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Abstract

Verifying a person’s identity based on their voice, is a challenging, real-world1

problem in biometric security. A crucial requirement of such speaker verification2

systems is to be domain robust. Performance should not degrade even if speakers3

are talking in languages not seen during training. To this end, we propose to use4

Generative Adversarial Networks to adapt a speaker embedding model to new5

languages using a small amount of unlabelled data. Our model is optimized end-to-6

end, and verification can be performed using simple cosine scoring. Additionally,7

we propose a novel objective for training the generator, that yields further im-8

provements. We show that the proposed unsupervised adversarial adaptation leads9

to verification performance that is competitive with state-of-the-art verification10

systems. In an attempt to better understand the performance of our models, we11

quantitatively measure the degree of invariance induced by our proposed methods12

using Maximum Mean Discrepancy and Fréchet distances.13

1 Introduction14

Text-Independent Speaker Verification remains a challenging problem in the domain of biometric15

security. Armed with the machinery of deep learning, verification systems can now be deployed16

in the wild, and are still capable of delivering robust performance. In the verification community,17

situations wherein the test data is significantly different from the data available during system training18

are referred to as - In the Wild. For instance, the NIST-SRE 2016 evaluation data contains Cantonese19

and Tagalog speakers (in-domain, target data), while most of the speakers in our training set are20

talking in English (out-of-domain, source data). This distribution shift or mismatch between training21

and test data is an obstacle in several areas of pattern recognition and machine learning [1], and leads22

to a degradation in system performance. The development biometric verification system that perform23

reliably in such conditions is critical for this technology be used safely and securely on a day-to-day24

basis.25

Deep neural networks (DNN) have revolutionized several areas of speech processing, and as such,26

are ideal candidates for learning discriminative speaker representations or embeddings [11, 4, 13, 2].27

Indeed, neural speaker embeddings have surpassed the performance of i-vectors [11, 3], especially28

on real world, in the wild data [8, 6].Arguably the most popular approach for learning speaker29

embeddings is to optimize the parameters of a DNN by minimizing the cross-entropy loss over30

speakers in the training data. Cross-entropy is natural choice for identifying speakers, however it31

does not directly address the verification task. As a consequence of not being optimized ‘end-to-32

end’, the performance of cross-entropy speaker embeddings (X-vectors) is heavily dependent on a33

powerful classifier to perform verification. This dependence on a classifier motivates the research and34

development of end-to-end systems. We also believe that such systems can also benefit in downstream35

tasks that make use of speaker embeddings, such as speech recognition and synthesis.36
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Figure 1: Domain Adversarial Neural Speaker Embedding Model

Verifying a speaker’s identity is a challenging problem. Modern speaker verification datasets like37

NIST-SRE 2016, add to this challenge by introducing a mismatch between the distributions of the38

training and test data. This phenomena is referred to as domain or covariate shift. In the case of39

NIST-SRE 2016, the test data consists of Cantonese and Tagalog speakers, whereas the vast majority40

of training speakers are talking in English. NIST also provide a small amount of unlabelled, in-41

domain, target data, that can be used to compensate for the domain shift. Most the domain adaptation42

techniques that have been proposed for speaker verification have been proposed on top of i-vectors or43

x-vectors.44

In this we present a unified framework for directly learning domain-robust speaker embeddings45

using Generative Adversarial Networks (GAN). We drawn inspiration from research in computer46

vision, where GAN based domain adaptation methods have been shown to be more powerful than47

the gradient reversal framework [12, 9, 10]. Both methods cast domain adaptation/invariance as an48

adversarial game - generate features or embeddings such that a discriminator cannot tell if they come49

from the source or target domain. Unlike traditional GANs that work in high-dimensional spaces50

(e.g. natural images,speech), domain adaptation GANs operate in low-dimensional embedding space.51

