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ABSTRACT

Why does variational autoencoder(VAE) suffer from bad reconstruction, and what
influence the disentanglement of VAE? This paper tries to address those issues
through a noise modelling perspective. On one fold, the paper proposes the adap-
tive noise learning algorithms of Gaussian noise and mixture Gaussian noise as-
sumption which empirically contributes to a better reconstruction than original
VAE noise assumptions. On other fold, several generating factor properties in the
idealistic VAE case are discussed and several performance indicators regarding the
disentanglement and generating influence are subsequently raised to evaluate the
performance of VAE model and to supervise the used factors. Theoretical analysis
is reflexed in the experiment results.

1 INTRODUCTION

From the theory of artificial intelligence perspectives, Variational AutoEncoder(VAE)s, raised by
Kingma & Welling (2013) and Rezende et al. (2014), have been attracting much research atten-
tion in the recent years due to their powerful human-like abilities in extracting disentangled fac-
tors/representation(Bengio et al. (2013)) underlying data in a purely unsupervised manner and gen-
erating signals with abundant diversities in a ”latent-factor-controllable” way. On the one hand,
beyond most of the current machine learning regimes, VAEs are capitalized on its approaching a
causal modelling and disentangled generating factor learning capability, which finely simulating
human abilities, emphasized by Lake et al. (2016), of the knowledge transferring through shared
causes/factors among different tasks/experiences. On the other hand, the generalization capability
possessed by VAEs also well comply with the ideal mental imagery mechanism in memory and
thinking.

Due to its strong capabilities on latent representation learning, signal reconstruction and new sample
generation, VAE and its variants have been widely applied to wide range of applications, including
disentangled representations learning of images(Higgins et al. (2016),Kulkarni et al. (2015), Mathieu
et al. (2016)) and time series(Fabius & van Amersfoort (2014)), zero/one/few-shot learning(Rezende
et al. (2016),Higgins et al. (2017b)) and transfer learning in reinforcement learning(Higgins et al.
(2017a)), causal relationships modeling(Louizos et al. (2017)), pixel trajectory predicting(Walker
et al. (2016)), joint multi-modal inference learning(Suzuki et al. (2016)), increasing diversity in
imitation learning(Wang et al. (2017)), generation with memory(Li et al. (2016)) and etc.

However, the implementations of VAE always ignore the importance of noise on its reconstruction
and representation learning ability and the applications of VAE has suffered from the blurred recon-
structions/generations and the unstable disentangled quality (Higgins et al. (2016)). In particular,
most of them assume a heuristic fixed noise that disables the model to flexible adapt to the real
noise. These issues, as results, sometimes make VAE have to be an auxiliary part to only allevi-
ate the generation shortcomings of generative adversarial network(GAN)(Larsen et al. (2015),Wang
et al. (2017)).

From the perspective of VAE assumption, noise modelling places an indispensable part. Concretely,
on one hand, the major factors are learnt and inferred and the noise enables the optimization. On
the other hand, more importantly, since the whole learning procedure is through an unsupervised
manner, the prior for major factors and noise modelling together form the core inductive bias of
VAE.
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Figure 1: The directed graph model of noise modeling VAE. (a) is under gaussian noise as-
sumption. (b) is under mixture of gaussian noise assumption. Solid lines denote the generative
model pmodel(z;WG)pmodel(x|z;WG, σ) in (a) and pmodel(z;WG)pmodel(x|z;WG,Σ,Π) in (b).
Dashed black lines denote the variational approximation q(z|x;WE) to the intractable posterior
pmodel(z|x;WG, σ) in (a) or pmodel(z|x;WG,Σ,Π) in (b).

From the perspective of real implementation, different datasets may have drastically different noise
and improper modeling for noise distribution inclines to lead to incorrect model hypothesis and tend
to influence the distribution learning consequence. The superiority brought by proper consideration
on noise modeling has been verified in various applications like denoising(Chen et al. (2017)), back-
ground substraction(Yong et al. (2017)), derain(Wei et al. (2017)) and medical image reconstruction
and ect.

There are also lack of effective disentanglement performance metrics for VAE in real application.
The traditional performance metric raised by Higgins et al. (2016) is intractable to be computed in
real data and hard to provide direct feedback of the disentanglement of VAE in used currently.

To alleviate the aforementioned issues on VAE, in this study, we attempt to address the aforemention
issues through a noise modelling perspective regarding VAE. This perspective provides us a rein-
terpretation that the generation process of VAE can be viewed as a noise adaption process. Since
the derivation of the VAE is constructed based on the maximum likelihood principle, the supple-
mental parameters deduced by noise distribution amelioration can be directly embedded into and
learnt through optimizing the objective of VAE and general end-to-end learning algorithms can be
easily deduced. In this work, we use two modeling regime for fitting noise to data: Gaussian (with
its variance adaptively learnt from data) and mixture of Gaussian. In such way, we expect our
VAE embedded with noise modeling regime capable of better deliver the intrinsic generalization
mechanism underlying data and achieve better performance in both representation and reconstruc-
tion. Furthermore, in order to guarantee a better disentanglement of representation, the auxiliary
constraints (Higgins et al. (2016)) are introduced to the objectives. Further, the factors properties
regarding the Gaussian-prior-VAE are discussed mathematically and indicators for quantitatively as-
sessing the factor disentanglement ability, factor influence degree and inference mutual information
raised. Beyond the previous metrics for performance assessment which could be hardly used in prac-
tical cases, such raised indicators can help easily quantify VAE model performance w or w/o noise
modelling and auxiliary constraints in real data. By qualitative (in visualization) and quantitative
(in terms of the presented performance indicators), we show that overall noise modelling w & w/o
auxiliary constraints are superior to original VAE by experiments on datasets, including CelebA(Liu
et al. (2015)), Extended Yale Face B(Georghiades et al. (2001),Lee et al. (2005)) and MNIST(Lcun
et al. (1998)). The proposed metrics can also facilitate effective discovering most ”influential” latent
factors to help generating and traversal in the latent space.

In summary, the contribution of this paper can be mainly summarized as follows.

• We propose the VAE model embedded with noise fitting component, which is expected to
better adapt practical noise configurations in real data. Two noise modeling regimes are
considered to construct the noise learning VAE model, Gaussian (with variance learned
from data) and mixture of Gaussian. Such amelioration facilitates the VAE capable of
always reducing the artificial intervention due to more proper guiding of noise learning.
Further, auxiliary constraints can be introduced to guarantee a better disentanglement.
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• We propose multiple quantitative indicators for VAE as well as their estimation meth-
ods to supervise the degree of disentanglement, to quantify the mutual information of
codes/factors and original signal regarding inference/encoder network and to determine the
influential factors, and provide a bunch of theorems/definitions to illustrate the idealistic
properties of gaussian factors VAE. Different from the previous metrics for assessing VAE
performance, these indicators can be calculated by directly implementing our proposed
algorithms on any given data.

• We substantiate the effectiveness of the proposed VAE-with-noise-modeling algorithm, as
well as the proposed indicators on various datasets, and show the importance of such noise
modeling consideration in both the reconstruction and disentanglement performance of
VAE model as compared with the previous enumerated pre-specified noise VAEs. The
mixture of gaussian(MoG) noise model with proper specified components number can fur-
ther help achieve a more elaborate noise component decomposition. Also, the Gaussian
and MoG noise assumption alleviate the blurry effect issue of the generated images gen-
erally encountered by previous VAE methods. The proposed indicators also facilitates an
appropriate extraction on intrinsic latent factors underlying data.

The paper is organized as the following: The related work is briefly reviewed in Section 2. The
proposed VAE model with noise modeling, together with its theoretical support and implementation
algorithms, is introduced in Section 3. The proposed indicators for assessing the factor disentan-
glement ability, factor influence degree and inference mutual information, as well as their insightful
theories, are given in Section 4. The experimental results are demonstrated in Section 5, and finally
we provide conclusion and discussions on this work.

