
Under review as a conference paper at ICLR 2018

MEASURING THE INTRINSIC DIMENSION
OF OBJECTIVE LANDSCAPES

Anonymous authors
Paper under double-blind review

ABSTRACT

Many recently trained neural networks employ tens or hundreds of millions of pa-
rameters to achieve good performance. Researchers may intuitively use the num-
ber of parameters required as a rough gauge of the difficulty of a problem. But
how accurate are such notions? How many parameters are really needed? In this
paper we attempt to answer this question by training networks not in their native
parameter space, but instead in smaller, randomly oriented subspaces. By slowly
increasing the dimension of this subspace, we note when solutions first appear and
define this to be the intrinsic dimension of the problem. A few suggestive conclu-
sions result. Many problems have smaller intrinsic dimension than one might
suspect, and the intrinsic dimension for a given dataset varies little across a family
of models with vastly different sizes. Intrinsic dimension allows some quantitative
problem comparison across supervised, reinforcement, and other types of learn-
ing where we conclude, for example, that solving the cart-pole RL problem is in
a sense 100 times easier than classifying digits from MNIST. In addition to pro-
viding new cartography of the objective landscapes wandered by parameterized
models, the results encompass a simple method for constructively obtaining an
upper bound on the minimum description length of a solution, leading in some
cases to very compressible networks.

1 INTRODUCTION

In this paper we define and investigate the intrinsic dimension of neural network optimization prob-
lems. To introduce this concept, we first briefly review neural network training from an optimization
perspective.

Training a neural network to model a given dataset entails several steps. First, a network designer
chooses a loss and a network architecture. The architecture is then initialized by populating its
weights with random values drawn from some distribution. Finally the network is trained, during
which weights are adjusted to produce a loss for the dataset that is as low as possible.

We can think of the training procedure as traversing some path along an objective landscape. Note
that as soon as a dataset, loss, and network architecture are specified, the landscape in its entirety is
completely determined. It is instantiated and frozen; all subsequent parameter initialization, forward
prop, back prop, gradients, and steps determined and taken by some optimizer are just details of how
one explores this fixed space.

Consider a network parameterized by D weights. We can picture the associated objective landscape
as a set of hills and valleys in D dimensions, where each point in RD corresponds to a value of the
loss, or the elevation of landscape above (or below) 0. If D were two, the map from two coordinates
to one is easily imagined and intuitively understood by those living in a three-dimensional world
with similar hills. However, in higher dimensions, our intuitions are not so faithful, and generally
we should be careful as extrapolating from low-dimensional intuitions to higher-dimensions can lead
to unreliable conclusions. The difficulty of imagining and understanding high-dimensional objective
landscapes notwithstanding, it is the lot of neural network researchers to spend their days leading
(or following?) networks over these multi-dimensional surfaces, so any reported and interpreted
geography of these landscapes should be valuable.

1



Under review as a conference paper at ICLR 2018

Several papers have shed valuable light on this landscape, particularly by pointing out flaws in
our extrapolation from low-dimensional reasoning. Dauphin et al. (2014) showed that, in contrast
to conventional thinking about getting stuck in local optima (as one might be stuck in a valley
in our familiar D = 2), local critical points in high dimension are almost never valleys but are
instead saddlepoints: structures which are “valleys” along a multitude of dimensions with “exits”
in a multitude of other dimensions. The striking conclusion is that one has less to fear becoming
hemmed in on all sides by higher loss but more to fear being waylaid nearly indefinitely by nearly flat
regions. Goodfellow et al. (2015) showed another property: that paths directly from the initial point
to the final point of optimization are often monotonically decreasing. Though dimension is high, the
space is in some sense simpler than we thought: rather than winding around hills and through long
twisting corridors, the walk could just as well have taken a straight line without encountering any
obstacles, if only the direction of the line could have been determined at the outset.

In this paper we seek further understanding of the structure of the objective landscape by restricting
training to random slices through it, allowing optimization to proceed in randomly generated sub-
spaces of the full parameter space. Whereas standard neural network training involves computing
a gradient and taking a step in the full parameter space (RD above), we instead choose a random
d-dimensional subspace of RD, where generally d < D, and optimize directly in this subspace. By
performing experiments with gradually larger values of d, we can find the subspace dimension at
which solutions first appear, which we call the measured intrinsic dimension of a particular problem.
Examining intrinsic dimensions across a variety of problems leads to a few new intuitions about the
optimization problems that arise from neural network models. We begin by defining more precisely
the notion of intrinsic dimension.

2 DEFINING AND APPROXIMATING INTRINSIC DIMENSION

We introduce the intrinsic dimension of an objective landscape by way of an illustrative toy prob-
lem. Let D be the dimension of a parameter space, θ(D) ∈ RD a parameter vector in that space,
θ
(D)
0 a randomly chosen initial parameter vector, and θ(D)

∗ the final parameter vector arrived at via
optimization.

Consider a toy optimization problem where D = 1000, θ(D)
0 is drawn from a Gaussian distribution,

and then θ(D) optimized to minimize a squared error cost function that requires the first 100 elements
to sum to 1, the second 100 elements to sum to 2, and so on until the vector has been divided into 10
groups with their requisite 10 sums. We may use optimization to easily find a θ(D)

∗ that solves the
problem with zero cost.

Solutions to this problem are highly redundant. With a little algebra one can find that the manifold
of solutions is a 990 dimensional hyperplane: from any point that has zero cost, there are 990
orthogonal directions one can move and remain at zero cost. Denoting as s the dimensionality of
the solution set, we define the intrinsic dimensionality dint of a solution as the codimension of the
solution set inside of RD:

D = dint + s (1)

Here the intrinsic dimension dint is 10 (1000 = 10 + 990), with 10 corresponding intuitively to the
number of constraints placed on the parameter vector.

2.1 MEASURING INTRINSIC DIMENSION VIA RANDOM SUBSPACE TRAINING

The above example had simple enough form that we obtained dint = 10 by calculation, but in
general, we desire a method of measuring or approximating dint for more complicated problems,
including problems with data dependent objective functions. We find such a method in random
subspace optimization.

