,
which can cause forgetting in DPG for
previous tasks. To keep DPG remem-
bering the acquired knowledge for pre-
vious tasks, we minimize the variation
of certain layers’ output caused by the
changes of θ0 and f(·) using the set
of replayed samples {x′m}Mm=1 gener-
ated by DG.

The objective of solver S including
DPG f(zi, µ) and θ0 for learning task Ti is defined as:

minimize
µ,θ0

L(S(xi, θ∗i), yi)

s.t.
M∑
m=1

||R(x′m, θ∗i)−R(x′m, θ∗i−1)|| < εr (1)

whereR can be any layer (or a set of layers 1) in solver S, which we will introduce later; θ∗i is the
whole set of parameters of S, θ∗i = combine(pi, θ0) representing an adaption of S (see Section 2.2).
We can see that the generated replayed samples x′m are used as constraints.

Note that DPG is optimized together with solver S. DG has its own objective function (see Section
2.4) and is trained alternately with DPG & S. This is because DPG takes input zi (which is produced
by DG) to generate parameters, and alternating training ensures consistent convergence rates for DG
and DPG. Note also since we only have one data generator DG, it also has the forgetting problem
caused by incremental training of new tasks. To avoid forgetting in DG, we also use constraints in
optimization similar to Eq. 1:

M∑
m=1

||G(x′m, θe, θd)− G(x′m, θe, θ′d)|| < εg (2)

where θd is the set of parameters of DGD in the optimization of the current task Ti, and likeR, G
can be any layer (or a set of layers) in DG. More details will be given in Section 2.4.

2.2 DYNAMIC PARAMETER GENERATOR (DPG) AND SOLVER S IMPLEMENTATION

Several neural networks can be used to implement DPG for parameter generation, e.g., convolutional
neural network (CNN), recurrent neural network (RNN) and multilayer perceptron (MLP). The
objective of this paper is not to explore all possible implementations. We found that a straightforward
implementation using MLP can already achieve good results. Formally, DPG can be written as:

pi = f(zi, µ) = σ(wDzi + b) (3)

where σ is the activation function, and wD and b are the parameters of DPG and denoted by µ.

For the implementation of solver S, several deep learning networks can be used too. Again, a
MLP is used in this work. Each layer of the MLP is a perceptron and can be formalized by
output = σ(wxinput), where xinput denotes the input of the particular perceptron. We also call a
perceptron a basic unit 2. In general, for each basic unit k of the solver S, we can have a shared

1Note that in this case, the parameters inR is a subset of parameters for solver S. To simplify the expression
and without causing confusion, we don’t introduce new symbols and let the symbols unchanged.

2This is because most of the existing networks can be regarded as the composition of multiple basic units,
even for those with complex structures, e.g., seq2seq (Sutskever et al., 2014), R-Net (Wang et al., 2017), Resnet
(He et al., 2016) and Densenet (Huang et al., 2017). Further, complex structures give us more freedom to decide
which part of the parameters should be generated.

3

Under review as a conference paper at ICLR 2019

portion of the parameters θ0,k and a generated portion of the parameters pi,k, i.e.,

θ∗i = combine(θ0,pi) = {[w∗i,k]}Kk=1 = {[θ0,k;pi,k]}Kk=1 (4)

where combine(.) is concatenation and K is the number of basic units that the solver has. In our case,
K the number of hidden layers (basic units) of the solver MLP.

It is important to note that the above is the most general case. In practice, there is no need to adapt all
the basic units in the solver, but only a subset of them. In our experiments (Section 3), we will see
that adapting only the final layer of the solver MLP can already achieve good results.

One concern about S, is that the proposed combination method may not have sufficient capacity
to adjust the solver because only part of parameters are generated. Actually, pik can affect all
dimensions of the output of its corresponding basic unit k:

w∗i,kxinput = [θ0,k;pi,k]xinput = θ0,kx
1
input + pi,kx

2
input (5)

where x1
input and x2

input are the block vectors of xinput. pi,kx2
input can be regarded as the bias and

can adapt the output vector to any point in the vector space.

2.3 DATA GENERATOR (DG)

As indicated earlier, DG has two functions. First, it compresses the original input data xi to zi using
its decoder to reduce the number of dimensions of xi and consequently reduces the mapping space of
DPG to make the generation of the parameters pi easier. The compression is formulated by:

zi = DGE(xi, θe) (6)

where DGE is the encoder of DG with parameters θe.

