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ABSTRACT

The goal of program synthesis is to automatically generate programs in a particular
language from corresponding specifications, e.g. input-output behavior. Many
current approaches achieve impressive results after training on randomly generated
I/O examples in limited domain-specific languages (DSLs), as with string transfor-
mations in RobustFill. However, we empirically discover that applying test input
generation techniques for languages with control flow and rich input space causes
deep networks to generalize poorly to certain data distributions; to correct this, we
propose a new methodology for controlling and evaluating the bias of synthetic
data distributions over both programs and specifications. We demonstrate, using
the Karel DSL and a small Calculator DSL, that training deep networks on these
distributions leads to improved cross-distribution generalization performance.

1 INTRODUCTION

Program synthesis is one of the central problems in Artificial Intelligence studied from the early
days (Manna & Waldinger, 1971; Waldinger & Lee, 1969) and has seen a lot of recent interest in the
machine learning and programming languages community (Alur et al., 2013; Gulwani et al., 2012;
2015; Muggleton, 1991; Lin et al., 2014; Solar-Lezama, 2013). The recent neural approaches can be
broadly classified into two categories: program induction and program synthesis. Both approaches
share the objective of learning program semantics but do so in different ways. Program induction
aims to embed the semantics of a particular algorithm into a differentiable model trained end-to-end,
whereas the goal of program synthesis is for a model to learn the semantics of a domain-specific
language (DSL) and produce programs defined by corresponding specifications. Both problems
necessitate large datasets, either of I/O pairs in the case of program induction, or programs with
corresponding I/O pairs in the case of program synthesis.

However, since large datasets for program induction and synthesis tasks do not exist, these approaches
train models on large synthetically generated datasets. Presumably, if a model can accurately predict
arbitrary program outputs (for induction) or programs in the DSL (for synthesis) then it has likely
learnt the correct algorithm or DSL semantics.

Although this approach has led to some impressive synthesis results in many domains, synthetically
generating datasets that cover all DSL programs and the corresponding input space can be problematic,
especially for more complex DSLs like Karel the Robot (Pattis, 1981) which includes complex
control-flow primitives (while loops and if conditionals) and operators. Likewise, for induction tasks,
the sampling procedure for program specifications may lead to undesirable biases in the training
distribution that inhibit strong generalization.

In this paper, we consider two problem settings. The first is the Karel domain and the recently
proposed Karel synthesis model (Bunel et al., 2018). We identify many distributions of input
examples and DSL programs for which the Karel synthesis model performs poorly. The second
problem setting is a program induction problem in which a model is trained to execute and predict
the output of simple arithmetic expressions, which we denote the Calculator domain. We considered
common synthetic data generation strategies including one from tensor2tensor (Vaswani et al.,
2018), an open-source deep learning library. Upon analysis, we find evidence of undesirable artifacts
resulting from certain biases in the generation algorithm.
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Our results indicate that models trained with common methodologies for synthesizing datasets fail
to learn the full semantics of the DSL, even when they perform well on a test set, and suggest
the need of a more principled way to generate synthetic datasets. For some program and input
distributions, the state-of-the-art neural synthesis models perform quite poorly, often achieving
less than 5% generalization accuracy. In our paper, we develop a new methodology for creating
training distributions over programs in the DSL to mitigate some of these issues. Moreover, unlike
previous works that have ignored considering the distributions over input space, we show that input
distributions also play a significant role in determining the synthesizer performance. Our methodology
involves defining the distribution over DSL programs and input space using a set of random variables
that encodes much of the valuable features that describe the data, e.g. in the Karel domain, the amount
of control flow nesting in programs or the number of markers present in the inputs.

Our methodology allows us to identify several specialized distributions over the input space and Karel
programs on which the current state of the art synthesis models (Bunel et al., 2018) perform poorly
when trained on traditional program and input distributions, and tested on our new distributions. From
this, we design new training distributions by ensuring greater uniformity over the random variables
in our methodology. By retraining the same architecture on these new training data distributions,
we observe a greater ability to generalize, with significant improvements when evaluated on the
aforementioned test sets.We also observe similar improvements in the Calculator domain as well.

This paper makes the following key contributions:

• We propose a new methodology to generate different desirable distributions over the space
of datasets for program induction and synthesis tasks.
• We instantiate the methodology for the Karel and Calculator domains and show that model

generalization is worse on datasets generated by our technique.
• We then retrain models in both domains and demonstrate that models achieve greater overall

generalization performance when trained on datasets generated with our methodology.