Standard optimization, which we will refer to hereafter as the direct method of training, entails
evaluating the gradient of a loss with respect to θ(D) and taking steps directly in the space of θ(D).
To train in a random subspace, we instead define θ(D) in the following way:

θ(D) = θ
(D)
0 + Pθ(d) (2)

2



Under review as a conference paper at ICLR 2018

0 10 20 30 40 50
Subspace dim d

0.00

0.25

0.50

0.75

1.00

P
er

fo
rm

an
ce

dint90 = dint100 = 10

Figure 1: (left) Illustration of parameter vectors for direct optimization in the D = 3 case. (middle)
Illustration of parameter vectors and a possible random subspace for the D = 3, d = 2 case. (right)
Plot of performance vs. subspace dimension for the toy example of toy example of Sec. 2. The
problem becomes 90% solvable and 100% solvable at random subspace dimension 10, so dint90 and
dint100 are 10.

where P is a randomly generated D × d projection matrix1 and θ(d) is a parameter vector in a
generally smaller space Rd. θ(D)

0 and P are randomly generated and frozen (not trained), so the
system has only d degrees of freedom. We initialize θ(d) to a vector of all zeros, so initially θ(D) =

θ
(D)
0 , a setting that serves two related purposes: First, it puts the subspace used for training and the

solution set in general position with respect to each other. Intuitively, this avoids cases where both
the solution set and the random subspace contain structure oriented around the origin, which could
lead to non-intersection even for high-dimensional solution sets and random subspaces. Second, in
the case of neural network training, it allows the network to benefit from beginning in a region of
parameter space supposed by any number of initialization schemes to be well-conditioned (Glorot
& Bengio, 2010; He et al., 2015) such that gradient descent via commonly used optimizers tends to
produce a θ(D)

∗ with low loss. Note that setting θ(D)
0 to an all-zero vector is often an exceptionally

poor choice for neural networks: for reasons of symmetry, the gradient can end up being zero in
many directions, hindering effective optimization.

Training proceeds by computing gradients with respect to θ(d) and taking steps in that space.
Columns of P are normalized to unit length, so steps of unit length in θ(d) chart out unit length
motions of θ(D). Columns of P may also be orthogonalized if desired, but in our experiments
we relied simply on the approximate orthogonality of high dimensional random vectors. By this
construction P forms an approximately orthonormal basis for a randomly oriented d dimensional
subspace of RD, with the origin of the new coordinate system at θ(D)

0 . Fig. 1 shows an illustration
of the related vectors.

Consider the optimization problem this formulation creates. If we set d = D and make P a large
identity matrix, we recover exactly the direct optimization problem. If d = D but P is instead a
random orthonormal basis for all of RD, we recover a rotated version of the direct problem. Note
that for some “rotation-invariant” optimizers, such as SGD and SGD with momentum, rotating the
basis will not change the solution found, but for optimizers with axis-aligned assumptions, such as
RMSProp (Tieleman & Hinton, 2012) or Adam (Kingma & Ba, 2014), the path taken through θ(D)

space by an optimizer will depend on the rotation chosen. Finally, in the general case where d < D
and solutions exist in D, solutions will almost surely (with probability 1) not be found if d is less
than the codimension of the solution but may be found when d ≥ D − s. If the solution set is a
hyperplane, the solution will almost surely intersect the subspace, but in the general case of non-
hyperplane solution sets, intersection with a random subspace of dimension dint is not guaranteed.
Nonetheless by increasing d and checking for solutions, we obtain one estimate of dint. We try this
sweep of d for our toy problem, measuring by convention as described in the next section positive
performance instead of loss.2 As expected and as can be seen in Fig. 1 (right) solutions are first
found at d = 10.

1This projection matrix can take a variety of forms each with different computational considerations. In
later sections we consider dense, sparse, and implicit P matrices.

2For this toy problem we define performance = exp(−loss), bounding performance between 0 and 1,
with 1 being a perfect solution.

3



Under review as a conference paper at ICLR 2018

2.2 DETAILS AND CONVENTIONS

In the rest of this paper, we measure intrinsic dimensions for particular neural network problems
and draw conclusions about the associated objective landscapes and solution sets. Because model-
ing real data is more complex than the above toy example, and losses are generally never exactly
zero, we first choose a heuristic for classifying points on the objective landscape as solutions vs.
non-solutions. The heuristic we choose is to threshold network performance at the level of some
baseline model, where generally we take as baseline the best directly trained model. In supervised
classification settings, validation accuracy is used as the measure of performance, and in reinforce-
ment learning scenarios, total reward (shifted up or down such that the minimum reward is 0) is
used. Accuracy and reward are preferred to loss to ensure results are grounded to real-world perfor-
mance and to allow comparison across models with differing scales of loss and different amounts of
regularization included in the loss.

We define dint100 as the intrinsic dimension of the “100%” solution: those solutions whose perfor-
mance is statistically indistinguishable from direct, baseline solutions. However, we observed these
to vary widely and for a few confounding reasons: dint100 can be very high — nearly as high asD —
when the task requires matching a very well-tuned baseline model but can drop significantly when
the regularizing effect of restricting parameters to a subspace boosts performance by tiny amounts.
While these are interesting effects, we primarily set out to measure the basic difficulty of problems
and the degrees of freedom needed to solve (or approximately solve) them rather than these second
order effects.

Thus, we found it more useful to define and measure dint90 as the intrinsic dimension of the “90%”
solution: those with performance at least 90% of the baseline. We chose 90% after looking at a
variety of dimension vs. performance plots as a reasonable trade off between wanting to guarantee
the solution found is as good as possible, but also not wanting measured d values to be very sensitive
to small noise in measured performance. If too high a threshold is used, then the point of crossing
the threshold changes a lot for only tiny changes in accuracy, and we always observe tiny changes
in accuracy due to training noise. If a higher (or lower) threshold were chosen, we expect most of
results in the rest of the paper to remain qualitatively unchanged, albeit with d scaled up (or down)
by some factor and more noisily (or less noisily) measured.

3 RESULTS AND DISCUSSION

3.1 MNIST

We begin by analyzing a fully connected (FC) classifier trained on MNIST. We choose a network
with two hidden layers of width 400, giving a total number of parameters and thus dimension D
of 199,210. Performance vs. subspace dimension d is shown in Fig. 2. By checking the subspace
dimension at which performance crosses the 90% mark, we measure this network’s intrinsic dimen-
sion dint90 at about 750.

0 200 400 600 800 1000 1200 1400
Subspace dim d

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

ac
cu

ra
cy

baseline

90% baseline

101 102 103 104

Subspace dim d

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

ac
cu

ra
cy

baseline

90% baseline

Figure 2: Performance (validation accuracy) vs. subspace dimension d for two networks trained
on MNIST: (left) a 784-400-400-10 fully-connected (FC) network (D = 199,210) and (right) a
convolutional network, LeNet (D = 44,426). The solid line shows performance of a well-trained
direct (FC or conv) model, and the dashed line shows the 90% threshold we use to define dint90. We
oversample the region around the threshold in order to estimate the point of crossing more exactly.