Second, it generates the replayed data for previous tasks to deal with forgetting in DPG. Note that
DG differs from data generators in the existing generative replay (GR) methods (Shin et al., 2017) as
GR needs to generate both the replay data x′m and their labels y′m (using the solver learned so far),
which can be noisy. DG only generates the data x′m but not the labels (which are not needed by our
approach), and then the labeling errors won’t affect our model MA, but will hurt GR.

Each replayed sample x′m is generated by the decoder of DG, called DGD:

x′m = DGD(z
sample
m , θ′d) (7)

where zsamplem is the mth sample sampled from the multivariate normal distribution.3 θ′d is the set of
parameters of DGD before optimizing the current task Ti.

DG can be implemented with an auto-encoder, e.g., VAE-like (Variational Auto-Encoder (Kingma &
Welling, 2013)) and WAE-like (Wasserstein Auto-Encoder) auto-encoders. We use WAE in DG since
it can let different examples get a chance to stay far away from each other, which promotes better
reconstruction (Tolstikhin et al., 2017).4 Note that DG also suffers from forgetting, which is dealt
with like DPG and also using specially designed losses (see Section 2.4).

2.4 OBJECTIVE FUNCTIONS AND CONSTRAINTS

As discussed in Section 2.1, there are two training components in MA: 1) DPG and solver S (DPG&S
for short) and 2) DG. The two components have their respective objective functions: 1) for DPG&S,
cross entropy loss (Lce) is used to learn new classification tasks; 2) for DG, mean square error is
used as the reconstruction loss to enable its replay ability of past data, and penalized form of the
Wasserstein distance between the distribution of zi and multivariate normal distribution is added to
help generate data (Tolstikhin et al., 2017) (together denoted as Lwae).
As shown in Eq. 1, we use constraints to alleviate DPG&S’s forgetting. Specially, we extend the
knowledge distillation loss (Hinton et al., 2015) to the general situation. That is, to keep the past
learned knowledge, the output of the basic units in the solver should not change much when learning

3In training, we force zi to satisfy the multivariate normal distribution. We can then sample many zsample
m

from the multivariate normal distribution.
4Our approach is not limited to using WAE. Other auto-encoders may also be applied.

4

Under review as a conference paper at ICLR 2019

a new task with the help of the generated data. Formally, when learning task Ti, we use the following
constraints (recall: x′m is a generated replayed sample of some past task, see Eq. 7):

min

M∑
m=1

||R(x′m, θ∗i)−R(x′m, θ∗i−1)|| (8)

where R(·) denotes the output of a basic unit in the solver. If we do not consider the activation
function, Eq. 8 can also be written as:

min

M∑
m=1

K∑
k=1

||w∗i,kx′m,k −w∗i−1,kx
′
m,k|| (9)

where K again denotes the number of basic units and M denotes the number of replayed samples.
The basic unit with a smaller k is at the relative lower layer of the solver network.5 x′m,k is the input of
the kth basic unit and is calculated through forward propagation, except x′m,1 = DGD(z

sample
m , θ′d)

which is the initial replayed sample x′m generated by DG (before optimizing the current task Ti).
w∗i,k is the combined parameter introduced in Section 2.2.

Two questions may be asked about Eqs. 8 and 9. (1) Since the replayed data x′ is used in Eqs. 8 and
9, does it play the same role as the original data x from previous tasks? (2) What is the impact of the
constraints on learning the new task? We answer the two questions now.

Question 1: The answer is positive. Since the purpose of the constraints is to maintain the learned
effect of the old data, clearly, using the original old data x in the constraints is better. However, we
proved the positive answer to question 1, which is given in appendix.

Question 2: In calculating Eq. 9, if we stack all {x′m,k}Mm=0 (column vectors) into a matrix
X′k, Eq. 9 can be regarded as constraining w∗i,kX

′
k to remain unchanged. If X′k is a row

low rank matrix, w∗i,k can be trained to fit the new tasks. Otherwise, especially if X′k is a
row full rank matrix, w∗i,k cannot be trained and therefore cannot learn new tasks. However,
benefiting from dynamic parameter generation, our approach will not suffer from this problem.
That is because w∗i,k is specially generated through DPG to perform well with input X′k. And
the new parameters will be generated to fit new tasks while w∗i,k is able to remain unchanged.