Keeping these constraints in mind, we propose a novel objective for updating the generator network,52

which we find to work better than the conventional generative loss.53

The nature of the adversarial game makes training GAN models challenging. We found that a simple54

way to stabilize the training of our models was to make the GANs conditional. Specifically we55

propose to use a modified version of the Auxiliary Classifier GAN (AuxGAN)[]. We show that this56

addition makes our model robust and we are able to use the same set of hyper-parameters to train57

several GAN variants within our framework. In our experiments we show that all of the models58

outperform the DANSE model, with some delivering comparable performance to a state-of-the-art59

x-vector system. Furthermore, we are able to fuse different GAN models using simple score averaging60

to achieve state-of-the-art verification performance.61

2 Models62

2.1 Feature Extractor (Generator)63

The first step for learning discriminative speaker embeddings is to learn a mapping F (Xs) −→ f,64

f ∈ RD from a sequence of speech frames from speaker s to a D-dimensional feature vector f. F (X)65

can be implemented using a variety of neural network architectures. We design or feature extractor66

using a residual network structure. We choose to model speech using 1-dimensional convolutional67

filters, owing to the fact that speech is translation invariant along the time-axis only. Following the68

residual blocks we use a combination of self-attention and dense layers in order to represent input69

audio of arbitrary size by a fixed-size vector, f. Unlike traditional approaches, our proposed feature70

extractor is updated with an adversarial loss in addition to the standard task loss.71
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2.2 Self-Attentive Speaker Statistics72

Self-Attention models are an active area of research in the speaker verification community. Intuitively,73

such models allow the network to focus on fragments of speech that are more speaker discriminative.74

The attention layers computes a scalar weight corresponding to each time-step t:75

et = vT f(Wht + b) + k (1)

These weights are then normalized, αt = softmax(et), to give them a probabilistic interpretation.76

We use the attention model proposed in [15], which extends attention to the mean as well as standard77

deviation:78

µ̂ =

T∑
t

αtht (2)

σ̂ =

T∑
t

αtht � ht − µ̂� µ̂ (3)

In this work we apply the use of self attention to convolutional feature maps, as indicated in Fig. 1.79

The last residual block outputs a tensor of size nBXnFxT , where nB is the batch size, nF is the80

number of filters and T is time. The input to the attention layer, ht, is a nF dimensional vector.81

By using a self-attention model, we also equip our network with a more robust framework for82

processing inputs of arbitrary size than simple global averaging. This allows us simply forward83

propagate a recording through the network in order to extract speaker embeddings.84

2.3 Classifier85

The classifier block, C(f, θy), is arguably the key component of the model, as it is responsible for86

learning speaker discriminative features.Recently, angular margin loss functions have been proposed87

as an alternative to contrastive loss functions for verification tasks [5, 14]. The Additive Margin88

softmax (AM-softmax) loss function is one such algorithm with an intuitive interpretation. The loss89

computes similarity between classes using cosine, and forces the similarity of the correct class to be90

greater than that of incorrect classes by a margin m.91

LAMS = − 1

n

n∑
i=1

log
es.(cosθyi−m)

ecosθs.(yi−m) +
∑
j 6=yi e

s.(cosθj)

= − 1

n

n∑
i=1

log
es.(W

T fi−m)

es.(WT fi−m) +
∑
j 6=yi e

s.(WT fj)

(4)

Where WT and fi are the normalized weight vector and speaker embedding respectively. The92

AM-softmax loss also adds a scale parameter s, which helps the model converge faster. We select93

m = 0.6 and s = 30 for all our experiments.94

2.4 Domain Discriminator95

The domain discriminator D(.) is tasked with determining if embeddings come from the source96

or target domains, and is arguably the most important component of the model. In order to learn97

domain invariant features, we engage the domain discriminator in an adversarial game with the feaure98

extractor E(.). The domain discriminator consists of two fully connected layers followed by the99

output layer.100

3 Domain Adversarial Speaker Embeddings101

A key requirement for learning speaker embeddings that are domain invariant is to find a balance102

between the task loss and the adversarial loss. The objective to learn a feature space wherein103
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embeddings are speaker discriminative irrespective of the domain. Key to achieving this is the domain104

discriminator D, which is trained using the Binary Cross-Entropy loss (BCE).105

LadvD (Xs,Xt, E) = −Exs∼Xs
[log(D(E(xs)]− Ext∼Xt

[log(1−D(E(xt)] (5)