2 RELATED WORK

VAE was proposed by Kingma & Welling (2013) and Rezende et al. (2014) to implement the effi-
cient learning and inference in directed probabilistic models regarding continuous latent variables
with intractable posterior distributions and in scalable datasets. They introduced a network infer-
ence/recoginition model to represent the approximate posterior distribution and utilized reparame-
terization trick for stochastic joint optimization of a variational lower bound containing the param-
eters of both the generative/decoder and inference/recoginition/encoder models. While they also
designed a network for parameterizing the noise for Gaussian MLP decoder, the capability of noise
rectifying based on data has not been specifically emphasized, just similar to most of the latter VAE
applications, which easily specify a fixed Gaussian noise (with preset variance parameter) but more
or less underestimate the role of noise learning.

After being raised, many VAE variations have been proposed to boost VAE’s capabilities in genera-
tion quality and/or disentanglement of the learned representation. In these methods, multiple efforts
were made by improving the generative and inference network structures. Typical works along this
line include the convolution/de-convolution structure raised by Kulkarni et al. (2015) and ladder
structure raised by Zhao et al. (2017)). Some other works advanced the mechanism under the VAE
generation/inference processes. Typical works include the iterative attention generation/inference
mechanism raised by Gregor et al. (2015), normalizing flow proposed by (Rezende & Mohamed
(2015)) that enhanced the expressive ability of the approximate posterior and its variants (Kingma
et al. (2016)).

Despite the improvement to the VAE itself, some other efforts were made by the ensemble between
GAN with VAE. E.g., Larsen et al. (2015) unified GAN and VAE to obtain a better reconstruction
and a high-level abstracts visual features embedding. Mathieu et al. (2016) also unified GAN and
VAE but put emphasis on disentangling factors of variation. GANs without auxiliary design would
learn the data distribution disregarding its noise level though suffer from unstable training and mode
collapsing(Salimans et al. (2016)) while VAEs would assume a decomposition of the noise and
oracle clean datapoint regarding the noise data with an auxiliary prior on the distribution regarding
the factors. If the wrong specified noise in VAE is combined into GAN which inclines to conduce
unexpected images with corruptions, it’s reasonable that the ensemble model may achieve a better
hypothesis of true data distribution.
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Besides, many efforts were made by regularization on the factor distribution or factor generating
effect. E.g., Makhzani et al. (2015) introduced an adversarial loss into the latent space of the au-
toencoder which in idealistic case could learn any kind factor/lantent distribution including those
contributing to the disentangled factors/representation. InfoGAN, raised by Chen et al. (2016), in-
troduced the infomax principle to GAN by adding an auxiliary mutual information regularization
which enabled the inference of GANs and led to a better disentangled representation as well.

However, most of these current VAE models need to pre-specify the noise parameter before VAE
training, which inclines to make them perform not stably well especially under complex noises
especially different from the subjective pre-specified noise configuration. This issue thus inspires
us to introduce noise learning component into the VAE model (as depicted in Fig. 1 to ameliorate
the model better fitting the real data and further boost the VAE performance in both latent factor
representation and signal reconstruction.

Recently, there is a new VAE variation is proposed by Higgins et al. (2016) who introduced the
β-VAE framework which enhanced the constraints regarding the KL-divergence of the posterior and
prior distribution of VAE and showd a novel disentanglement performance. This method has ob-
tained a better performance as compared with conventional VAE methods, especially on its flexible
tuning a compromising a parameter beta between the KL-divergence term and the likelihood term
(the variational lower bound). We thus select this VAE model to embed our noise modeling regime
to improve its capability of adapting real noise in data. It should be noted that β-VAE still assumes
a Gaussian noise with pre-specified variance parameter, and the noise modeling regime is thus ex-
pected to further improve its learning capability and ameliorate its performance to be more stable
and robust to real data noise.

In the other perspective of the decomposition of the noise and oracle clean data, deep denoising
models, including denoising autoencoder(Goodfellow et al. (2016)), stacked denoising autoencoder-
s(Vincent et al. (2010)), denosing variational encoder(Im et al. (2017)) etc., have also shown similar
ability to the proposed VAE model with noise modeling. However, those models are trained by using
paired/supervised data (both corrupted and clean data) while our model just learn in a purely unsu-
pervised manner without supervision regarding the noise/or oracle data. Just similar to traditional
VAE, such implementation paradigm is more similar to human learning process, and can be better
generalized into real applications lacking supervision knowledge.

3 VAE WITH NOISE MODELING

In traditional VAE applications, the noise is generally fixed as a Gaussian with fixed variance. In
this section, we further extend such noise-specification implementation as a automatic noise adapt-
ing regime. Specifically, we take the Gaussian variance parameter as an optimization variable and
integrate it into the VAE model to make the noise fitted by data, and furthermore, we ameliorate
the noise as mixture of Gaussian1 to further enhance its noise modeling capability. The β-VAE is
employed to integrate such noise modeling mechanism.

3.1 INTERPRET THE ORACLE GENERATION OF VAE IN NOISE MODELING PERSPECTIVE

When modelling the real-valued generation process, VAEs often assume the conditional distribution
to be

pmodel(x|z) = N (x|G(z), σ2Id),

where x ∈ RD is the random vector variable corresponding to input data and z ∈ RH represents the
latent factors for implicitly generating the data. G is the generating/decoder function parameterized
by neural networks and σ2 is the variance parameter of the Gaussian distribution.

Such VAE model can be equivalently interpreted in perspective of noise modeling. The data are
formulated by the ideal generation G(z) (clean data, where z follows a prior p(z) = N (z; 0, IH)
) corrupted by an additional element-wise Gaussian noise ε with variance σ2. mathematics, this

1The mixture of Gaussian is of a strong universal approximation capability to general probability distribu-
tions(?).
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saying can be expressed as the following2

x = G(z) + ε. (1)

In VAE setting, the approximate inference3 method is applied to maximizing the variational lower
bound of pmodel(x) =

∫
pmodel(x|z)p(z)dz,

L(q) = E
z∼q(z|x)

log pmodel(x|z)−DKL(q(z|x)||p(z)) ≤ log pmodel(x). (2)

In most practical applications of VAE, the noise level, σ2, is generally heuristically pre-
specified(Makhzani et al. (2015),Walker et al. (2016),Higgins et al. (2017a)). Since the objective
of the log-likelihood needs to negotiate with the KL-divergence term in the optimization process
for VAE, if the noise level cannot guarantee to comply with the real noise level underlying data,
the properness of the above VAE model could not be satisfied, which naturally tends to lead to the
instable performance of the method in practice (i.e. suffer from Severely Wrong Model Assump-
tion). Such an issue has been observed in β-VAE(Higgins et al. (2016)), which enforces a tunable
parameter β to more or less deliver noise variation knowledge of data in the VAE model4, while
such β still needs to be manually pre-specified before VAE optimization process, which is generally
still a challenging task for real data.

3.2 NOISE MODELLING WITH AUXILIARY CONSTRAINT

The entangled representation can be caused by the over-large of searching space of q(z|x).
The posterior distribution searching space determined by the neural structure could always be two
large in VAE application. If the learned q(z) =

∫
q(z|x)pdata(x)dx doesn’t factorize, then the

VAE model in the perspective of inference network just tends to learn the entangle representation.
Actually, in the VAE model, what we want is to search in the space that q(z) is possibly similar to
p(z) 5. By implementing this ideal, we add auxiliary upper bound Ex∼pdata(x)DKL(q(z|x)||p(z))
(detailed in Theorem 5) of DKL(q(z)||p(z)) to the original objective. This equivalently leads to the
approach of β-VAE raised by Higgins et al. (2016),

sup
q(z|x)

E
x∼pdata(x)

L(q(z|x))− (β − 1)DKL(q(z|x)||p(z))

2This setting is quite common used in many other fields, and normally leads to L2 loss during the optimiza-
tion regarding the factor if there is no other term have to be negotiated with negative-log likelihood

arg inf
G
− log p(x|z) = ∥x−G(z)∥22

2σ2
+

1

2
log(2π)m|σ2Im| ←→ arg inf

G
∥x−G(z)∥22.