Encoder

Randomly
sampled Decoder '

 Eq. 10 (constraint)Decoder

Encoder

reconstruction

(used in)

matching multivariate
normal distribution

(used in)

Decoder

Eq.11
(constraint)

Figure 2: Data Generator training

DG also suffers from forgetting
due to the using of stochastic gra-
dient descent. In addition to us-
ing the DPG method, as shown
in Figure 2, we also investigated
using loss functions to constrain
DG to overcome its forgetting.
We describe this approach here:

min

M∑
m=1

||zsample
m −DGE(x

′
m, θe)|| (10)

min

M∑
m=1

||DGD(zsample
m , θd)− x′m|| (11)

where x′m is the replayed data (see Eq. 7), θe and θd are the encoder’s and decoder’s parameters
of DG in the process of learning the new task Ti, respectively, and zsamplem and M have the same
meanings as they are in DPG&S. Eq. 10 constrains the consistency of DG’s decoder and encoder
over the randomly sampled zsamplem . Eq. 11 ensures that DG’s decoder can still remember the old
data. Using Eqs. 10 and 11, we can maintain DG’s ability to reflect the old data.

Finally, we summarize the whole training procedure in Algorithm 1, which is self-explanatory. “//” is
followed by comments. The test procedure is straightforward, see Section 2.1.

5Note that constraining only the units in the last layer can already achieve good results.

5

Under review as a conference paper at ICLR 2019

Algorithm 1 Model Adaptive framework training

Input:T = {Ti}Ni=1, where Ti = {xij , yij}
Initial: Randomly initialize f(·), DG, S;
// Learning the first task
for all n = 0, . . . , until convergence do

5: Sample a mini-batch from T1;
// Training DG
Minimize Lwae and then update DG;
// Training DPG and S. pn and Sn below
// denote a batch of generated parameters

10: // and adapted solvers, respectively
Compute pn using Eqs. 3 & 6; // Section 2.2
Construct Sn using pn and θ0; // Section 2.2
Minimize Lce then update f(·) and S;

end for

15: // Learning the other tasks
for all i = 2; i ≤ N ; i++ do

Generate replayed samples x′m by DG;
for all n = 0, . . . , until convergence do

Sample a mini-batch from Ti;
20: MinimizeLwae, Eq. 10 &11 and then update

DG; // Section 2.4
Compute pn using Eqs. 3 & 6;
Construct Sn using pn and θ0;
Minimize Lce, Eq. 9, and then update f(·)
and S; // Section 2.4

end for
25: end for

3 EXPERIMENTS

We now evaluate the proposed approach and compare it with state-of-the-art baselines using two
image datasets and two text datasets.

Datasets

• Two image datasets: (1) MNIST: this dataset consists of 70,000 images of handwritten digits from
0 to 9. We use 60,000/3000/7000 images for training/validation/testing respectively. (2) CIFAR-10:
this dataset consists of 60,000 32x32 color images of 10 classes, with 6000 images per class. There
are 50,000/3000/7000 images for training/validation/testing respectively.
• Two text datasets: (1) DBPedia ontology6: this is a crowd-sourced dataset (Lehmann et al.,
2015) with 560,000 training samples and 70,000 test samples. Out of the 70,000 test samples,
we use 10,000 for validation and 60,000 for test. (2) THUCNews: this dataset consists of 65,000
sentences of 10 classes (Li et al., 2006). We randomly select 50,000/5000/10,000 sentences for
training/validation/testing respectively.

Experiment Settings

Data Preparation: To simulate sequential learning, we adopt the same two data processing methods
as in (Lee et al., 2017), named disjoint and shuffled.
• Disjoint: This method divides each dataset into several subsets of classes. Each subset is a task.
For example, we can divide the MNIST dataset into two tasks (or subsets of classes). The first task
consists of digits (classes) {0, 1, 2, 3, 4} and the second task consists of the remaining digits (classes)
{5, 6, 7, 8, 9}. The systems learn the two subsets as two tasks in a sequential fashion and regard them
together as 10-class classification. In order to consider more tasks in testing, for MNIST, CIFAR-10,
and THUCNews, which all have 10 classes, we created two settings of 2 tasks (5 classes per task)
and 5 tasks (2 classes per task). For DBPedia, which has 14 classes, we created three settings, 2 tasks
(7 classes per task), 3 tasks (5, 5, and 4 classes for the three tasks respectively), and 5 tasks (3, 3, 3, 3,
3, and 2 classes for the 5 tasks respectively).
• Shuffled: This method shuffles the input pixels of an image with a fixed random permutation. Two
test settings were created: 3 tasks and 5 tasks. In both cases, the dataset for the first task is the original
dataset. The datasets for the rest of the tasks are constructed through shuffling. Since shuffling of
words in a sentence will change the sentence meaning and results in confusion, thus this experiment
is not done on text datasets.