2 RELATED WORK

Training models with synthetic data. In certain domains like computer vision and robotics,
collecting high-quality real-world training data incurs significant cost, and so many researchers have
investigated the use of large amounts of synthetic data. For example, Christiano et al. (2016); Peng
et al. (2017); Pinto et al. (2017); Bousmalis et al. (2017) aim to learn robotics policies that compensate
for differences between the real world and the simulation. Within computer vision, Shrivastava et al.
(2016) demonstrate learning from entirely synthetic images for gaze and pose estimation.

Neural program induction and synthesis. Program induction methods learn differentiable mod-
ules such as stack (Joulin & Mikolov, 2015), RAM (Kurach et al., 2016), GPU (Kaiser & Sutskever,
2015), and read-write external memory (Graves et al., 2014) to represent algorithms. Other methods
attempt to learn differentiable control flow operations (Gaunt et al., 2016; Neelakantan et al., 2015).
These approaches reconstruct outputs given inputs, inferring the underlying algorithms (Guu et al.,
2017). Select different algorithms learn directly from program traces rather than from I/O examples
(Reed & de Freitas, 2015; Xiao et al., 2018; Cai et al., 2017).

Devlin et al. (2017); Parisotto et al. (2017) use neural program synthesis techniques for learning string
editing programs in RobustFill. Similarly, Balog et al. (2016) learn array programs in DeepCoder,
and Bhupatiraju et al. (2017) learn to compose API calls. Bunel et al. (2018) apply neural program
synthesis to the Karel domain we consider in our paper; we use their architecture and dataset. Many
of these approaches report high test performance, but good performance on synthetically-specificed
programs need not indicate the model’s ability to generalize to arbitrary user-desired programs. In
fact, our results show that under certain distributions, these models perform quite poorly. To verify
these models appropriately generalize to reasonably complex arbitrary programs, the test set should
sufficiently represent the universe of these programs and their specifications. Likewise, to avoid
biasing the result, the test set should also draw uniformly from these programs and specifications. For
example, for RobustFill, the data generation methodology only sampled programs uniformly from
the string DSL, but did not take into account the distribution over input strings such as their length,
frequencies of occurrence of regular expressions and their nesting, common words and constants etc.
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def main(): 
   while(not(rightIsClear())): 
      move() 
   turnRight() 
   move() 
   repeat(5): 
      putMarker() 
   turnLeft() 
   turnLeft() 
   move() 
   turnRight() 
   while(frontIsClear()): 
      move()

(a) Input-output examples (b) Karel Program

Figure 1: An example Karel synthesis task, where the goal is to synthesize the program in (b) given
the two I/O examples shown in (a).

3 OUR DATA GENERATION METHODOLOGY

Currently, automated data generation focuses in large part on a constructive process, whose parameters
can be tuned. We propose a complementary approach in which we perform post-selection on this
data to ensure certain properties.

We define a salient random variable as one whose distribution in the final dataset is of interest. In
the case of program synthesis, there are two kinds of salient variables: X = {X1, . . . , Xn} and
Z = {Z1, . . . , Zm}, where the random variable Xi denotes a certain important feature of a program
in the DSL D and the random variable Zj denotes a feature for the input space.

In many cases, we can modify our sampling procedure to ensure a desirable distribution of a particular
salient variable. However, for some salient variables, it is infeasible to tune the parameters of a given
sampling procedure in order to obtain a desired distribution for that salient variable. For example, if
we sample programs directly from a context-free grammar, we can end up biasing various salient
variables such as program length, degree of nesting, etc. This is a notable problem in both the Karel
and Calculator domains.

Furthermore, within the context of program synthesis specifically, there is often an additional
challenge: not all inputs are valid for all programs. For example, in the Karel domain, Karel is not
allowed to move into walls or pickMarker in a cell containing no markers. The requirement that
the program/input pairs suit each other itself acts as an unpredictable post-selector that makes it
difficult to ensure uniformity of salient variables by tuning generation parameters.

Our proposed solution is an algorithm for sampling from a given distribution p while homogenizing
(ensuring the uniformity of) a certain salient variable X . Our process is as such: we produce a sample
s ∼ p(S) and then reject with probability 1− g(s), where

g(s) = (P [X = X(s)] + ε)−1(min
x
P [X = x] + ε),

with the probabilities calculated empirically based on past samples. If we were to set ε = 0, this
would ensure thatX(s) would be uniform in the resulting distribution (proof in the Appendix, Section
8.2). Unfortunately, we would have no guarantees on runtime. If, however, ε is non-zero, we know
that drawing a single sample is possible in O( 1

ε ) calls to the original sampler (proof in the Appendix,
Section 8.3, shown to be a reasonable bound in the Appendix, Section 8.4). Increasing ε increases
the algorithm’s speed, at the cost of allowing P [X] to differ from uniform, reducing performance.