3The approximate posterior distribution q(z|x) followsN (En(x); Σz|x(x)) where En denotes the Encoder
and Σz|x represents the covariance matrix parameterized by the neural network. The reparameterization trick,
z|x = En(x) +Σ

1/2

z|x (x)e where e ∼ N (0, IH), enables the calculation of coefficient gradient of the first part
of VAE through sampling, that is

E
z∼q(z|x)

log pmodel(x|z) = E
e∼N (0,1)

log pmodel(x|En(x)+Σ
1/2

z|x (x)e) ≈
1

M

M∑
m=1

log pmodel(x|En(x)+Σ
1/2

z|x (x)e
m).

4 Objective of σ2 pre-specified VAE:

E
z∼q(z|x)

∥x−G(z)∥22
2σ2

−DKL(q(z|x)||pmodel(z)).

Objective of (σ2 pre-specified as σ2
pre) β-VAE:

E
z∼q(z|x)

∥x−G(z)∥22 − 2βσ2
preDKL(q(z|x)||pmodel(z)),

where we call βσ2
pre the normalized variance.

5 Jensen Shannon Divergence and other integral probability metric which can be good choice and directly
be optimized through a adversarial format (Makhzani et al. (2015)) as well. However, in practice, we were
defeated by the unstability of training GAN-like model.
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= E
x∼pdata(x)

E
z∼q(z|x)

log pmodel(x|z)− βDKL(q(z|x)||p(z)) (3)

where β > 1.

3.3 INTEGRATING NOISE FITTING AND VAE PARAMETER LEARNING

We can easily integrate the noise parameters into the VAE objective to make the noise as a learnable
part in VAE to compensate a better performance on both representation and reconstruction of VAE.

3.3.1 GAUSSIAN CASE

The VAE objective (i.e., the variational lower bound) can be treated as function of the noise variance
parameters σ2 and networks parameters W (which parameterizes the factorWG, the encoder and the
posterior distribution WE),

L(W,σ, xm) = E
z∼q(z|xm;WE)

log pmodel(x
m|z;σ,WG)−DKL(q(z|xm;WE)||pmodel(z)). (4)

Here the SGVB estimator in (Kingma & Welling (2013)), L̃B(W,σ, xm) =

[ 1L
∑L

l=1 log pmodel(x
m|zl;σ,WG)] − DKL(q(z|xm;WE)||pmodel(z)) is used. Note that the

noise variance σ is also taken as an optimization variable in the model, making the model capable
of better adapting noise variation of data in practical cases in a totally automatic way, instead of a
manually set manner.

Given multiple data points from a dataset X, we can construct an estimator of the mean marginal
likelihood lower bound of the full dataset, based on minibatches

L̃M (W,σ,XM ) =
1

M

M∑
m=1

L̃B(W,σ, xm), (5)

where the minibatch XM = {xm}Mm=1 is a randomly drawn sample set of M datapoints from the
full dataset X. Such a lower bound also constitutes an important indicator for model evidence in
latter experiment. We call it the empirical variational lower bound (EVLB) in the following.

Note that L̃B(W,σ, xm) ≃ L(W,σ, xm) and we can deduce that

L̃M (W,σ,XM ) ≃ E
x∼pdata(x)

L(W,σ, x)

≤ E
x∼pdata(x)

log pmodel(x;WG, σ) ≤ E
x∼pdata(x)

log pdata(x). (6)

The last inequality holds due to DKL(pdata(x)||pmodel(x;WG, σ)) ≥ 0.

The alternative optimization strategy can be readily utilized to design the algorithm for solving the
model by iteratively updating the noise parameter and the network ones. During the optimization
process, the objective can be monotonically increasing, and thus the algorithm can be guaranteed to
be convergent.

The algorithm is summarized as follows:

Optimization for W: gradient method for W in regard to L̃M (W,σ,XM ).

Optimization for σ: σ2 =
∑L

l=1

∑M
m=1 ∥xm−G(zm,l)∥2

2

dML . (Close form solution in regard to
L̃M (W,σ,XM ).)

Direct gradient method to the transformed variable log simga = log σ ∈ R can be implemented to
lift the lower bound L̃M as a result to increase the likelihood as well.

3.3.2 MIXTURE OF GAUSSIAN CASE

The noise ε in Eq. (1) in real situation might be more complex than a simple Gaussian, like that
existed in real photographs(Plotz & Roth (2017)). We thus try to further ameliorate the noise setting
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as a mixture of gaussian(MoG) noise. Such noise modeling strategy has been widely verified to
be effective in applications, like matrix factorization (Meng & Torre (2014)) and robust principal
component analysis (Zhao et al. (2014)). That is, we assume that

ε ∼
K∑

k=1

πkN (0, σ2
k). (7)

Let cd ∈ {0, 1}K be the latent indicator random one-hot variable,
∑K

k=1 cdk = 1, for the MoG-
noise component of pixel indexed by d. Let Π = [π1, · · · , πK ] and Σ = [σ2

1 , · · · , σ2
K ] be the ratio

and variance of each component, respectively. Let WN = [Π,Σ]. The conditional joint distribution
turns to be

pmodel(cd, xd|z,WN ,WG) =
K∏

k=1

πcdk
k N (xd|G(z)d, σk)cdk . (8)

The posterior distribution q(z, c|x) can be factorized as q(z|x)q(c|x, z), where q(z|x) will be direct
learnt and the alternative of q(c|x, z), q(c|x, e) will be set to the last step pmodel(c|x, e) in regard to
EM procedure. The lower bound of log pmodel(x) is then reformulated as follows:

L(q(z, c|x)) = E
z∼q(z̃|x)

E
c∼q(c̃|x,z̃=z)

log pmodel(x, c|z) +H(q(c|x, z))−DKL(q(z|x)||pmodel(z)).

(9)

Similar to the Gaussian case, the reparamerization trick is implemented,

L(q(c|x, e),WN ,WG,WE , x
m)

= E
e∼N (0,1)

E
c∼q(c̃|x,e)

log pmodel(x, c|z̃) +H(q(c|x, z̃))−DKL(q(z|x)||pmodel(z)), (10)

where z̃ = En(x) + Σz|x
1/2(x)e.

By utilizing the SGVB estimator, we get,

L̃B(q(c|x, e),WN ,WG,WE , x
m) = [

1

L

L∑
l=1

E
c∼q(c̃|xm,e(l))

log pmodel(x
m, c|zm,l)

+H(q(c|xm, e(l)))]−DKL(q(z|xm)||pmodel(z)). (11)

Given an input dataset X, we can then construct an estimator to the mean marginal likelihood lower
bound of the full dataset, based on minibatches, as follows:

L̃M (q(c|x, e),WN ,WG,WE , X
M ) =

1

M

M∑
i=1

L̃B(q(c|x, e),WN ,WG,WE , x
m), (12)

where zm,l = En(xm) + Σz|x
1/2(xm)e(l) and the minibatch XM = {xm}Mi=1is a randomly drawn

sample of M datapoints from the full dataset X.

Then let

poldmodel(cd, xd|zold,W old
N ,W old

G ) =
K∏

k=1

πold
k

cdkN (xd|Gold(zold)d, σ
old
k )cdk , (13)

where zold = Enold(x) + Σold
z|x

1/2
(x)e, and we can get

poldmodel(cd|x, zold,W old
N ,W old

G ) =
poldmodel(cd, xd|zold,W old

N ,W old
G )∑

cd

poldmodel(cd, xd|zold,W old
N ,W old

G )
. (14)

The EM algorithm can be naturally employed to solve the model. The implementation steps are
listed as follows:
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Step 1. Expectation Step.

Set q(c|xm, e(l)) = poldmodel(c|xm, Enold(xm) + Σold(xm)e(l)) i = 1, · · · ,m, l = 1, · · · , L.

Calculate the expectation of the latent variable c:

E(cdmlk) = γdmlk =
πkN (xmd |G(zm,l)d, σ

2
k)∑L

l=1

∑M
m=1 πkN (xmd |G(zm,l)d, σ2

k)
, (15)

where zm,l : zm,l
old = Enold(xm) + Σold(xm)e(l).