Baselines: We use three state-of-the-art baselines that are representative of the current approaches:
1) EWC (elastic weight consolidation) (Kirkpatrick et al., 2017); 2) IMM (incremental moment
matching) (Lee et al., 2017); 3) GR (generative replay) (Shin et al., 2017). We use the open source
code released by the authors or the third party for comparison. We use Adam algorithm to update the
parameters and also use Adam as a baseline to show how serious the forgetting problem is.

6https://github.com/guoyinwang/LEAM

6

Under review as a conference paper at ICLR 2019

Training Details: For fair comparison, our proposed approach uses the same solver (or classifier) as
the baselines. That is, a multilayer perceptron is adopted as the solver/classifier (as the baselines all
use this method), which is a 3-layer network (i.e., two basic units with each hidden layer as a unit)
followed by a softmax layer. For our approach, the total number of parameters in the solver includes
both the generated parameters p and the shared parameters θ0. Due to the differences among different
datasets, we adopt different settings for them, see Table 5 in Appendix for details. All baselines and
our approach use the same setting for the same dataset. We use a 3-layer perceptron (with 2 hidden
layers) network (we also call it T-net) for DPG and set the size of each hidden layer to 1000. Each
T-net can generate 100 parameters at a time. We can parallel several T-nets in the DPG to generate
more parameters when needed. The network parameters are updated using the Adam algorithm with
a learning rate of 0.001.

Results and Analysis

Figure 3 shows the test accuracy plots per 40 training steps of each method for each task as the
tasks are sequentially learned. IMM is not used here because IMM works by combining well trained
models of individual tasks to form one joint model for all tasks. Thus, we cannot draw an accuracy
curve with increased training steps like others. However, its final results and those of the other
systems are given in Tables 1 and 2. Shuffled CIFAR-10 is also not included in the figure because our
experiments show that it cannot be learned by CNN. It is also not used in any existing paper. Note
that due to space limitations, Figure 3 only plots the results of those settings with only 2 and 3 tasks.

From Figure 3, we can make the following observations:

(1). The proposed method consistently outperforms the baselines in overcoming forgetting, by a big
margin in most cases.

(2). EWC does not perform well for the disjoint setting. GR is better but still poorer than our method.
Adam’s results show that forgetting is very serious for all datasets and settings.

Time efficiency: Due to DPG, our method uses slightly more time than baselines, under 25% for
training and under 28% for testing compared with GR, which is most efficient. This is a small price
to pay for the major gain in accuracy in dealing with catastrophic forgetting.

Memory usage: There is no need for our method to save data, which results in memory saving. For
more details about time efficiency and memory usage, please refer to Appendix (Section C).

Table 1: Average accuracy over all tasks in a sequence after the tasks have all been learned.

Model shuffled disjoint disjoint THUCNews DBPedia DBPedia
MNIST (3 tasks) MNIST (2 tasks) CIFAR-10 (2 tasks) (2 tasks) (2 tasks) (3 tasks)

Adam 91.46 48.64 41.99 46.78 47.66 41.10
EWC 96.70 48.96 37.75 45.02 53.95 35.89
GR 97.57 89.96 65.11 81.55 88.41 82.14

IMM 97.92 94.12 62.98 80.32 92.65 85.31
Our MA 98.14 96.53 69.51 85.12 94.70 88.06

From Table 1, we can see that our method MA is consistently superior to EWC, GR, and IMM on
different datasets with 2 or 3 tasks (5 task results are in Table 2). We believe that is because our MA
model can reduce the effect of the accuracy deterioration problem discussed in Section 1. Adam’s
results show that forgetting is very serious as it does not deal with the forgetting problem. EMC’s
performance is poor for the disjoint case (a more realistic setting in practice), which is also reported
by other researchers (Lee et al., 2017).

Table 2: Average accuracy over 5 tasks in a sequence after the tasks have all been learned.