4



Under review as a conference paper at ICLR 2018

Some networks are very compressible Perhaps the most salient initial conclusion is that 750
is quite low. At that subspace dimension, only 750 degrees of freedom (0.4%) are being used
and 198,460 (99.6%) unused to obtain 90% of the performance of the direct baseline model. A
compelling corollary of this result is a new way of creating and training compressed networks. To
store this network, one need only store the random seed used to generate θ(D)

0 and P and the 750
floating point numbers in θ(d)∗ , a compression from 793kB (assuming 32-bit floats) to only 3.2kB or
0.4% of the full parameter size. Such compression could be very useful for including networks in
app downloads or on web pages or in other scenarios where storage or bandwidth are limited.

While is has previously been appreciated that large nets waste parameters (Dauphin & Bengio, 2013)
and in general weights contain redundancy (Denil et al., 2013), this approach to compression con-
stitutes a much simpler, end-to-end approach applicable to any parameterized model. Our method
is different from previous neural networks compression methods in following aspects: i) Unlike
post-hoc compression (Wen et al., 2016), we train once, end-to-end, and any parameterized model
is an allowable base model. ii) Compared to methods like that of Louizos et al. (2017), who take a
Bayesian perspective and consider redundancy on the level of groups of parameters (input weights to
a single neuron) by using group-sparsity-inducing hierarchical priors on the weights, our approach
is simpler but not likely to lead to the levels of compression that they attain. iii) Compression is
achieved in different spaces: previous methods reduce trainable variable directly in the layer-wise
parameter spaces: Wen et al. (2016) used layer-wise low rank approximations to the weight matri-
ces, and Han et al. (2016) proposed to prune the weights. We optimize by globally compressing
parameter space. iv) Finally, there is a beautiful array of papers on compressing networks such that
they also achieve computational savings during the forward pass (Wen et al., 2016; Han et al., 2016;
Yang et al., 2015); subspace training does not speed up execution time during inference at all.

Robustness of intrinsic dimension Next, we ask how intrinsic dimension varies across FC net-
works of varying number of layers and varying layer width. Fig. S6 in the Supplementary Infor-
mation shows performance vs. subspace dimension plots in the style of Fig. 2 for a grid search of
networks with number of hidden layers L chosen from {1, 2, 3, 4, 5} and width of each hidden
layer W chosen from {50, 100, 200, 400}. All curves are nearly identical! The intrinsic dimension
changes little even as models grown in width or depth, indicating that as every extra dimension is
added in D, they just end up adding a dimension to the redundancy of the solution. Often the most
accurate directly trained models for a problem have far more parameters than needed (Zhang et al.,
2017); this may be because they are just easier to train, and our observation suggests a reason why:
with larger models, solutions have greater redundancy and in a sense “cover” more of the space. The
very similar dint90 values for all 20 networks are shown in Fig. 3 plotted against the native dimension
D of each network; as one can see, D changes by a factor of 24.1 between the smallest and largest
networks, but dint90 changes over this range by a factor of only 1.33. Note that for this experiment,
we used (90% of) a global 100% baseline, to compare simply and fairly across all models.3

Are random subspaces really more parameter-efficient for FC nets? One might wonder to
what extent claiming 750 parameters is meaningful given that performance achieved is far lower
than a state of the art network trained on MNIST. With such a low bar for performance, could a
directly trained network with a comparable number of parameters be found that exhibits the same
performance? We generated 1000 smaller networks (depth randomly chosen from {1, 2, 3, 4, 5}
and layer width from {2, 3, 5, 8, 10, 15, 20, 25}) in an attempt to find high-performing small FC
networks, but as Fig. 4 (left) shows, a 10× gap still exists between the subspace dimension and the
smallest direct FC network showing 90% of baseline performance.

Measuring dint90 on a convolutional network We measure also dint90 of a convolutional net-
work, LeNet (D=44,426), showing validation accuracy vs. subspace dimension d results in
Fig. 2 (right). We find dint90 = 275, or a compression rate to 0.5%. As with the FC case above,
we also do a sweep of random networks, but here find a different story: there is sometimes, but not
always, a gap in number of degrees of freedom between convnets and convents trained in a random
subspace. We interpret these results in terms of the Minimum Description Length below.

3See Sec. S5 for similar results obtained using instead 20 separate baselines for each of the 20 models.

5



Under review as a conference paper at ICLR 2018

105 106

Number of parameters D
400

500

600

700

800

900

1000

In
tri

ns
ic 

di
m

en
sio

n 
d i

nt

layer width

50

100

200

400
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

De
pt

h

Figure 3: Measured intrinsic dimension dint90 vs number of parameters D for 20 FC models of
varying width (from 50–400) and depth (number of hidden layers from 1–5) trained on MNIST.
Though the number of native parameters varies by a factor of 24.1, dint90 varies by only 1.33, with
much of that factor possibly due to noise, showing that dint90 is a fairly robust measure across a
model family and that extra parameters serve to increase the redundancy of a solution.

101 102 103 104

Number of trainable parameters

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

ac
cu

ra
cy

Direct

Subspace

102 103 104

Number of trainable parameters

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

ac
cu

ra
cy

Direct

Subspace

Figure 4: Performance vs. number of trainable parameters for (left) FC networks and (right) convo-
lutional networks trained on MNIST. Randomly generated direct networks are shown (gray circles)
alongside all random subspace training results (blue circles) from the sweep shown in Fig. S6. FC
networks show a persistent gap in dimension, suggesting general parameter inefficiency of FC mod-
els. Convolutional networks, on the other hand, may be parameter inefficient (gray points signifi-
cantly to the right of blue manifold) or parameter efficient when well tuned (gray points near blue
manifold).

Relationship between Intrinsic Dimension and Minimum Description Length (MDL) As dis-
cussed above, the random subspace training method leads naturally to a compressed representation
of a network where only d floating point numbers must be stored. We can take this d as a upper
bound on the MDL of the problem solution. We cannot yet say the extent to which this bound is
loose or tight, but it probably varies by problem. However, to the extent that it is tighter than pre-
vious bounds (e.g. just the number of parameters D) and to the extent that it is correlated with the
actual MDL, as mentioned by Rissanen (1978) and developed by Hinton & Van Camp (1993), we
can use this interpretation to judge which solutions more well-suited to the problem in a principled
way. Note that although this approach is related to a rich body of work on estimating the “intrinsic
dimension of a dataset” (Camastra & Vinciarelli, 2002; Kégl, 2003; Fukunaga & Olsen, 1971; Lev-
ina & Bickel, 2005; Tenenbaum et al., 2000), one must be careful to distinguish between estimating
the number of important dimensions of variability in a dataset vs. the number of bits necessary
to represent a dataset (related to representing the data distribution, p(X)) vs. the number of bits
necessary to represent the conditional p(y|X) (as we measure here for supervised models).