The Objective in Maximization Step is obtained as the following,

L̃M (q(c|x, e),WN ,WG,WE , x
m) =

1

M

M∑
i=1

−DKL(q(z|xm)||pmodel(z))

+
1

L

L∑
l=1

H(qold(c|xm, e(l))) +
K∑

k=1

D∑
d=1

γdmlk[
(xmd −G(zm,l)d)

2

2σ2
k

+
1

2
log(2π)σ2

k + lnπk]. (16)

Step 2. Maximization Step:

Fix: q(c|x, e) determined in the Expectation Step.

1

M

M∑
i=1

−DKL(q(z|xm)||pmodel(z))+
1

L

L∑
l=1

K∑
k=1

D∑
d=1

γdmlk[
(xmd −G(zm,l)d)

2

2σ2
k

+
1

2
log(2π)σ2

k+lnπk].

(17)

Update [WN ],[WG,WE] by alternative optization strategy.

Update Π,Σ: note here zm,l : zm,l
old = Enold(xm) + Σold(xm)e(l), and we can easily get the

closed-form updating formula for these parameters:

Nk =
∑
d,m,l

γdmlk πk =
Nk∑K
k=1Nk

σ2
k =

1

Nk

∑
d,m,l

γdmlk(x
m
d −G(zm,l

old )d)
2. (18)

Update WG,WE : gradient methods with respect to WG,WE . Note here zm,l = En(xm) +
Σ(xm)e(l).

The algorithm can then be summarized as follows:

1. Initialize the coefficient ofWG,WE = [Encoder,Σz|x] and the coefficient of noise ε: Π,Σ.

2. Sample e from N (0, IH) to obtain e1, · · · , eM [One for each element sample in the mini
batch in the next step (L here is set to 1)].

3. Sample a mini batch XM from pdata(x).

4. Implement EM algorithms as aforementioned (approximate inference for q(c, z|x)):
Expectation: calculate γdmk.
Maximization: update WN , Update WG,WE with gradient methods.

5. Goto 3: Until Trigger End-Criterion.

3.3.3 NETWORK PARAMETERIZED GAUSSIAN CASE

Here we want to give a short discussion on the difference of the proposed VAE model with noise
modeling with that raised by Kingma & Welling (2013) , in which they model the noise as the
following parameterized network structure:

x ∼ N (G(z), σ2(z))
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G(z) =Wuh(z) + bu
log σ2(z) =Wσh(z) + bσ, (19)

where h represents the mapping induced by the previous network layers; σ2(z) represents the diag-
onal of diagonal covariance matrix; {Wu,Wσ, bu, bσ} are the weights and biases of the last layer of
network.

It can be observed that this model assumes that each pixel noise indexed by d has its own level
determined by bσd and is also influenced by the deterministic part Wσh(z). When the noise level
is shared among all data points and not influenced by the deterministic part, then it degenerates to
the Gaussian assumption; if the noise has several discrete level, it then tends to degenerate to MoG
assumption on noise. However, on the one hand, the assumption used in the model inclines to make
the optimization for the model difficult due to the numerical instability caused even by one zero-
variance residual pixel. This is possibly why most applications on VAE have not employed such
noise assumption while prefer to fix and manually set a noise level before VAE training. On the
other hand, the over-parameterized noise could significantly increase the difficulty to find a better
deterministic part since the model might be inclined to fit the noise hypothesis rather than learn a
goodG. These limitations have been empirically verified by all our experiments and can be observed
in the experimental results as listed in Section 5.

4 GENERATING FACTOR PROPERTIES AND PERFORMANCE INDICTORS

In order to evaluate the performance of our model, we propose multiple new indictors. All these
indicators can be approximately calculated from input data, which ameliorates the issue that the pre-
vious performance metric cannot be easily computed from real data (as discussed in Section 4.2.1).
Roughly speaking, we try to show that idealistic VAE model6 is hard to properly learn excess/extra
factors by information conservation theorem(Theorem 1); factors that are possible to be learnt by
idealistic VAE tend to form an equivalence class under the orthogonal transformation by Gaussian
factor equivalence theorem(Theorems 2 and 3) and therefore even idealistic VAE cannot learn “se-
mantic disentangle” representation. Subsequently, multiple meaningful performance indicators are
raised: the estimation for DKL(q(z)||p(z)) is used for quantifying the disentanglements, and the
estimation of Iencoder(x; zh), used for quantifying the influential(“used”) factors.

4.1 INFORMATION CONSERVATION

Whether VAE can learn the real factors or just some fantasies that model itself makes up is an
important issue for a generative model. We try to address this issue by disregarding the training
procedure and direct considering the idealistic VAE’s behavior through the following theorem.
Theorem 1 (Information Conservation). Suppose that z = (z1, · · · , zH) and y = (y1, · · · , yP )

are sets of H and P (H ̸= P ) independent unit Gaussian random variables, respectively, then these
two sets of random variables can not be the generating factor of each other. That is, there are no
continuous functions f : RH → RP and g : RP → RH such that

z = g(y) and y = f(z).

The principle of the theorem is visually illustrated in Fig. 2.This theorem roughly demonstrates
that the number of the learnt “used” factors of VAE can be the same as the true factors number
under some assumptions such as the learnt q(z) should equal p(z) and decode/encode process is
continuous and reversible. Empirically, only a small amount of unit gaussian variables regarding
the factors of well disentangled VAE have been used in practical VAE application and this theorem
helps provide an interpretation to explain this phenomenon. Suppose that the observed data, denoted
by random variable x, is generated by y (with P independent unit gaussian random variables) with a
homeomorphism mapping x = ϕ(y). VAE will be forced to learn the factor z (with H independent
unit gaussian random variables) that generates the x with a homeomorphism mapping x = ψ(z).
It yields z = ψ−1 ◦ ϕ(y) and y = ϕ−1 ◦ ψ(z). Then according to the information conservation
theorem, it must hold that H = P .

6An idealistic VAE model means that it can perfectly encode the signal into “used” factors and perfectly
decode the “used” factors to original input signal and the factors follows i.i.d unit gaussian distribution.
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Figure 2: The illustration of the information conservation theorem

4.1.1 EFFICIENT REPRESENTATION AND CLARIFICATION ON DISENTANGLEMENT

According to the information conservation theorem, the independent unit gaussian distribution as-
sumption regarding the factor of the model facilitates the model incline to achieve most efficient
coding.(i.e., the number of functional latent factors extracted from the model should be same as that
of the intrinsic latent factors underlying the model). That is, no auxiliary factor tend to be learnt,
though the number latent of factors sometimes is pre-specified larger than that in the idealistic VAE
setting.

Here, in order to avoid the ambiguity of the terminology of disentanglement, we make the following
clarification.

• The disentanglement of the learnt representation/factors in this literature refers to two parts
depicted in Theorem 1:

– the factors are closer to be independent with each other,
– the factors incline to be able to generate the oracle signal and to be inferred perfectly

from the oracle signal through a continuous procedure/mapping.
• The “disentanglement” refers to the closeness of the learnt factors to the pre-specified inde-

pendent factors/concpets that can generate the oracle signal and be perfect inferred through
a continuous procedure/mapping such as the independent semantic/visual factors.

Therefore, the estimation for DKL(q(z)||p(z)) that reflects the divergence of the learnt factor dis-
tribution and the i.i.d. unit gaussian prior can be good a indicator to supervise the independence of
the factors can be served to quantitatively assess the disentanglement of each extracted factor.

The “disentanglement” will be shown that is hard to be obtained in a unsupervised manner. Con-
cretely, even in the idealistic cases, the extracted factors tend to possess the intrinsic number of latent
factors of the model, while there are still possibly large variations of these factors due to it can be
obtained in as proved in the next subsection.

4.2 GENERATOR EQUIVALENCE

Theorem 2 (Gaussian Factor Equivalence). Suppose that z = (z1, · · · , zH) is a set of H indepen-
dent unit gaussian random variables. Let Q ∈ RH×H be an orthogonal matrix and then y = Qz is
also a set H independent unit gaussian random variables. Besides, z and y can generate each other
through a linear homeomorphism mapping.

This theorem implies that there are a class of unit Gaussian random variables which can generate
each other and have equivalent conservation information, as indicated by the following theorem.
Theorem 3 (Linear Gaussian Factor Equivalence Class).