Model shuffled disjoint
DBPedia CIFAR-10 THUCNews

MNIST MNIST
GR 94.54 75.47 63.71 31.09 47.35

IMM 96.09 67.25 64.04 32.36 46.61
Our MA 96.77 81.70 69.68 40.47 52.93

Table 2 shows the results for 5 tasks. EWC and Adam are not included as they performed poorly.
Again, we observe that our method is markedly better than the baselines.

7

Under review as a conference paper at ICLR 2019

0.85
0.90
0.95
1.00

Ta
sk
 1

Task 1 Task 2 Task 3

0.85
0.90
0.95
1.00

Ta
sk
 2

Training time0.85
0.90
0.95
1.00

Ta
sk
 3

Our MA
GR
EWC
Adam

(a) Shuffled MNIST (3 tasks)

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk
 1

Task 1 Task 2

Our MA
GR
EWC
Adam

Training time0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk
 2

(b) Disjoint MNIST (2 tasks)

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk
 1

Task 1 Task 2

Training time0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk
 2

Our MA
GR
EWC
Adam

(c) Disjoint CIFAR-10 (2 tasks)

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk
 1

Task 1 Task 2

Training time0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk
 2

Our MA
GR
EWC
Adam

(d) THUCNews (2 tasks)

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk
 1

Task 1 Task 2

Training time0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk
 2

Our MA
GR
EWC
Adam

(e) DBPedia 77 (2 tasks)

0.0
0.2
0.4
0.6
0.8
1.0

Ta
sk
 1

Task 1 Task 2 Task 3

0.0
0.2
0.4
0.6
0.8
1.0

Ta
sk
 2

Training time0.0
0.2
0.4
0.6
0.8
1.0

Ta
sk
 3

Our MA
GR
EWC
Adam

(f) DBPedia 554 (3 tasks)

Figure 3: Accuracy curves - we test the system’s accuracy per 40 training steps on the test set of each
method. Y-axis shows the accuracy of different tasks as the training time (steps) increases. Note that
Shuffled CIFAR-10 is not included as CNN cannot learn it directly.

Ablation Study

Here we study how the system behaves with less and less parameters in θ0 or more and more
parameters being replaced by parameters generated by DPG. We select the disjoint MNIST 2 task
setting to conduct the experiment as it is more useful than the shuffled setting and also more difficult.

Table 3: Average accuracy with different % of parameters in solver’s last layer (one basic unit) being
replaced with the parameters generated by DPG. Each score followed by a 95% confidence interval.

Model GR
Our MA

0% 20% 40% 60% 80% 100%
Accuracy 88.71 (±2.64) 90.96 (±0.69) 92.44(±1.31) 93.96(±0.63) 94.51(±0.87) 96.07(±0.62) 96.05(±0.64)

Table 3 shows the accuracy results (averaged in the same way as in Table 1) when only a portion of the
parameters in the last layer of the solver is replaced parameters generated by DPG. We observe that
the accuracy improves with increased percentages of parameters being replaced. The best accuracy is

8

Under review as a conference paper at ICLR 2019

obtained when 80% of the parameters in the last layer are replaced through DPG, and the accuracy
won’t further improve with more replaced parameters. This observation indicates that replacing a
part of parameters in solver to adapt new input tasks is sufficient. We believe that is because part
of parameters are shared among different tasks and thus there is no need to change them. The same
conclusion can also be made by replacing the parameters in the first hidden layer of the solver (which
has 2 hidden layers). We fix the replacing percentage of the last layer to 20%, and then increase the
replacing percentages of the first layer. The best accuracy reaches 94.31%(±0.84%) when replacing
40% parameters of the first layer, which only gains 1.87% in accuracy compared with no replacement.
This result also indicates that it suffices to replace the parameters in the last layer.

Table 4: Empirical evaluation of differ-
ent components

Components Acc (%)
DPG + DG + Constraints 96.07 ± 0.62

DG + Constraints 90.96 ± 0.69
DG + label (like GR) 88.21 ± 2.81

Table 4 shows the contribution of different components.
We can see a significant drop when removing DPG. The
second row gives the performance of our model when only
DG and constraints are used. The third row shows the
result without using constraints (DG+label(like GR)) but
replacing them with the replay method. We can see that
constraints work better than predicting labels.