Thus, there is some rigor behind our intuitive assumption that we may declare LeNet a better model
than an FC network for classification on MNIST because its intrinsic dimension is lower (dint90
of 275 vs 650). In this particular case this leads to a predictable conclusion, but for the countless
less well-studied datasets than MNIST, having a simple method of approximating MDL may prove
extremely useful for guiding model exploration.

6



Under review as a conference paper at ICLR 2018

Table 1: Measured intrinsic dimension dint90 on various problems.

Problems MNIST MNIST (Shuf Pixels) CIFAR ImageNet
Network MLP LeNet MLP LeNet MLP LeNet SqueezeNet

Parameter Dim. D 199,210 44,426 199,210 44,426 656,810 62,006 1,248,424
Intrinsic Dim. dint90 650 225 650 750 7.5K 2.5K > 500K

Are convnets always better on MNIST? Measuring dint90 on shuffled data. Zhang et al. (2017)
provocatively showed that large networks normally thought to generalize well can nearly as easily
be trained to memorize entire training sets with randomly assigned labels or with input pixels pro-
vided in random order. Consider two networks: one trained on a real, non-shuffled dataset and an
identically sized one trained with shuffled pixels or labels. The networks externally are very simi-
lar: the training loss may even be identical at the final epoch. However, the intrinsic dimension of
each may be measured to expose the differences in problem difficulty. When training on a dataset
of shuffled pixels, the intrinsic dimension of an FC network remains the same at 650 (as it must).
But the intrinsic dimension of a convnet increases from 250 to 750 — even higher than a fully
connected network. While convnets are better suited to classifying digits given images with natural,
local structure, when this structure is removed, violating convolutional assumptions, we can measure
that the model’s inappropriate assumptions now require even more degrees of freedom to model the
underlying distribution. When training on MNIST with shuffled labels, we redefine our measure of
dint90 relative to training accuracy, as validation accuracy necessarily remains at chance. We find to
memorize random labels on the MNIST dataset requires a very high dimension, dint90 = 190, 000,
or 3.8 floats per memorized label. Sec. S5.3 gives a few further results, in particular that the more
labels are memorized, the more efficient memorization is (in terms of floats per label). Thus while
generalization performance to an unseen validation set is still obviously 0, “generalization” within a
training set may occur as networks build shared infrastructure for memorizing labels.

3.2 CIFAR-10 AND IMAGENET

We run further experiments on CIFAR-10 and ImageNet. When attempting to scale beyond MNIST-
sized networks — those withD on the order of 200k and d on the order of 1k — we find it necessary
to use more efficient methods of generating and projecting from random subspaces. In the case of
ImageNet the situation is even severer, as the direct network can easily go beyond millions of pa-
rameters. In Sec. S7, we describe and characterize scaling properties of three methods of projection:
dense matrix projection, sparse matrix projection (Li et al., 2006), and the beautifully efficient Fast-
food transform (Le et al., 2013). To train networks on CIFAR we generally use the sparse projection
method, and for ImageNet we employ the Fastfood transform.

Full results on CIFAR10 are given in Sec. S8, and ImageNet in Sec. S9. Measured dint90 values
are given in Table 1. To summarize, for CIFAR-10 we find qualitatively similar results to MNIST,
but with generally higher dimension (7.5k vs. 650 for MLP and 2.5k vs 225 for convnets). Due to
deadline pressures and memory issues, training on ImageNet has not yet given a reliable estimate
for dint90 except that it is over 500k.

3.3 REINFORCEMENT LEARNING ENVIRONMENTS

Measuring intrinsic dimension allows us to perform some comparison across the divide between
supervised learning and reinforcement learning. Below we measure the intrinsic dimensionality
of three control tasks of varying difficulties using both value-based and policy-based algorithms.
The value-based algorithm we evaluate is the Deep Q-Network (DQN) (Mnih et al., 2013), and the
policy-based approach is Evolutionary Strategies (ES) (Salimans et al., 2017). Training details are
given in Sec. S6.1. For all tasks, performance is defined as the maximum-attained (over training
iterations) mean evaluation reward (averaged over 30 evaluations for a given parameter setting).
The solid points in the plots correspond to the (noisy) median observed performance value for runs
with a given d, and the uncertainty intervals give the maximum and minimum performance values
observed. The dotted line corresponds to the usual 90% baseline derived from the best directly-
trained network.

7



Under review as a conference paper at ICLR 2018

2 4 6 8 10
Subspace dim d

0

200

400

600

800

1000

Be
st

 e
va

lu
at

io
n 

re
wa

rd

100 200 300 400 500 600 700
Subspace dim d

1000

2000

3000

4000

5000

6000

7000

8000

Be
st

 e
va

lu
at

io
n 

re
wa

rd

2000 4000 6000 8000 10000

Subspace dim d

−20

−15

−10

−5

0

5

10

15

20

B
es

t
ev

al
ua

ti
on

re
w

ar
d

Figure 5: Results using the policy-based Evolutionary Strategies (ES) algorithm to train agents on
(left column) InvertedPendulum-v1, (middle column) Humanoid-v1, and (bottom col-
umn) Atari Pong. We find that the inverted pendulum task is surprisingly easy, with dint100 =
dint90 = 4, meaning that only four parameters are needed to solve the problem, in this case perfectly
(see Stanley & Miikkulainen (2002) for a similarly small solution found via evolution). The walking
humanoid task is more difficult, but solutions are found reliably by dimension 700, or with about as
much complexity as required as modeling MNIST with a fully connected network, and far less than
modeling CIFAR-10 with a convnet. Finally, to play Pong on Atari (directly from pixels) requires a
network trained in a 6k subspace, making it roughly on the order of modeling CIFAR-10.

We give basic results for three tasks — InvertedPendulum-v1, Humanoid-v1, and Atari
Pong — trained using ES in Fig. 5, with more complete ES results in Sec. S6.2, and results for DQN
in Sec. S6.3.

4 CONCLUSIONS AND FUTURE DIRECTIONS

We have defined the intrinsic dimension of optimization problems and shown a simple method —
random subspace training — of approximating it for neural network modeling problems. We find
in some cases intrinsic dimensions much lower than the direct parameter dimension, which enables
effective network compression, and in other cases intrinsic dimension similar to that of the best
tuned models, which endorses those models as well-suited to the problem. In cases where intrin-
sic dimension is far smaller than the direct dimension, future work could investigate using much
more powerful solvers — e.g. more expensive second order methods — due to the parsimonious
parameter length. Recent promising attempts to solve catastrophic forgetting like Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017) have relied on annotating individual parameters in a
network with their relative importance; training in random subspaces yields directly a subspace that
matters and the dimension — though not orientation — of the subspace that does not, which could
enable networks that forget less. Further work could also identify better ways of creating subspaces
for reparameterization: here we chose random linear subspaces, but one might carefully construct
linear or non-linear subspaces to be even more efficient, or pre-scale or otherwise transform the
direct parameters before projecting to or from the subspace to make projections more likely to inter-
sect solutions. Finally, as the field departs from single stack-of-layers image classification models
toward larger and more heterogeneous networks (Ren et al., 2015; Kaiser et al., 2017) often com-
posed of many modules and trained by many losses, methods — like measuring intrinsic dimension
— that allow some automatic assessment of model components might provide much-needed greater
understanding of individual black-box module properties.