[z] = {y|y = Qz, Q ∈ RH×Hbe the orthogonal mapping.}
Then ∀y ∈ [z], y is a set of H independent unit gaussian random variables and can generate z
through an linear homeomorphism mapping.

10
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The theorem clarifies that if VAEs have an linear matrix multiplication freedom degree of learning
the factors, then the factors in the equivalence class can all be possibly learnt.

The empirically results tally with the above analysis(see Fig. 3). Suppose the visu-
al semantic concepts can be viewed as a set of independent Gaussian variables (z =
(zrotation, zgender, zwith−glass, · · · )T ) which are desired to be captured and learnt by VAEs, while
the model is also possible to learn the independent factor set y = (y1, · · · )T = Qz in the equiva-
lence class [z]. This explains why changing one factor like y1 always empirically results in change
in multiple visual concepts.

(a) (b) (c) (d)

Figure 3: One-shot traversal & generating factor equivalence class demonstration. The images
are generated by MoG-2 β(=40) VAE trained on CelebA. The seed image is obtained out from the
datasets. Each block represents the traversal of the generating factor from [−3+zseedh,+3+zseedh].
(a) corresponds to face color white-yellow & female-male change. (b) corresponds to face color
white to yellow change. (c) corresponds to background yellow to blue change. (d) corresponds
to hair color white to black & face width change. It can be seen that changing one factor results
in multiple semantic factor change in a comprehensible manner which reflexed analysis regarding
generating factor equivalence.

This perspective also suggests that it’s actually hard to obtain the disentangled representation that
exactly “one-to-one” corresponds to the “independent semantic representation” even though they are
in the same equivalence class. As a result, the idealistic VAE model just tend to learn the “entangle
representation” if we do preset a “oracle generating factor” belonging to the equivalent class.

However, though those conclusions might be upsetting, it seems not be biology impossible. Many
biological evidences have proved that actually a neuron in the brain of animals could combination-
ally possesses several functional capabilities. E.g., Aronov et al. (2017) found that some neurons
in rat’s hippocampus involved in representing sound frequencies also were involved in spatial rep-
resentation after training rats by a tasks that required them to use a joystick to manipulate sound in
frequency continuously. We thus expect that even with such “entangling mechanism” the extracted
factors by VAE could also possess rational representation capabilities and be finely interpreted.

If we assume that the most of the visual concept/factors follow the condition regarding the “disen-
tanglement”, it is rational to qualitatively measure the interpretability of extracted latent factors to
infer the disentanglement. Besides, both the biological and previous empirical evidences of VAE
applications(Higgins et al. (2016),Higgins et al. (2017b),Larsen et al. (2015),Mathieu et al. (2016))
have shown that such extracted factors located in the equivalent class can also finely reveal the
interpretable representations underlying data.

4.2.1 DEFICIENCY OF THE EXISTING DISENTANGLEMENT METRIC

Higgins et al. (2016) proposed an “simulated factor” based disentanglement metric on the simulation
datasets. However, this metric could be hardly calculated in the real datasets to provide direct
feedback of the disentanglement of the model since it needs to pre-know the generating factors of
the VAE model by default, which yet are generally hardly to know in practice. Besides, according
to Gaussian generator equivalence theorem(Theorem 2) that even idealistic VAE will still learn the
factors in the equivalence class, their metric can suffer severely instability to evaluate the VAE in
different trials (detailed in Appendix 7.2).

11
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4.3 INFORMATION CHANNEL

The mutual information7 regarding the factors learned by the inference/encoder network and the
signal x can be a good quantity for evaluating the generating influence8. That is,

Iencoder(x; z) = E
x∼pdata(x)

DKL(q(z|x)||q(z)). (20)

In order to understand and estimate which factor of the VAE was learnt and influenced the generating
process, Iencoder(x; zh) can be taken as a rational indicator9. If we assume that z1, z2, · · · , zH is
conditional independent given x10, it can yield a useful result as the following.
Theorem 4 (Separation of the Mutual Information). Suppose z1, · · · , zH be independent unit gaus-
sian distribution, and z1, z2, · · · , zH be conditional independent given x. Then

I(z1, · · · , zH ;x) =

H∑
h=1

I(zh;x). (21)

This theorem suggests that if the learnt q(z) can factorize and the q(z|x) can factorize, then the
consideration of each I(zh;x) won’t be excess or lose information.

4.4 INDICATORS

In order to quantify the disentanglement performance as well as the Iencoder(x; z). We assume that
q∗(z) is a factorized zero mean gaussian estimation for q(z). We first propose the following relevant
theorem and then provide the indicators.
Theorem 5. The terminology follows the aforemention definitions and if the involved KL-divergence
and mutual information is well defined, then

E
x∼pdata(x)

DKL(q(z|x)||p(z)) = Iencoder(x; z) +DKL(q(z)||p(z)). (22)

The theorem demonstrates that the second term in variation lower bound in Eq. (3.2) capable of
controlling both the mutual information of x and z induced by the encoder network as well as the
similarity of the learnt q(z) and the prior p(z)(disentanglement performance). We can then list the
indicators for assessing latent factor disentanglement:
Definition 1 (Estimation for Ex∼pdata(x)DKL(q(z|x)||p(z))).

D̃KL(q(z|x)||p(z)) =
1

M

M∑
m=1

DKL(q(z|xm)||p(z)). (23)

Definition 2 (Estimation for Iencoder(x; z)).

Ĩencoder(x; z) =
1

M

M∑
m=1

DKL(q(z|xm)||q∗(z)). (24)

Definition 3 (Estimation for Iencoder(x; zh) which quantifies the influence of each factor).

Ĩencoder(x; zh) =
1

M

M∑
m=1

DKL(q(zh|xm)||q∗(zh)). (25)

7This term can be seen as a lower bound of the channel capacity (defined in Cover & Thomas (2012)) of the
inference/encoder network

8 Maximizing the mutual information of the encoder networks can also be viewed as the original objective
of the autoencoder (Vincent et al. (2010)).

9If Iencoder(x; zh) = 0, it yields x and zh are independent with each other. The bigger Iencoder(x; zh),
the more information zh conveys regarding x.

10A special case is that zi will be either determined by x or be the unit gaussian distribution which is
independent of x. It follows the real implementation assumption that Σz|x(x) = diag(σz1(x), · · · , σzH(x)).

12



Under review as a conference paper at ICLR 2018

Definition 4 (Estimation for DKL(q(z)||p(z))).

D̃KL(q(z)||p(z)) = D̃KL(q(z|x)||p(z))− Ĩencoder(x; z). (26)

Note that the above indicators 2-4 need the value of q∗(z), we then introduce how to calculate this
term based on Theorem 5. Through the minimization equivalence, we know taht

min
Q

E
x∼pdata(x)

DKL(q(z|x)||Q(z)) ⇔ min
Q

DKL(q(z)||Q(z))dz, (27)

the q ∗ (z) can then be obtained from solving the following optimization problem which can be
calculated by gradient method.

q∗(z) = argmin
Q

1

M

M∑
m=1

DKL(q(z|xm)||Q(z)). (28)

5 EXPERIMENT

In this section, we will show experimental results to both quantitatively demonstrate the superiority
of a VAE model with embedded noise modeling component as compared with that without this part,
and qualitatively show the better reconstruction capability and meaningful-latent-factor-extraction
capability of the ameliorated VAE model with noise modeling. The functional effects of the pro-
posed indicators can also be verified.

The comparison method is employed as the recently proposed β-VAE(Higgins et al. (2016)), which
has been proved to have a good reconstruction and representation capabilities as compared with
traditional VAE methods due to its involvement of a tunable compromising parameter β between
the likelihood and KL-divergence terms in VAE objective. Besides, the network parameterized
Gaussian noise learning VAE model is also considered for comparison in Extended Yale B dataset.
We will show the performance amelioration taken by integrating noise modeling component in these
methods.
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5.1 EXPERIMENTS ON MNIST

MNIST is a database of handwritten digits. By setting β as different values, we compare the per-
formance of β-VAE with and without considering noise modeling components on this dataset. We
specifically listed the result of β(=1)-VAE in all cases. More details can be referred to in Ap-
pendix 7.3.1.