4 RELATED WORK

Many approaches have been proposed to deal with catastrophic forgetting (CF). EWC (Kirkpatrick
et al., 2017) quantifies the importance of weights to previous tasks, and selectively alters the learning
rates of weights. Following EWC, Zenke et al. (2017) measured the synapse consolidation strength
in an online fashion and used it as regularization. Learning without forgetting (LWF) (Li & Hoiem,
2016) feeds the old network with new training data in new tasks and regards the output as ”pseudo-
labels”. In Incremental Moment Matching (IMM) (Lee et al., 2017), each trained network on one
task is preserved and all networks are merged into one at the end of the sequence of tasks.

Above approaches focus on adjusting the network weights. Another main approach is to add some
data of past tasks to the new task training to prevent forgetting the past. Gradient Episodic Memory
(GEM) (Lopez-Paz et al., 2017) stores a subset of training data for every finished task, and limits
the loss function on these so-called ”memories”. Instead of keeping some real data from previous
tasks, Generative Replay (GR) (2017) keeps data generators for previous tasks and learns using a mix
of real data of the new tasks and replayed data of previous tasks. Seff et al. (2017) also proposed to
solve continual generative modeling by combining the ideas of data generation and EWC.

Some other approaches include Learn++ (Polikar et al., 2001), iCaRL (Rebuffi et al., 2017), Pathnet
(Fernando et al., 2017), Memory Aware Synapses (Aljundi et al., 2017), One Big Net for Everything
(Schmidhuber, 2018), Phantom Sampling (Venkatesan et al., 2017), Active Long Term Memory
Networks (Furlanello et al., 2016), Conceptor-Aided Backprop (He & Jaeger, 2018), Gating Networks
(Masse et al., 2018; Serrà et al., 2018), PackNet (Mallya & Lazebnik, 2017), Diffusion-based
Neuromodulation (Velez & Clune, 2017), Dynamically Expandable Networks (DEN) (Yoon et al.,
2018), Progress & Compress (Schwarz et al., 2018), and Incremental Regularized Least Squares
(Camoriano et al., 2017). Most of those works suffer from accuracy deterioration as discussed in
Section 1 while some dynamically expanding the network size (e.g., DEN and LWF), which results
in a huge and complex model. Our method is very different from these existing approaches.

Several existing works also generate parameters, but they are for different purposes. Denil et al.
(2013) train several different architectures by learning only a small number of weights and predicting
the rest. Ha et al. (2016) used a small network to generate the weights for a larger network. Brock
et al. (2017) learn an auxiliary HyperNet to generate weights for the main model. Our method uses
the generated parameters for model adaption for continual learning.

5 CONCLUSION

This paper proposed a very different approach to dealing with catastrophic forgetting. The approach
learns to build a model with two sets of parameters. The first set is shared by all tasks learned so far
and the second set is dynamically generated to adapt the model (solver) to suit each individual test

9

Under review as a conference paper at ICLR 2019

example. As we discussed in related work, this is different from all existing methods. Experimental
results showed that the proposed approach outperformed the existing baseline methods markedly.

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. arXiv preprint arXiv:1711.09601, 2017.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model
architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

Raffaello Camoriano, Giulia Pasquale, Carlo Ciliberto, Lorenzo Natale, Lorenzo Rosasco, and
Giorgio Metta. Incremental robot learning of new objects with fixed update time. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on, pp. 3207–3214. IEEE, 2017.

Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al. Predicting parameters in deep
learning. In Advances in neural information processing systems, pp. 2148–2156, 2013.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734, 2017.

Tommaso Furlanello, Jiaping Zhao, Andrew M Saxe, Laurent Itti, and Bosco S Tjan. Active long
term memory networks. arXiv preprint arXiv:1606.02355, 2016.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

Xu He and Herbert Jaeger. Overcoming catastrophic interference using conceptor-aided backpropa-
gation. 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, volume 1, pp. 3, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, pp.
201611835, 2017.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. In Advances in Neural Information
Processing Systems, pp. 4652–4662, 2017.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, et al. Dbpedia–a large-
scale, multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2):167–195,
2015.

Jingyang Li, Maosong Sun, and Xian Zhang. A comparison and semi-quantitative analysis of words
and character-bigrams as features in chinese text categorization. In ACL, 2006.