Where Xs, Xt represent source and target data respectively. E(.) is the feature extractor/generator.106

The adversarial game between D(.) and E(.) is given by:107

min
D
LadvD (Xs,Xt, E)

min
E
LadvE (Xs,Xt, D)

(6)

Equation (3) represents the most general form of the GAN game, and can be used to represent108

different adversarial frameworks depending on the choice of LadvE109

Gradient Reversal: We obtain the gradient reversal framework by setting LadvE = −LadvD.110

Gradient reversal optimizes the true minmax objective of the adversarial game. However, this111

objective can become problematic, since the discriminator converges early during training and leads112

to vanishing gradients.113

GAN: Rather than directly using the minimax loss, the standard way to train the generator is using114

the inverted label loss. The generator objective is given by:115

LadvE (Xs,Xt, D) = −Exs∼Xs
[log(D(E(xt)] (7)

This splits the optimization into two independent objectives, one for the generator and one for the116

discriminator. This loss has the same fixed-point properties as the minimax loss while providing117

stronger gradients to target mappings [12].118

3.1 Updating the Generator with Source Embeddings119

In a typical GAN setting, the generator is trained only using fake data (with inverted labels). This120

structure is also maintained in several adversarial domain adaptation algorithms []. However, in the121

context of this work we believe that updating the generator using both source and target data can be122

beneficial. In this case, the generator loss simply inverts the discriminator loss of eq. (1):123

LadvE (Xs,Xt, D) =

− Exs∼Xs
[log(D(E(xt)]

− Ext∼Xt
[log(1−D(E(xs)]

(8)

When using the proposed objective for training the generator, we are optimizing the true minimax124

loss like in the gradient reversal approach. Unfortunately, we found that optimizing this loss becomes125

unstable early during training. We found a simple approach to stabilize training for this model was to126

augment the discriminator with an auxiliary loss function. This addition also makes training more127

stable when optimizing the standard generator objective.128

3.2 Auxiliary Classifier GAN129

The Auxiliary Classifier GAN (AuxGAN) model augments the standard GAN framework with an130

auxiliary loss to perform conditional image generation [7]. This approach aims to predict side131

information (such as class labels), as opposed to feed the same information to the generator and132

discriminator. In the context of this work, our goal is to use the prediction loss for regularization and133

representation learning.134

min
D
LadvD (Xs,Xt, E) + LAux(Xs, Ys)

min
E
LadvE (Xs,Xt, D) + LAux(Xs, Ys)

(9)
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Eq. (6) is a modified version of the AuxGAN objective. In particular, the original formulation also135

uses the auxiliary loss to train the generator as well (with fake data being assigned its own unique136

label). We found that the auxiliary loss was crucial for stabilizing LadvE (Xs,Xt, D) when using137

the formulation in eq. (6). In our experiments we found that the AuxGAN setup stabilizes model138

training even when we use eq. (3) as the generator objective, and leads to slightly better verification139

performance. In this setting only the discriminator is trained with the auxillary loss.140

3.3 GAN Variants141

Since their introduction, GANs have been one of the most researched topics in the deep learning142

community. Several variations of the original formulation have been proposed, each with different143

generative characteristics and stability issues. In this work we explore three GAN variants in addition144

to the standard GAN - Least-Squares GAN [], Auxiliary Classifier GAN and Reletavistic GAN145

[]. These models differ in the structure of the discriminator network. We show that each variant146

transforms the feature space in different way, will all the model showing mostly similar performance.147