The noise specifications significantly influence the quality of final method performance in both quan-
tity and quality, as clearly shown in Fig. (4). However, different datasets have its own noise and the
relative optimal specification of noise level in practice might be really hard to be obtained. It can
be seen that in most cases the β-VAE model with noise modeling is superior in learning a relatively
better hypothesis with higher EVLB to that without this component. This can be easily interpreted
by the fact that each dataset has its own level of noises, and noise modeling regime in VAE model
tends to help the model better fit such noise and naturally conduct a better reconstruction result.
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Figure 5: (a) D̃KL(q(z)||p(z)) of different VAE models & (b) Number of normal-variance genera-
tors of different VAE models (with 128 factors.)

The noise specifications significantly influence the disentanglement and noise learning β-VAE with
noise modeling achieves a better disentanglement quantitatively based on the proposed indicators in
the perspective of DKL(q

∗(z)||p(z)) 11 and the number of normal variance factors. In regard to the
same normalized variance, according to figure 5a, the factor distributions of the β-VAEs with noise
learning are closer to the prior distribution, which means it is more likely to be independent. The
learnt factors with an estimated normal variance σ2

zh
≥ 0.8 are counted to convey more informa-

tion regarding the factor distribution. According to Fig. (5b), the β-VAEs with noise learning learn
significantly more normal variance factors, in regard to the same normalized variance. The values
of these indicators quantitatively show that the factors of β-VAE with noise learning are more like-
ly/closer to be independent with each other while also guarantee to be a good distribution hypothesis
in regard to maximum likelihood principle as depicted in Fig. (4).

The β-VAE with noise learning also achieves a better disentanglement qualitatively. As shown
in Fig. (6) and 7, in regard to normalized variance, the β-VAE with noise learning learns more
interpretable factors as well as more normal variance factors. Also, according to the estimation of
mutual information, the influence of factor is also more balanced than that of traditional β-VAE.
It can also be found that β-VAE has the ability to automatically suppress the auxiliary factors and
learn the intrinsic factor dimension, already suggested by the information conservation theorem 1.

We find that β-VAE with noise modeling suffers from the suppression on Iencoder(x; z), as depicted
in Fig. (8a) and that is comprehensible since β-VAE is minimizing the auxiliary constraints both
Iencoder(x; z) +DKL(q(z)||p(z)) based on Theorem Theorem 5.

5.2 EXPERIMENTS ON EXTENDED YALE FACE DATABASE B

The extended Yale Face Database B contains images of several human subjects under different poses
and different illumination conditions. In this series We compare the β−VAEs with noise Gaussian
and MoG components, and network parameterized Gaussian noise and as well as different β bal-
ancing the representation ability. The Table 1 quantitatively compare the performance indicators of
different methods.

11This term estimates the similarity of the learnt factors distribution to the unit i.i.d. Gaussian distribution.
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σ2
h and qualitatively influential factor traversals. The top pulse subgraph: the estimated mutual

information Iencoder(x; zh) of each factor. The bottom reverse pulse subgraph: the estimated
variance σ2
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of each factor. The montages: influential factor traversals. In all figures of factor

traversal each montage corresponds to the traversal of a single factor while keeping others fixed to
their inferred ( VAE, β-VAE). Each row corresponds to a different seed image used to infer latent
factor value in the VAE-based models. β-VAE and VAE traversal is over [-3, 3]. Note that all
the factors with Iencoder(x; zh) not close to zero (> 0.1) can be visually tell the existence of their
generation effect. We select those factor traversals with visually most interpretable/comprehensive
effects to present. Due to the limitation of space, the whole influential factor traversals are listed
in appendix 7.4.2 The mutual information of “used” factor learnt by noise learning β-VAE can be
found relatively balanced. It’s interesting that whether the learnt estimation of σ2

zh
takes 1 or small

value is strongly correlated with whether the estimation of Iencoder(x; zh) be near zero or not. The
phenomenon of the multiple semantic change induced by the same learnt factor and the encoding of
same semantic among different learnt factor tallies with factor equivalence class theorem 2.
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Figure 7: Noise specified (β-)VAE with equivalent σ2 = 0.1: estimation of Iencoder(x; zh), σ2
h and

qualitatively influential factor traversals. Note that we select those factor traversals with visually
most interpretable/comprehensive effects to present. Due to the limitation of space, the whole influ-
ential factor traversals are listed in appendix 7.4.1. The mutual information of “used” factor learnt by
noise specified β-VAE can be found more diverse than that in figure 6. The σ2

zh
and Iencoder(x; zh)

value correlation is also significant. However, the effect of factor learnt by the noise specified VAE
is hard to be intepreted (They maybe not independent with each other.).

β-VAE with MoG noise modeling (β = 1) learns an evidently better distribution hypothesis com-
pared with the Gaussian one. It’s comprehensive that MoG-VAE learns two different noise level
component according to Fig. (9). One of them can be interpreted as the intrinsic physical Gaussian
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Figure 8: (a) Ĩencoder(x; z) of different VAE models & (b)Number of influential generators of dif-
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Table 1: Yale Face Database B Model Comparison [with 128 Latents ( H=128 )]

β Noise σ2
k π2

k EVLB D̃KL(q(z)||p(z)) # (σ2
zh

> 0.8) #(I(zh; x) > 0.5)(updated)

1

G 0.00040 1 76892 127.2 0 128∗

Network - - 90506 127.4 0 128
Network(MoG-2) [0.00011 0.0053] [0.728 0.272] 72778 127.4 0 128

Network(G) 0.0016 1 57195 127.4 0 128
MoG-2 [0.0001 0.0029] [0.783 0.217] 81200 127.9 0 128

40 MoG-2 [0.00012 0.0043] [0.719 0.281] 72346 89.28 73 46
80 MoG-2 [0.00012 0.0049] [0.697 0.302] 69074 44.25 105 23
120 MoG-2 [0.00013 0.0054] [0.664 0.336] 64439 27.27 114 14
160 MoG-2 [0.00013 0.0059] [0.660 0.340] 63447 23.41 116 12

The result can be influenced by the specification of the initialization of the σ2
k and πk. Variance

was clipped to 0.0001 to guarantee the stable optimization. The results of Network(MoG-2) and
Network(G) are derived using the fixed G(z) but changing the noise hypothesis and recalculating
the noise parameters. The * result is calculated by D̃KL(q(z|x)||p(z))-D̄KL(q(z)||p(z)) and the
others in the same column are calculated by D̃KL(q(z)||p(z)).

noise and the other might be the part hard to be reconstructed. However, if the noise is assumed to be
one Gaussian, then it can hardly decompose such an elaborate description of noise configurations,
as shown in Fig. (9).

For the parameterized VAE, although the network parameterized noise VAE achieves the highest
distribution hypothesis, the qualitatively reconstruction of the network was not as good as its EVLB.
The model generates the more blurred reconstruction, which can be observed on two typical faces
shown in Fig. (10). We further plug the generator G(z) into MoG-2 noise hypothesis, according to
the Table 1, its EVLB decreases significantly. Besides, the network parameterized noise VAE suffers
severely from the numerical instability such that we could always not finish a complete training(2002
epoch) due to the its objective collapsed illustrated in Section 3.3.3. All of the aforemention evi-
dences suggest that the model learns a relatively dedicate hypothesis for the noise rather than the
deterministic part(oracle signal).

5.3 EXPERIMENTS ON CELEBA

CelebA is a large-scale celebfaces attributes datasets and only its images are used in our experiments.
We compare the VAEs of different specification of number of latent factors with both Gaussian and
MoG noise modeling and as well as different β balancing the representation ability. The following
Table 2 of the performance indicators shows the comparison of the model.