Shen Li, Zhe Zhao, Renfen Hu, Wensi Li, Tao Liu, and Xiaoyong Du. Analogical reasoning on
chinese morphological and semantic relations. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 138–143. Association for
Computational Linguistics, 2018. URL http://aclweb.org/anthology/P18-2023.

10

http://aclweb.org/anthology/P18-2023

Under review as a conference paper at ICLR 2019

Zhizhong Li and Derek Hoiem. Learning Without Forgetting. ECCV, 9908(1):614–629, 2016.

David Lopez-Paz et al. Gradient episodic memory for continual learning. In Advances in Neural
Information Processing Systems, pp. 6467–6476, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. arXiv preprint arXiv:1711.05769, 1(2):3, 2017.

Nicolas Y Masse, Gregory D Grant, and David J Freedman. Alleviating catastrophic forgetting using
context-dependent gating and synaptic stabilization. arXiv preprint arXiv:1802.01569, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. arXiv preprint arXiv:1802.07569, 2018.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
2014. URL http://www.aclweb.org/anthology/D14-1162.

Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar. Learn++: An incremental learning
algorithm for supervised neural networks. IEEE transactions on systems, man, and cybernetics,
part C (applications and reviews), 31(4):497–508, 2001.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proc. CVPR, 2017.

Juergen Schmidhuber. One big net for everything. arXiv preprint arXiv:1802.08864, 2018.

Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable frame-
work for continual learning. arXiv preprint arXiv:1805.06370, 2018.

Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in generative adversarial nets.
arXiv preprint arXiv:1705.08395, 2017.

Joan Serrà, Dı́dac Surı́s, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. arXiv preprint arXiv:1801.01423, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-encoders.
arXiv preprint arXiv:1711.01558, 2017.

Roby Velez and Jeff Clune. Diffusion-based neuromodulation can eliminate catastrophic forgetting
in simple neural networks. PloS one, 12(11):e0187736, 2017.

Ragav Venkatesan, Hemanth Venkateswara, Sethuraman Panchanathan, and Baoxin Li. A strategy
for an uncompromising incremental learner. arXiv preprint arXiv:1705.00744, 2017.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. Gated self-matching networks
for reading comprehension and question answering. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pp. 189–198,
2017.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. 2018.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
arXiv preprint arXiv:1703.04200, 2017.

11

http://www.aclweb.org/anthology/D14-1162

Under review as a conference paper at ICLR 2019

A PROOF FOR QUESTION 1

Proof: Our objective is to minimize ||R(x, θ∗i)−R(x, θ∗i−1)||. Since R(·) is differentiable and its
derivative function is bounded because it uses 1-Lipschitz activation function (e.g., RELU or tanh)
and R(·) satisfies the Lipschitz condition. After some transformation, we obtain:

||R(x, θ∗i)−R(x, θ∗i−1)||
= ||R(x, θ∗i)−R(x′, θ∗i) +R(x′, θ∗i)−R(x′, θ∗i−1) +R(x′, θ∗i−1)−R(x, θ∗i−1)||
≤ ||R(x, θ∗i)−R(x′, θ∗i)||+ ||R(x′, θ∗i)−R(x′, θ∗i−1)||+ ||R(x′, θ∗i−1)−R(x, θ∗i−1)||
≤ L1||(x− x′)||+ ||R(x′, θ∗i)−R(x′, θ∗i−1)||+ L2||(x− x′)||
= ||R(x′, θ∗i)−R(x′, θ∗i−1)||︸ ︷︷ ︸

minimize replayed samples

+(L1 + L2)||(x− x′)||

(12)

where the last inference is based on Lipschitz continuity, and L1 and L2 are Lipschitz constants. We
can see that if the solver has a small Lipschitz constant or the DG’s reconstruction error is small,
minimizing Eq. 8 is consistency with constraining using the original data.