ACKNOWLEDGMENTS

[Removed for blind review.]

8



Under review as a conference paper at ICLR 2018

REFERENCES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Francesco Camastra and Alessandro Vinciarelli. Estimating the intrinsic dimension of data with a
fractal-based method. IEEE Transactions on pattern analysis and machine intelligence, 24(10):
1404–1407, 2002.

Yann Dauphin and Yoshua Bengio. Big neural networks waste capacity. CoRR, abs/1301.3583,
2013. URL http://arxiv.org/abs/1301.3583.

Yann Dauphin, Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. CoRR, abs/1406.2572, 2014. URL http://arxiv.org/abs/1406.2572.

Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting parameters in deep
learning. In Advances in Neural Information Processing Systems, pp. 2148–2156, 2013.

Keinosuke Fukunaga and David R Olsen. An algorithm for finding intrinsic dimensionality of data.
IEEE Transactions on Computers, 100(2):176–183, 1971.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Artificial Intelligence and Statistics, 2010.

Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe. Qualitatively characterizing neural network
optimization problems. In International Conference on Learning Representations (ICLR 2015),
2015. URL http://arxiv.org/abs/1412.6544.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. ICLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In CVPR, 2015.

Geoffrey E Hinton and Drew Van Camp. Keeping neural networks simple by minimizing the de-
scription length of the weights. In Proceedings of the sixth annual conference on Computational
learning theory, pp. 5–13. ACM, 1993.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Lukasz Kaiser, Aidan N. Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, and
Jakob Uszkoreit. One model to learn them all. CoRR, abs/1706.05137, 2017. URL http:
//arxiv.org/abs/1706.05137.

Balázs Kégl. Intrinsic dimension estimation using packing numbers. In Advances in neural infor-
mation processing systems, pp. 697–704, 2003.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forget-
ting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526,
2017. doi: 10.1073/pnas.1611835114. URL http://www.pnas.org/content/114/13/
3521.abstract.

Quoc Le, Tamás Sarlós, and Alex Smola. Fastfood-approximating kernel expansions in loglinear
time. In ICML, 2013.

Elizaveta Levina and Peter J Bickel. Maximum likelihood estimation of intrinsic dimension. In
Advances in neural information processing systems, pp. 777–784, 2005.

9

http://arxiv.org/abs/1301.3583
http://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1412.6544
http://arxiv.org/abs/1706.05137
http://arxiv.org/abs/1706.05137
http://www.pnas.org/content/114/13/3521.abstract
http://www.pnas.org/content/114/13/3521.abstract


Under review as a conference paper at ICLR 2018

Ping Li, T. Hastie, and K. W. Church. Very sparse random projections. In KDD, 2006.

C. Louizos, K. Ullrich, and M. Welling. Bayesian Compression for Deep Learning. ArXiv e-prints,
May 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with Deep Reinforcement Learning. ArXiv e-prints, December 2013.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
pp. 91–99, 2015.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

T. Salimans, J. Ho, X. Chen, and I. Sutskever. Evolution Strategies as a Scalable Alternative to
Reinforcement Learning. ArXiv e-prints, March 2017.

Kenneth Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127, 2002.

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In NIPS, 2016.

Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Song, and Ziyu
Wang. Deep fried convnets. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 1476–1483, 2015.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. ICLR, 2017.

10



Under review as a conference paper at ICLR 2018

Supplementary Information for:
Measuring the Intrinsic Dimension of Objective Landscapes

S5 ADDITIONAL MNIST RESULTS

S5.1 RESULTS FOR ALL 20 FC NETWORKS

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n 
ac

cu
ra

cy

width 50, depth 1

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 50, depth 2

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 50, depth 3

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 50, depth 4

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 50, depth 5

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n 
ac

cu
ra

cy

width 100, depth 1

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 100, depth 2

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 100, depth 3

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 100, depth 4

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 100, depth 5

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n 
ac

cu
ra

cy

width 200, depth 1

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 200, depth 2

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 200, depth 3

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 200, depth 4

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 200, depth 5

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n 
ac

cu
ra

cy

width 400, depth 1

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 400, depth 2

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 400, depth 3

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 400, depth 4

0 500 1000 1500
Subspace dim d

0.2

0.4

0.6

0.8

1.0
width 400, depth 5

Figure S6: MNIST FC network: validation accuracy vs subspace dimension for a sweep over net-
work depth and width. Number of hidden layers chosen from {1,2,3,4,5} and width of each hidden
layer chosen from {50,100,200,400}.

S5.2 TRAINING STABILITY

A minor but interesting result is that random subspace training can in some cases make optimiza-
tion more stable. Fig. S8 shows training results for FC networks with up to 10 layers. SGD with
step 0.1, and ReLUs with He initialization is used. Multiple networks failed at depths 4, and all
failed at depths higher than 4, despite and activiation function and initialization designed to make
learning stable (He et al., 2015). Because each random basis vector projects across all D direct
parameters, the optimization problem may be far better conditioned. A related potential downside
is that projecting the D parameters which may have widely varying scale could result in ignoring
parameter dimensions with tiny gradients. This situation is similar to that faced by methods like
SGD, but ameliorated by RMSProp, Adam, and other methods that can rescale individual step sizes
to account for individual parameter scales. Though convergence seems robust, further work may

11



Under review as a conference paper at ICLR 2018

105 106

Number of parameters D
400

500

600

700

800

900

1000

In
tri

ns
ic 

di
m

en
sio

n 
d i

nt

layer width

50

100

200

400

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

De
pt

h

Figure S7: Measured intrinsic dimension dint90 vs number of parametersD for 20 models of varying
width (from 50 - 400) and depth (number of hidden layers from 1-5) trained on MNIST. As opposed
to Fig. 3, which used a global, shared baseline across all models, here a per-model baseline is used.
The number of native parameters varies by a factor of 24.1, but dint90 varies by only 1.42. The
per-model baseline results in higher measured dint90 for larger models because they have a higher
baseline performance than the shallower models.