Table 2: CelebA Model Comparison

β Noise σ2
k π2

k EVLB D̃KL(q(z)||p(z)) # (σ2
zh

> 0.8) #(Ī(zh; x) > 0.5) # latents

40 MoG-2 [0.0030 0.029] [0.628 0.372] 10552 24.22 94 27 128
30 MoG-2 [0.0027 0.027] [0.637 0.363] 11324 29.72 82 32 128
1 G 0.011 1 10015 31.94 0 32 32

The (̄I(x; zh)) is calculated by D̃KL(q(z|x)||p(z))-D̄KL(q(z)||p(z)) and D̃KL(q(z)||p(z)) is bet-
ter.
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The table shows that as compared with carefully specification of the generating factors number,
noise modelling and auxiliary constraints make the model capable of learning both better hypothesis
and disentangled representation.

The generating equivalence property is again well demonstrated by seeing Fig. (11): “Blue to Yel-
low” background change ∼ factor 13, 96,40,45,118. “Black to White” background change ∼ factor
7. Height ∼ factor 37,45. Mouth Open to Close background ∼ factor 8. Face direction change ∼
factor 26,31. “Male to Female” change ∼ factor 28. “Big to Small” face change ∼ factor 63,77,82.
Lighting ∼ factor 73,90. Face lighting ∼ factor 120,110. Glass ∼ factor 73. Neck length ∼ factor
102. “White to Yellow” skin color change ∼ factor 102,96,28,63,82. Hair color ∼ factor 120. “Half
Bright Half Gloomy” background change ∼ factor 110.

6 CONCLUSION AND PERSPECTIVE

In summary, the paper obtains the following conclusions:

• Integrating noise modeling component into a VAE model tends to evidently ameliorate the
reconstruction quality of VAE and disentanglement performance from the evidence of the
indictors and interpretability of the extracted latent factors obtained by.
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factor 7 factor 8 factor 12

factor 13 factor 19 factor 26

factor 28 factor 29 factor 31

factor 37 factor 40 factor 45

factor 48 factor 56 factor 63

factor 65 factor 73 factor 77

factor 81 factor 82 factor 88

factor 90 factor 96 factor 102

factor 110 factor 118 factor 120

Figure 11: CelebA: Generating Factors Traversal

• β-VAE with noise modelling is able to automatically attain a relatively better distribution
hypothesis and help achieve a better disentanglement performance as compared to the ma-
nipulation on the pre-specified noise (β-)VAE.
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• Further, MoG β-VAE and can learn a better hypothesis distribution than the β-VAE with
Gaussian noise modeling when the data noise distribution is complex.

• Network parameterized noise VAE learns a more blurred generation and tends to suffer
from the numerical instability though it can learn a good distribution hypothesis.

• The Gaussian prior assumption contributes to the efficient coding of VAE model, and the
idealistic VAE won’t learn auxiliary dimension of generating factors.

• The learned factors of the idealistic VAE exist an equivalence class under an orthogonal
linear transformation, though the semantic factors can generate the data.

• The mutual information Iencoder(x; zh) is a good indicator to help determine the “used”
generating factors.

We further try to give some discussions which should be beneficial to our future works on this work.

Firstly, from the perspective of noise modeling:

• The physical noise in different practical scenarios, such as medical image process-
ing/generating, can be taken into consideration while implementing the VAE model.

• The noise modelling for other generative model and deep model is also an interesting di-
rection.

From the perspective of representation learning:

• It is interesting that the topology properties of oracle signal are used to obtain the proof
for the information conservation theorem. Other situation including the data has several
connected components can be further considered and would uncover the efficient coding
properties of discrete factors.

• The learnt factors’ variance still exists a gap to the unit Gaussian prior, and it is unsatisfac-
tory that the auxiliary constraint suppresses the Iencoder(x; z). A better mechanism that is
innocuous to other part of VAE but complies q(z) to follow the prior p(z) is still required
to be investigated.
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7 APPENDIX

7.1 PROOF

Proof. For theorem 1. Proof by Contradiction. Suppose those two function exist, and we will show
that they will be inverse mapping of each other and the homeomorphism mapping of RH and RP .
Since RH and RP have different topology structures (P ̸= H), the homeomorphism mapping will
not exist.

z = g(y) = g(f(z)) ∀z ∈ RH ⇒ g ◦ f = IH

y = f(z) = f(g(x)) ∀y ∈ RP ⇒ f ◦ g = IP

Since both f and g are continuous, there is a homeomorphism mapping between RH and RP and it
leads to the contradiction.
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Proof. For theorem 2. We only need to test the mean and variance of y.

E(y) = E(Qz) = QE(z) = 0

Cov(y, y) = QCov(z, z)QT = QIQT = I

Therefore, y is another set ofH independent unit gaussian random variables. Since x = QT y, z and
y can generate each other with an linear homeomorphism mapping.

Proof. For theorem 4,

I(z1, · · · , zH ;x) =

∫
p(z1, · · · , zH , x) log

p(z1, · · · , zH , x)
p(z1, · · · , zH)p(x)

dz1 · · · dzHdx

=

∫
p(z1, · · · , zH , x) log

∏H
h=1 p(zh|x)∏H
h=1 p(zh)

dz1 · · · dzHdx =
H∑

h=1

∫
p(zh, x) log

p(zh|x)
p(zh)

dzhdx

=

H∑
h=1

I(zh;x).

Proof. For theorem 5.

E
x∼pdata(x)

DKL(q(z|x)||p(z)) =
∫
q(z|x)pdata(x)

q(z|x)pdata(x)
p(z)pdata(x)

dx

=

∫
q(z|x)pdata(x)

q(z|x)pdata(x)
q(z)pdata(x)

q(z)

p(z)
dx = Iencoder(x; z) +DKL(q(z)||p(z)). (29)

7.1.1 AUXILIARY EXPLANATIONS FOR INDICATORS

Corollary 1. The terminology follows the aforemention definitions and if the involved KL-
divergence and mutual information be well defined then

E
x∼pdata(x)

DKL(q(z|x)||q∗(z)) = Iencoder(x; z) +DKL(q(z)||p(z)). (30)

The proof of corollary 1 is the same as that of theorem 5. This corollary suggests that the estimation
in definition 2 provides another upper bound for the capacity of the encoder network. Empirically,
this estimation is a much tighter estimation than using the estimation in definition 1.

Corollary 2. The terminology follows the aforemention definitions and if the involved KL-
divergence and mutual information be well defined then

E
x∼pdata(x)

DKL(q(z|x)||p(z))− E
x∼pdata(x)

DKL(q(z|x)||q∗(z))

= DKL(q(z)||p(z))−DKL(q(z)||q∗(z)) ≤ DKL(q(z)||p(z)). (31)

The corollary is an direct result of theorem 5 and corollary 1. It suggests that the estimation in
definition 4 is a lower bound for DKL(q(z)||p(z)).
Definition 5 (Another Estimation for DKL(q(z)||p(z))).

D̄KL(q(z)||p(z)) = DKL(q
∗(z)||p(z)). (32)

Empirically, D̄KL(q(z)||p(z)) and D̃KL(q(z)||p(z)) shown the same estimation results on MNIST.
Definition 6 (Another estimation for Iencoder(x; z)).

Īencoder(x; z) = −DKL(q
∗(z)||p(z)) + 1

M

M∑
m=1

DKL(q(z|xm)||p(z)). (33)

Definition 7 (Another estimation for Iencoder(x; zh) which quantifies the influence of each factor).

Īencoder(x; zh) = −DKL(q
∗(zh)||p(zh)) +

1

M

M∑
m=1

DKL(q(zh|xm)||p(zh)). (34)
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7.2 ANALYSIS ON THE DISENTANGLEMENT METRIC RAISED IN β-VAE (HIGGINS ET AL.
(2016))

The terminology inherits those in the β-VAE paper. The main idea of that disentanglement metric
is to create a statistic point zdiff relevant to the model for each simulated factor respectively and
then to use a linear classifier to project the statistic point to the corresponding index of the simulated
factor. If the statistic points induced by the model are easy to be separated then the model is thought
to learn disentangle representation.

Here, we will argue that even for the idealistic VAE model that already learnt i.i.d unit Gaussian
factors may receive bad score under that performance metric.

Suppose that the true simulated factors v be with distribution N (0, IH). Then the learnt “used”12

factor z can be in the equivalence class [v] according to theorem 2. Concretely, there exists an
orthogonal transformation Q such that z = Qv.