Additionally we see that by fusing the performance of all GAN variants together through score148

averaging we achieve the best overall performance.149

4 Experimental Setup150

Training Data (Source): We used audio from previous NIST-SRE evaluations (2004-2010) and151

Switchboard Cellular audio for training the proposed DANSE model as well as the x-vector and152

i-vector baseline systems. We also augment our data with noise and reverberation, as in []. We add153

128k noisy copies to the clean speech, ending up with 2̃20k recordings in our training set. For DANSE154

model training we filter out speakers with less than 5 recordings, ending up with approximately155

6000 speakers, whereas the x-vector and i-vector systems were trained using the Kaldi recipe. We156

note that the vast majority of our training data consists of English speakers, and is recorded over157

telephone/cellular channels.158

Model: In order to make a fair comparison, we use an identical network to the DANSE model.159

The Embedding function/Generator, E(.), consists of a 3X23 input convolutional layer, 4 residual160

blocks [3,4,6,3], an attentive statistics layer and two fully connected layers (512,512). The classifier,161

C(.), module consists of a fully connected layer (64) and the AM-softmax output layer. The former162

is the final domain invariant speaker embedding extracted during evaluation. Finally, the domain163

discriminator module consists of two fully connected layers (256,256) and a binary cross-entropy164

output layer. Exponential Linear Units (ELU) are used as non-linear activations for all layers of the165

network. Batch Normalization is used on all layers expect the attentive statistics layer. We refer the166

reader to [] for a detiled description of the model.167

Optimization: We start by pre-training the Embedding function using standard cross-entropy168

training. Pre-training is carried out using the RMSprop optimizer with a learning rate (lr) of 0.001.169

For training GAN based speaker embedding models we use different optimizers for training the170

three networks (Embedding function,Classifier, Discriminator). The classifier is optimized using171

RMSprop with lr=0.003, while the domain classifier and feature extractor are trained using SGD172

with lr=0.001. We were able to train all our GAN models using the same set of hyper-parameters.173

We used performance on held out validation set to determine when to stop training.174

Data Sampling: We use an extremely simple approach for sampling data during training. We175

sample random chunks of audio (3-8 seconds) from each recording in the training set. We sample176

each recording 10 times to define an epoch. For each mini-batch of source data, we randomly sample177

(with repetition) a mini-batch from the unlabelled adaptation data for GAN training.178

Speaker Verification: At test time we discard the domain discriminator branch of the model, as it179

is not needed for extracting embeddings. Extraction is done by performing a forward pass on the180

full recording, and using the 64-dimensional fc3 layer as our speaker embeddings. Verification trials181

are scored using cosine distance. Verification performance is reported in terms of Equal Error Rate182

(EER).183
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5 Results184

NIST-SRE 2016: Unlike previous years, The 2016 edition of the NIST-SRE introduced a challenging185

new dataset containing Cantonese and Tagalog speakers. We use the Kaldi recipes for our baseline186

i-vector and x-vector systems. We note that the x-vector baseline may be considered as state-of-the-art187

performance on this dataset.188

Adaptation Data (Target): 2272 unlabelled, target data recordings are provided to adapt verification189

systems.190

Table 1: Baseline Systems

Model Classifier Cantonese Tagalog Pooled

i-vector PLDA B C D
x-vector COSINE 36.44 41.07 38.69
x-vector LDA/PLDA 7.03 15.41 11.15
x-vector PLDA 18.46 7.99 13.32
DASE COSINE 17.87 8.84 13.36

Table 2: Performance of Different GAN systems in terms of EER(%). SGAN: standard, AuxGAN:
auxiliary classifier, LSGAN: least squares, RelGAN: reletavistic, FuseGAN: score averaging

Model Classifier Cantonese Tagalog Pooled

SGAN COSINE 8.32 17.51 D
AuxGAN COSINE 7.88 16.10 11.93
LSGAN COSINE 7.92 15.63 11.74
RelGAN COSINE 8.01 16.22 13.32
FuseGAN COSINE 6.93 14.84 10.88