0 2 4 6 8 10
Depth

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g 

Ac
cu

ra
cy

direct
d = 50
d = 200
d = 500
d = 1000

0 2 4 6 8 10
Depth

0.0

0.5

1.0

1.5

2.0

2.5

Te
st

in
g 

NL
L

direct
d = 50
d = 200
d = 500
d = 1000

(a) Accuracy (b) Negative Log Likelihood (NLL)

Figure S8: Results of subspace training versus the number of layers in a fully connected network
trained on MNIST. The direct method always fail to converge when L > 5, while our subspace
training yields stable performance across depths.

be needed to improve network amenability to subspace training: for example by ensuring direct pa-
rameters are similarly scaled by clever construction or by inserting a pre-scaling layer between the
projected subspace and the direct parameters themselves.

S5.3 ADDITIONAL SHUFFLED LABEL RESULTS

The dint90 = 190, 000 result mentioned in the main text holds for the full MNIST dataset (50k
examples). We can interpret this as requiring 3.8 floats to memorize each random label (at 90%
accuracy). Curious how this scales with dataset size, we estimated dint90 on shuffled label versions
of MNIST at different scales and found fairly interesting results, shown in Table S2 and Fig. S9.
As the dataset memorized becomes smaller, the number of floats required to memorize each label
becomes larger. The best interpretation is not yet clear, but one possible interpretation is that net-
works required to memorize large training sets make use of shared machinery for memorization. In
other words, though generalization performance to a validation set is still obviously 0, generalization
within a training set is non-negligible.

Fraction of MNIST training set dint90 floats per label
100% 190k 3.8

50% 130k 5.2
10% 90k 18.0

Table S2: dint90 measured on a dataset memorization task with different dataset sizes

12



Under review as a conference paper at ICLR 2018

0 50000 100000 150000 200000 250000 300000
Intrinsic dim d

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

in
in

g
ac

cu
ra

cy

100%

50%

10%

baseline

Figure S9: Training accuracy of MLP (W =400, L=5) with different subspace dimension d on
100%, 50%, 10% data of shuffled label version of MNIST.

We trained the same size MNIST network that above had dint90 = 850 on a version of MNIST
with shuffled labels. 10%, 50%, 100% of the dataset was tested, and dint90 increased to 90k, 130k,
and 190k, respectively (see Fig. S9). This is consistent with our intuition that the problem becomes
harder, as more “random pairs” are required to memorize via the neural networks.

Interestingly, for MNIST with shuffled labels, it is very difficult to reach high training accuracy
using direct training method. However, subspace training is stable to excellent performance as d
increases.

S5.4 THE ROLE OF OPTIMIZERS

We investigate the impact of stochastic optimization methods on the intrinisc dimension, using
MLPs on standard MNIST dataset. Two classic optimizers are used: SGD (0.1) and Adam (0.001).
The intrinsic dimension dint90 are reported in Figure S15 (a) (b).

S6 ADDITIONAL REINFORCEMENT LEARNING RESULTS AND DETAILS

S6.1 ES TRAINING DETAILS

We’ve included the hyperparmeters used in training the three RL tasks using ES in Table S3.

`2 penalty Adam LR ES σ Iterations
InvertedPendulum-v1 1× 10−8 3× 10−1 2× 10−2 1000

Humanoid-v1 5× 10−3 3× 10−2 2× 10−2 2000
Pong-v0 5× 10−3 3× 10−2 2× 10−2 500

Table S3: Hyperparameters used in training RL tasks using ES. σ refers to the parameter perturbation
noise used in ES. Default Adam parameters of β1 = 0.9, β2 = 0.999, ε = 1× 10−7 were used.

S6.2 ES COMPLETE RESULTS

S6.2.1 INVERTED PENDULUM

The InvertedPendulum-v1 environment uses the MuJoCo physics simulator (Todorov et al.,
2012) to instantiate the same problem as CartPole-v0 in a realistic setting. We expect that
even with more accurate environment dynamics, as well as a different RL algorithm – evolutionary
strategies (ES) – the intrinsic dimensionality should be similar. As seen in Fig. 5, the measured
intrinsic dimensionality dint90 = 4 is of the same order of magnitude, but smaller. Interestingly,
although the environment dynamics are more complex than in CartPole-v0, using ES rather
than DQN seems to induce a simpler objective landscape.

13



Under review as a conference paper at ICLR 2018

105 106

# Model parameters
400

500

600

700

800

900

1000

In
tri

ns
ic 

di
m

 d
in

t

layer width

50

100

200

400

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

De
pt

h

(a) Global baseline

105 106

# Model parameters
400

500

600

700

800

900

1000

In
tri

ns
ic 

di
m

 d
in

t

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

De
pt

h

(b) Individual baseline

Figure S10: The role of optimizers. The transparent dots indicate SGD results, and solid dots
indicate Adam results.

S6.2.2 LEARNING TO WALK

A more challenging problem is Humanoid-v1, also using the MuJoCo simulator. Intuitively, one
might believe that learning to walk is a more complex task than classifying images. Our results show
the contrary – that the learned intrinsic dimensionality of dint90 = 700 is similar to that of MNIST
on a fully-connected network (dint90 = 650) but significantly less than that of even a convnet trained
on CIFAR10 (dint90 = 2, 500). Fig. 5 shows the full results. Interestingly, we begin to see training
runs reach the threshold as early as d = 400, with the median performance steadily increasing with
d.

S6.2.3 ATARI PONG

Finally, using a base convnet of approximately D = 1M in the Pong-v0 pixels-to-actions envi-
ronment (using 4-frame stacking), we were able to determine dint90 = 6, 000.

S6.3 DQN EXPERIMENTS

DQN on Cartpole We start with a simple classic control game CartPole-v0 in OpenAI
Gym (Brockman et al., 2016). The full game ends when one of two failure conditions is satis-
fied: the cart moves more than 2.4 units from the center, or the pole is more than 15 degrees from
vertical. The system is controlled by applying a force of left or right to the cart. The pendulum starts
upright, and the goal is to prevent it from falling over. A reward of +1 is provided for every timestep.
We created two potentially easier environments called Pole and Cart, by removing one of fail-
ure conditions respectively. DQN is used, where the value netwowrk is parameterized by an MLP
(L = 2,W = 400). Five runs are tested for each subspace d, the mean is used to computed dint90,

14



Under review as a conference paper at ICLR 2018

100 101

Subspace dim d

0

50

100

150

200

A
ve

ra
ge

R
ew

ar
d

ov
er

la
st

10
0

ep
i.

baseline

90% baseline

100 101

Subspace dim d

0

50

100

150

200

A
ve

ra
ge

R
ew

ar
d

ov
er

la
st

10
0

ep
i.

baseline

90% baseline

100 101

Subspace dim d

50

100

150

200

A
ve

ra
ge

R
ew

ar
d

ov
er

la
st

10
0

ep
i.

baseline

90% baseline

(a) CartPole (dint90 = 25) (b) Pole (dint90 = 23) (c) Cart (dint90 = 7)

Figure S11: Average reward of 3 CartPole environments using DQN.

where the baseline is set as 195.04. The results are shown in Figure S11. The intrinsic dimension
for CartPole, Pole and Cart is dint90 = 25, 23, 7, respectively. It quantifies the difficulty of each part
of the full game: driving a cart in a given interval is much easier than keeping a pole straight.