Suppose that the simulated factors with index y of v is fixed. Suppose v1y−fixed and v2y−fixed are
two random variable representing the samples from the y-fixed v. Then the factors inferred by the
idealistic VAE turns to be z1 = Qv1y−fixed and z2 = Qv2y−fixed.

In order to calculate the statistic point zdiff (y) = E |z1 − z2|, we first calculate the mean and
variance of (z1 − z2).

E(z1 − z2) = QE(v1y−fixed − v2y−fixed) = 0 (35)

V ar(z1−z2) = V ar(Q(v1y−fixed−v2y−fixed)) = QCov(v1y−fixed−v2y−fixed, v
1
y−fixed−v2y−fixed)Q

T

= Qdiag(2, · · · , 2, 0y, 2, · · · , 2)QT = 2I −Qdiag(0, · · · , 0, 2y, 0, · · · , 0)QT = 2I − 2qyq
T
y .
(36)

Therefore, zdiff (y) can be calculated through the diagonal value of 2I − 2qyq
T
y . That is,

zdiff (y) = E(|z1 − z2|) = 2

√
2

π
(
√
(1− q2y1), · · · ,

√
(1− q2yH))T . (37)

From the above equation, the location of statistic point is unique determined by (q2y1, · · · , q2yH).
When (q2y1, · · · , q2yH) is close to the vertex of the unit cubic for each y then all the statistic points
turn to be easily separated.

However, from the perspective of the objective, all the orthogonal Qs are with the same potential
to be learnt. It seems not to be with a small probability that statistic points of different indexes

take similar location. For instance, if H = 2 and Q =

(
1√
2

1√
2

− 1√
2

1√
2

)
then zdiff (1) = zdiff (2)

cannot be separated while the learnt factors z = (z1, z2)
T are independent with each other and are

already able to perform an efficient disentangled representation.

Among different trials, the Q might contribute to that disentanglement metric but also might not.
That explains the reason why that metric is unstable.

7.3 EXPERIMENT DETAILS

We set L to 1, and minibatch size M to be 100 in all practices. All the pixels value have been linear
normalized in to [0,1].

7.3.1 MNIST

We split randomly 7000 datapoints according to ratio [0.6 : 0.2 : 0.2] into training set, validation
set (no use), testing set. All the indicators and q∗(z) are evaluated/calculated on 10000 datapoints

12 The auxiliary unused factor is innocuous for the subsequent analysis.
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belonging to the testing set. All the seed images used to infer latent code and to draw the traversal
come from the testing set.

In all figures of latent code traversal each block corresponds to the traversal of a single latent variable
while keeping others fixed to either their inferred ( β-VAE, VAE). Each row represents a different
seed image used to infer the latent values in the VAE-based models. β-VAE and VAE traversal is
over the [−3, 3] range.

The assumed variance σ2 of noise specified Gaussian of VAE models is enumerated from
[0.0005, 0.001 : 0.001 : 0.012, 0.02 : 0.01 : 0.11]. The β setting for the noise learning β-VAE
is enumerated from [0.1, 0.5, 1, 2 : 2 : 18].
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Figure 12: Learned σ2 of different β setting
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Figure 13: βσ2 of different β setting

Empirically, we find that the different KL-divergence estimations definition 5 and definition 2 show
the same results on this datasets. We calculate the estimation for I(x; zh) in figure 7 and 6 through
D̃KL(q(z|x)||p(z))-D̄KL(q(z)||p(z)). It’s better to use D̃KL(q(z)||p(z)) but it’s innocuous on this
datasets.

7.3.2 EXTENDED YALE FACE B

We split randomly 2424 datapoints according to ratio [0.8 : 0.1 : 0.1] into training set, validation
set (no use), testing set. The model is training on the training set. All the indicators and q∗(z) are
evaluated/calculated on 400 datapoints selected from entire datasets. All the seed images used to
infer latent code and to draw the traversal come from the 100 datapoints from the testing set.
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In all figures of latent code traversal each block corresponds to the traversal of a single latent variable
while keeping others fixed to either their inferred ( β-VAE, VAE). Each row represents a different
seed image used to infer the latent values in the VAE-based models.

β-VAE and VAE traversal is over the [−3, 3] range.

The β setting for the noise learning β-VAE is enumerated from [1, 40, 80, 120, 160].

7.3.3 CELEBA

We split randomly roughly 200000 datapoints according to ratio [0.8 : 0.1 : 0.1] into training set,
validation set (no use), testing set. The model is training on the training set. All the indicators and
q∗(z) are evaluated/calculated on 10000 datapoints selected from testing set. All the seed images
used to infer latent code and to draw the traversal come from the 100 datapoints from the testing set.

In all figures of latent code traversal each block corresponds to the traversal of a single latent variable
while keeping others fixed to either their inferred ( β-VAE, VAE). Each row represents a different
seed image used to infer the latent values in the VAE-based models.

β-VAE and VAE traversal is over the [−3, 3] range.

The β setting for the noise learning β-VAE is enumerated from [1, 30, 40].

7.3.4 NETWORK STRUCTURE

Dataset Optimiser Architecture

Mnist

Adam Input 28x28x1
1e− 4 Encoder Conv 32x4x4,32x4x4 (stride 2).

FC 256. ReLU activation.
Epoch 200 Latents 128

Decoder FC 256. Linear. Deconv reverse of encoder.
ReLU activation.

CelebA

Adam Input 64x64x3
1e− 4 Encoder Conv 32x4x4,32x4x4,64x4x4,64x4x4 (stride 2).

FC 256. ReLU activation.
Epoch 20 Latents 128/32

Decoder FC 256. Linear. Deconv reverse of encoder.
ReLU activation.

Extended Yale Face B

Adam Input 192x168x1
1e− 4 Encoder Conv 32x4x4,32x4x4,64x4x4,64x4x4 (stride 2).

Epoch 2002 FC 256. ReLU activation.
Latents 128
Decoder FC 256. Linear. Deconv reverse of encoder.

ReLU activation.

Extended Yale Face B

Adam Input 192x168x1
1e− 4 Encoder Conv 32x4x4,32x4x4,64x4x4,64x4x4 (stride 2).

Epoch 1460 FC 256. ReLU activation.
Latents 128
Decoder FC 256. Linear. Deconv reverse of encoder.

(Network Parameterized Noise) ReLU activation.

7.4 AUXILIARY GENERATING PICTURE

Note that only the factors with Iencoder(x; zh) > 0.5 are shown.
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factor 12 factor 18 factor 27

factor 33 factor 35 factor 38

factor 46 factor 54 factor 67

factor 80 factor 81 factor 111

factor 121 factor 122 factor 124
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factor 6 factor 10 factor 18

factor 27 factor 31 factor 63

factor 68 factor 83 factor 85

factor 100 factor 113

7.4.1 MNIST: GENERATING FACTOR TRAVERSAL OF σ2 = 0.1 PRE-SPECIFIED VAE

7.4.2 MNIST: GENERATING FACTOR TRAVERSAL OF NOISE LEARNING β-VAE

7.4.3 EXTENDED YALE FACE B: GENERATING FACTOR TRAVERSAL OF NOISE LEARNING
β(= 120)-VAE

7.4.4 EXTENDED YALE FACE B: RECONSTRUCTION VISUAL COMPARISON

7.4.5 EXTENDED YALE FACE B:NETWORK NOISE LEARNT MEAN WITH MOG-2 NOISE
HYPOTHESIS DEMONSTRATION

7.4.6 CELEBA: MOG-2 β(=40)-VAE RECONSTRUCTION AND RESIDUAL GAUSSIAN
COMPONENTS MEMBERSHIP
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factor 23 factor 24

factor 37 factor 52

factor 57 factor 58

factor 77 factor 80

factor 85 factor 88

factor 89 factor 97

factor 105 factor 123
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Origin Gaussian MoG-2 Network σ Map Origin

Figure 14: Reconstruction Visual Comparison full
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Figure 15: Network (MoG-2) Reconstruction and Residual Gaussian Components Membership
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Figure 16: MoG-2 β(=40)-VAE reconstruction and residual Gaussian components membership
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