B PARAMETER SETTINGS

Table 5: Parameter settings for different datasets

MNIST: We set the basic unit (hidden layer) size of the 3-layer classifier to 600 and the dropout rate to 0.3. A 3-layer convolu-
tional network (CNN), with 2 * 2 convolutions and 64, 128, 256 filters for each layer, is used as DG’s encoder. A deconvolutional
network with the symmetric setting as the encoder is used as the decoder in DG. For our model, we using the parameters gener-
ated by DPG to replace 33% of the parameters in the solver’s last hidden layer, and 10% of the first hidden layer.
CIFAR-10: We set the basic unit (hidden layer) size of the 3-layer classifier to 1000 and the dropout rate to 0.5. For our model,
we use the parameters generated by DPG to replace 25% parameters of the solver’s last hidden layer, and 10% of the first hidden
layer. Since each image in this dataset contains a complex background thus is more difficult to classify, we add a 3-layer CNN
below the 3-layer MLP classifier to improve the performance. 3-layer CNN has the same setting as the encoder of DG. Due
to the complexity of the images in CIFAR-10, the replayed images are usually noisy. Text datasets usually cannot be exactly
replayed. To alleviate this problem, we propose to replay the features (e.g. using an additional CNN to extract features) of input
data which performs well in the experiment. In that case, the 3-layer CNN added to the classifier plays an important role in
feature extraction and it needs to be fix; if not, the system won’t get a stable input and thus will cause forgetting. Note that the
feature extractor can be pre-trained using a large dataset (e.g. imagenet for image and wikipedia for text.) and thus can provide
sufficient features.
Text Datasets: We set the basic unit (hidden layer) size of the 2-layer classifier to 1000 and dropout rate to 0.5. For our model,
we use the parameters generated by DPG to replace 25% parameters of the solver’s last hidden layer, and 10% of the first hidden
layer. To get better results on text, we use pre-trained embeddings (Pennington et al., 2014; Li et al., 2018) for all experiments.

C MORE EXPERIMENTAL RESULTS

Memory

• The memory used by our model is around 151.49MB, by IMM is around 38.96MB * task num
(task num will be 3 if there are three tasks), and by GR is around 70.13MB. The memory required by
all these systems are very small as compared to the total memory available in a modern computer.

• Our data generator DG has around 1,460,361 parameters (around 44.57MB, calculated by 32 Byte
per parameter), which is fixed. Saving data would need much more memory. Taking the MNIST
dataset as an example. It has 60,000 training samples and the size of each sample is 28*28. The
memory needed to store the data is 28*28*60,000 = 47,040,000 (around 358.89MB, calculated by 8
Byte per unit). And this number multiplies when the number of tasks increases.

Training and Test Time

Taking the CIFAR10 dataset as an example (others are similar), the total time used by our model and
baselines are shown in Table 6. We can see that our method needs a bit more time than baselines but
not too much (under 25% for training and under 28% for testing compared with GR). This is a small
price to pay for the major gain in accuracy and in dealing with the catastrophic forgetting problem.

Accuracy on the Last Task

ADAM gets the best accuracy on the last task as Adam optimizer learns the new task only and does
not need to worry about the forgetting problem on the old tasks. For the last task, Our MA system

12

Under review as a conference paper at ICLR 2019

Table 6: Empirical evaluation of different components

Time EWC IMM GR Our MA
Training Time/per epoch (s) 2.460 4.930 8.673 10.836

Test time(s) 0.703 0.707 0.728 0.930

obtained comparable accuracy on average with the baselines designed for overcoming forgetting.
However, we are much better at preventing forgetting of old tasks. The results for the last task are
given in Table 7. Note that although EWC is quite good at the last task but it suffers seriously from
forgetting as shown in Table 1 or Figure 3, which is consistent with results reported in other papers.

Table 7: Accuracy of the last task after the tasks have all been learned.

Model
shuffled shuffled disjoint disjoint disjoint

THUCNews
DBPedia DBPedia

DBPedia-5
MNIST MNIST MNIST MNIST CIFAR-10 77 554
3 tasks 5 tasks 2 tasks 5 tasks 2 tasks 2 tasks 2 tasks 3 tasks 5 tasks

Adam 98.30 98.27 97.28 95.78 83.98 93.56 95.30 97.52 98.45
EWC 98.12 97.99 96.97 95.61 75.38 86.72 96.11 96.55 93.32
GR 98.10 97.18 96.34 92.31 77.82 87.20 93.18 89.40 98.76

IMM 97.06 95.36 95.07 86.94 48.74 65.08 93.84 85.72 70.19
Our MA 98.15 97.26 96.22 93.47 73.75 86.36 96.01 91.14 82.99

13

	Introduction
	Proposed Model Adaptation Framework
	Overall Approach
	Dynamic Parameter Generator (DPG) and Solver S Implementation
	Data Generator (DG)
	Objective Functions and Constraints

	Experiments
	Related Work
	Conclusion
	Proof for Question 1
	Parameter Settings
	More Experimental Results