S7 THREE METHODS OF RANDOM PROJECTION

Scaling the random subspace training procedure to large problems requires an efficient way to map
from Rd into a random d-dimensional subspace of RD that does not necessarily include the origin.
Algebraically, we need to left-multiply a vector of parameters v ∈ Rd by a random matrix M ∈
RD×d, whose columns are orthonormal, then add an offset vector θ0 ∈ RD. If the low-dimensional
parameter vector in Rd is initialized to zero, then specifying an offset vector is equivalent to choosing
an initialization point in the original model parameter space RD.

A naı̈ve approach to generating the random matrix M is to use a dense D× d matrix of independent
standard normal entries, then scale each column to be of length 1. The columns will be approxi-
mately orthogonal if D is large because of the independence of the entries. Although this approach
is sufficient for low-rank training of models with few parameters, we quickly run into scaling limits
because both matrix-vector multiply time and storage of the matrix scale according to O(Dd). We
were able to successfully determine the intrinsic dimensionality of MNIST (d=225) using a LeNet
(D=44,426), but were unable to increase d beyond 1,000 when applying a LeNet (D=62,006) to
CIFAR10, which did not meet the performance criterion to be considered the problems intrinsic
dimensionality.

Random matrices need not be dense for their columns to be approximately orthonormal. In fact,
a method exists for “very sparse” random projections (Li et al., 2006), which achieves a density of
1√
D

. To construct theD×dmatrix, each entry is chosen to be nonzero with probability 1√
D

. If cho-
sen, then with equal probability, the entry is either positive or negative with the same magnitude in
either case. The density of 1√

D
implies

√
Dd nonzero entries, orO(

√
Dd) time and space complex-

ity. Implementing this procedure allowed us to find the intrinsic dimension of d=2,500 for CIFAR10
using a LeNet mentioned above. Unfortunately, when using Tensorflow’s SparseTensor imple-
mentation we did not achieve the theoretical

√
D-factor improvement in time complexity (closer to

a constant 10x). Nonzero elements also have a significant memory footprint of 24 bytes, so we could
not scale to larger problems with millions of model parameters and large intrinsic dimensionalities.

We need not explicitly form and store the transformation matrix. The Fastfood transform (Le et al.,
2013) was initially developed as an efficient way to compute a nonlinear, high-dimensional feature
map φ(x) for a vector x. A portion of the procedure involves implicitly generating a D × d matrix
with approximately uncorrelated standard normal entries, using only O(D) space, which can be
multiplied by v in O(D log d) time using a specialized method. The method relies on the fact that
Hadamard matrices multiplied by Gaussian vectors behave like dense Gaussian matrices. In detail,
to implicitly multiply v by a random square Gaussian matrix M with side-lengths equal to a power
of two, the matrix is factorized into multiple simple matrices: M = HGΠHB, where B is a
random diagonal matrix with entries +-1 with equal probability, H is a Hadamard matrix, Π is a
random permutation matrix, and G is a random diagonal matrix with independent standard normal
entries. Multiplication by a Hadamard matrix can be done via the Fast Walsh-Hadamard Transform
in O(d log d) time and takes no additional space. The other matrices have linear time and space

4CartPole-v0 is considered as “solved” when the average reward over the last 100 episodes is 195

15



Under review as a conference paper at ICLR 2018

complexities. When D > d, multiple independent samples of M can be stacked to increase the
output dimensionality. When d is not a power of two, we can zero-pad v appropriately. Stacking
D
d samples of M results in an overall time complexity of O(D

d d log d) = O(D log d), and a space
complexity of O(D

d d) = O(D). In practice, the reduction in space footprint allowed us to scale to
much larger problems, including the Pong RL task using a 1M parameter convolutional network for
the policy function.

Table S4 summarizes the performance of each of the three methods theoretically and empirically.

Time complexity Space complexity D = 100k D = 1M D = 60M
Dense O(Dd) O(Dd) 0.0169 s 1.0742 s* 4399.1 s*
Sparse O(

√
Dd) O(

√
Dd) 0.0002 s 0.0019 s 0.5307 s*

Fastfood O(D log d) O(D) 0.0181 s 0.0195 s 0.7949 s

Table S4: Comparison of theoretical complexity and average duration of a forward+backward pass
through M (in seconds). d was fixed to 1% of D in each measurement. D = 100k is approximately
the size of an MNIST fully-connected network, and D = 60M is approximately the size of AlexNet.
The Fastfood timings are based on a Tensorflow implementation of the Fast Walsh-Hadamard Trans-
form, and could be drastically reduced with an efficient CUDA implementation. Asterisks mean that
we encountered an out-of-memory error, and the values are extrapolated from the largest successful
run (a few powers of two smaller). For example, we expect sparse to outperform Fastfood if it didn’t
run into memory issues.

S8 ADDITIONAL CIFAR-10 RESULTS

We consider the CIFAR10 dataset, and test the same set of MLP and LeNet architecure as on MNIST.
For MLP, dint90 values for all 20 networks are shown in S13 (a) plotted against the native dimension
D of each network; D changes by a factor of 12.16 between the smallest and largest networks, but
dint90 changes over this range by a factor of 5.0. In S13 (b), we also compute the intrinsic dimension
wrt to a global baseline: 50% validation accuracy, dint90 changes over this range by a factor of
1.52. This indicates that various MLPs share similar intrinsic dimension (dint90 = 5000 ∼ 8000)
to achieve the same level of task performance. For LeNet (D=44,426), the validation accuracy
vs. subspace dimension d is shown in Fig. S14, the corresponding dint90 = 2900. It yields a
compression rate of 5%, which is 10 times larger than LeNet on MNIST. It shows that CIFAR images
are significantly more difficult to be correctly classified than MNIST. In another word, CIFAR is a
harder problem than MNIST, especially given the fact that the notion of “problem solved” (baseline
performance) is defined as 99% accuracy on MNIST and 58% accuracy on CIFAR. On the CIFAR
dataset, as d increases, subspace training tends to overfitting, we will study the role of subspace
training as a regularizer below.