Table 1. compares the performance of the different speaker representations on the NIST-SRE16191

task. The x-vector model produces the best results, however requires LDA based dimensionality192

reduction and the PLDA classifier. The DASE model produces competitive results, showing similar193

performance to the x-vector/PLDA system that does not use LDA. Our model also performs slightly194

better than the i-vector/PLDA system. We note that the PLDA classifier also requires significant195

tuning and data augmentation. Furthermore, different PLDA implementations can lead to significantly196

different (worse) verification performance.197

6 Analysis198

One particularly interesting result from our experiments is the improvement we see through a simple199

score averaging procedure. Our hypothesis is that the different discriminator objectives encourage the200

generator to cover different modes of the target data distribution. This finding is consistent with GAN201

approaches that train multiple discriminators [], although we do not train them simultaneously. In Fig.202

2 we visualize the embedding spaces learned by our models using t-SNE []. While Gradient Reversal203

primarily appears to rotate the feature space, the transformations induced by the GAN models is more204

pronounced. Crucially, we see that that the source domain speaker clusters appear to remain intact.205

This indicates that our models retain discriminative properties in the source domain, a fact we verify206

experimentally.207

Maximum Mean Discrepancy (MMD): is based on the idea that two distributions are identical if208

and only if all their moments are identical. A divergence can be defined if we can measure how209

“different” the moments of the two distributions are. MMD is a method of efficiently doing this via210
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Figure 2: Domain Adversarial Neural Speaker Embedding Model

the kernel trick:211

MMD(p(z)||q(z)) =

Ep(z),p(z′ )[k(z, z
′
)] + Eq(z),q(z′ )[k(z, z

′
)]− 2Ep(z),q(z′ )[k(z, z

′
)]

(10)

In order to quantitatively evaluate our models in terms of domain adaptation, we measure the212

Maximum Mean Discrepancy distance between a selection of source data and the unlabelled target213

data. MMD is a standard distribution distance metric and has been applied in the context of domain214

adaptation [].215

Fréchet Distance: The Fréchet Inception Distance (fid) is a popular approach for evaluating GANs,216

and has been shown to correlate well with human judgement of visual quality. Instead of an Inception217

network, we extract embeddings from our gan models from the source and target data. The Fréchet218

Distance between between the Gaussian (ms,Cs) obtained from the source data distribution ps and219

the Gaussian (mt,Ct) from the target data is given by:220

d2((ms,Cs, (mt,Ct)) = ||ms −mt||22 + Tr(Cs + Ct − 2(CsCt)1/2) (11)

Source Domain Speaker Verification: We use the same source data used to compute the MMD and221

Fréchet Distance to construct a trial list for verification. The list consists of 2500 recordings and we222

score them all versus all. There are a total of223

From Fig. 3 we see that MMD and the Fréchet distance display similar trends. Surprisingly we see224

that Gradient Reversal only has a small effect on either metric, while the GAN models all have much225

lower MMD and Fr’echet distances. We note that the model using the novel generator objective shows226

the lowest scores on both metrics. The results on source domain speaker verification also indicate227

that our models remain discriminative in the source domain as well, with only a small degradation228

as compared to the unadapted model. Interestingly, the Gradient Reversal model shows the best229

performance on this experiment albeit by a small margin.230

7 Conclusion231

In this work we we presented a novel framework for learning domain-invariant speaker embeddings232

using GANs. By combining a powerful deep feature extractor, an end-to-end loss function and233

most importantly, adversarial training we are able to learn extremely compact speaker embeddings234

that deliver robust verification performance on challenging evaluation data. We showed that the235
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Figure 3: Domain Adversarial Neural Speaker Embedding Model

proposed methods do reduce the domain mismatch between source and target data in terms of MMD236

and Fréchet distance. Furthermore, we see that our methods adapt while maintaining their speaker237

discriminative nature in the source domain as well. In future work we will experiment with other238

GAN variants in an attempt to further improve performance.239
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