In addition, ResNet exhibits efficient use of parameters with its introduction of residual connections.
We are interested to know whether the intrinsic dimension of ResNet on CIFAR is any different. We
adopt the smallest 20-layer structure of ResNet with 280K parameters, and find out that it reaches
LeNet baseline with dint90 = 1000 ∼ 2000, while takes a larger dint90 (20, 000 ∼ 50, 000) to reach
reach its own, much higher baseline.

The role of regularizers We study the effects of weight decay (i.e., `2 regularizer) on the
weights using MLP (L = 2, W = 400) on CIFAR10 dataset. The amount of weight decay
λ = {10−2, 10−3, 10−4, 5×10−4, 10−5, 0}. The testing accuracy and negative log-likelihood (NLL)
are reported in Figure S15 (a) (b), respectively. As expected, larger amount of weight decay reduces
the gap between training and testing for both direct and our subspace training methods. Interest-
ingly, our procedure exhibits strong regularization ability, especially when d is small. It outperforms
direct method in terms of testing accuracy when d is properly chosen, suggesting the potential of
this method as a beteter alternative to traditional weight decay. When d is large, the method also
overfits the training dataset.

16



Under review as a conference paper at ICLR 2018

0 10000 20000 30000 40000 50000
Subspace dim d

0.4

0.5

0.6

0.7

0.8

V
al

id
at

io
n

ac
cu

ra
cy

ResNet baseline

90% ResNet baseline

90% LeNet baseline

Figure S12: Validation accuracy of ResNet on CIFAR with different subspace dimension d. It
surpasses the 90% baseline on LeNet at d between 1000 and 2000, 90% of ResNet baseline between
20k and 50k.

106

Number of parameters D
0

2500

5000

7500

10000

12500

15000

In
tri

ns
ic 

di
m

 d
in

t

layer width

50

100

200

400

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

De
pt

h

(b) Individual baseline

106

Number of parameters D
0

2500

5000

7500

10000

12500

15000

In
tri

ns
ic 

di
m

 d
in

t

layer width

50

100

200

400

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

De
pt

h

(a) Global baseline

Figure S13: Intrinsic dimension of MLP with various width and depth on CIFAR 10 dataset.

S9 IMAGENET

To investigate the applicability of our proposed method to large-scale problems, we take on Ima-
geNet classification. A relatively smaller network, SqueezeNet by Iandola et al. (2016), of parameter
size 1.24M, is used. A direct training produces Top-1 accuracy of 55.5%. We vary intrinsic dimen-
sion from 300 to 500K, and record the validation accuracies as shown in Fig. S14. The training of
each intrinsic dimension takes about 6 to 7 days, while distributed among 4 GPUs.

S10 SUMMARIZATION OF dint90

We summarize dint90 for all the experiments in Table S5.

17



Under review as a conference paper at ICLR 2018

0 10000 20000 30000 40000 50000 60000
Subspace dim d

0.3

0.4

0.5

0.6

V
al

id
at

io
n

ac
cu

ra
cy

baseline

90% baseline

Figure S14: Validation accuracy of LeNet with different subspace dimension d on CIFAR10.

0 20000 40000
Intrinsic dim d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

L2_Reg = 0.01
Testing
Training
Testing: direct
Training: direct

0 20000 40000
Intrinsic dim d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
L2_Reg = 0.001

0 20000 40000
Intrinsic dim d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
L2_Reg = 0.0005

0 20000 40000
Intrinsic dim d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
L2_Reg = 0.0001

0 20000 40000
Intrinsic dim d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
L2_Reg = 1e-05

0 20000 40000
Intrinsic dim d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
L2_Reg = 0

(a) Accuracy

0 20000 40000
Intrinsic dim d

1
2
3
4
5
6
7
8
9

NL
L

L2_Reg = 0.01

Testing
Training
Testing: direct
Training: direct

0 20000 40000
Intrinsic dim d

0

1

2

3
L2_Reg = 0.001

0 20000 40000
Intrinsic dim d

0

1

2

3
L2_Reg = 0.0005

0 20000 40000
Intrinsic dim d

0

1

2

3
L2_Reg = 0.0001

0 20000 40000
Intrinsic dim d

0

1

2

3

4

5

6
L2_Reg = 1e-05

0 20000 40000
Intrinsic dim d

0

1

2

3

4

5

6
L2_Reg = 0

(b) Negative Log Likelihood (NLL)

Figure S15: Comparing regularization induced by an L2 penalty with that induced from training in
reduced subspace.

100000 200000 300000 400000 500000
Subspace dim d

0.2

0.3

0.4

0.5

V
al

id
at

io
n

ac
cu

ra
cy

baseline

90% baseline

Figure S16: Validation accuracy of SqueezeNet on ImageNet with different subspace dimension d.
At d = 500k the accuracy reaches 34.34%, which is not yet past the threshold required to estimate
dint90.

18



Under review as a conference paper at ICLR 2018

Table S5: Summary of measured intrinsic dimension values. “PP” indicates permuted pixel, and
“PL” for permuted label, and “MLP-5” for a 5-layer MLP.

Dataset Network D dint90
MNIST MLP 199210 750
MNIST LeNet 44426 275

Cifar MLP 1393610 8000
Cifar LeNet 62006 2900

MNIST-PP MLP 199210 750
MNIST-PP LeNet 44426 750

MNIST-PL-100% MLP-5 959610 190000
MNIST-PL-50% MLP-5 959610 130000
MNIST-PL-10% MLP-5 959610 90000

MNIST Untied-LeNet 286334 600
MNIST MLP-LeNet 3640574 2000

Cifar Untied-LeNet 658238 9000
Cifar MLP-LeNet 16397726 >100000

ImageNet SqueezeNet 124842 >500000
CartPole MLP 199210 25

Pole MLP 199210 23
Cart MLP 199210 9

InvertedPendulum MLP 562 4
Humanoid MLP 166673 700
Atari Pong ConvNet 1005974 6000

19


	Introduction
	Defining and Approximating Intrinsic Dimension
	Measuring Intrinsic Dimension via Random Subspace Training
	Details and conventions

	Results and Discussion
	MNIST
	CIFAR-10 and ImageNet
	Reinforcement Learning environments

	Conclusions and Future Directions
	Additional MNIST results
	Results for all 20 FC networks
	Training stability
	Additional shuffled label results
	The role of optimizers

	Additional Reinforcement Learning results and details
	ES Training Details
	ES Complete Results
	Inverted Pendulum
	Learning to walk
	Atari Pong

	DQN experiments

	Three Methods of random projection
	Additional CIFAR-10 Results
	ImageNet
	Summarization of dint90