4 ANALYSIS OF EXISTING MODELS IN THE KAREL DOMAIN

Karel is an educational programming language (Pattis, 1981) where the programmer writes imperative
programs with conditionals and loops to produce a sequence of actions for an agent (a robot named
Karel) which lives in a rectangular m × n grid world. For a detailed description of the particular
instantiation of the Karel language and input grid specification that we consider, see Figure 4 in the
Appendix. The program synthesis task that we consider is as follows: given a set of pairs of input
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and output grids {(i1, o1), · · · , (in, on)}, find a Karel program π such that executing π on i1 results
in o1, i2 results in o2, and so on. An example Karel synthesis task with the I/O examples and the
corresponding Karel program to be synthesized is shown in Figure 1.

In this section, we employ the Karel instantiation of our abstract data generation methodology in
Section 4.1 to generate different test datasets. By imposing a more uniform distribution over the
salient random variables when generating the I/O specifications and target programs which make up
the test set, we observe much lower accuracies of the previous Karel synthesis models (Bunel et al.,
2018) compared to the original test set.

4.1 INSTANTIATION FOR THE KAREL DOMAIN

We devised the following salient random variables to describe the input space in Karel:

• Grid size: Dimensions of the grid in which Karel can act.
• Marker ratio: Fraction of cells with at least one marker.
• Wall ratio: Fraction of cells which contain a wall.
• Marker count: Number of markers that are present in a cell containing markers.

For the program space in the Karel DSL, we consider the following random variables:

• Program size: Size of the program in terms of number of tokens.
• Control flow ratio: Number of control flow structures appearing in the program.
• Nested control flow: The amount of control flow nesting in programs (e.g. while inside if).

4.2 CHANGING I/O DISTRIBUTIONS

We reproduced the encoder-decoder model of Bunel et al. (2018) and trained it using the provided
synthetic training set with the teacher-forcing maximum likelihood objective. On the existing test
set, our model achieves 73.52% generalization accuracy, slightly higher than the 71.91% accuracy
reported in (Bunel et al., 2018). Generalization accuracy denotes how often the model’s output is
correct on the 5 I/O examples shown to the model and the remaining held-out 6th I/O example.

To test how the model may be sensitive to changes in the I/O examples used to specify the program,
we created new test sets by sampling new input grids and running them on each of the programs in
the existing test set to obtain new I/O pairs. By keeping the programs themselves the same, we avoid
inadvertent changes in the inherent difficulty of the task.

4.2.1 SALIENT RANDOM VARIABLES WITH UNIFORM DISTRIBUTION

We first generated grids such that they would follow a distribution that is as uniform as possible in the
salient features in Section 4.1. We used the following procedure to sample each grid: 1) sample the
grid size (height and width) from x, y ∼ U{2, . . . 16}; 2) sample the marker ratio rmarker ∼ U(0, 1)
and wall ratio rwall ∼ U(0, 1); 3) for each cell (i, j), 0 ≤ i < x, 0 ≤ j < y in the grid, sample
mi,j ∼ Bernoulli(rmarker) and wi,j ∼ Bernoulli(rwall); 4) if mi,j = 1 and wi,j = 0, sample
marker count mci,j ∼ U{1, . . . 9}, otherwise set mci,j = 0; 5) place walls and markers in grid
according to wi,j and mci,j ; 6) place Karel at a random location (not containing a wall) and with a
random orientation. After generating 5 input grids for a given program, we ensure that the program
does not crash on any of them and also check whether the 5 input grids exhibit complete branch
coverage. If either of these conditions are not satisfied, we discard all 5 grids and start over.

On this dataset, the model trained on existing data achieved generalization accuracy of only 27.9%,
which was a drop of 44.6pp from the existing test set’s generalization accuracy of 73.52%.

4.2.2 SALIENT RANDOM VARIABLES WITH NARROW DISTRIBUTIONS

We further investigated the performance drop noted above by synthesizing “narrower" datasets that
captured different parts of the joint probability space over the salient input random variables. For
each narrow dataset, we selected rwall and rmarker (both between 0 and 1) as well as a distribution
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Table 1: Generalization accuracies of baseline model and model trained on uniformly distributed
salient random variables on selected datasets. G,U , and A stand for Geom(0.5),U{1, . . . 9} and
10−Geom(0.5) respectively. See Section 4.2.2 for dataset generation details.

rwall 0.05 0.25 0.65 0.85
rmarker 0.85 0.65 0.25 0.05

Dmarker count G U A G U A G U A G U A

Baseline (%) 24.30 1.32 0.04 21.08 2.98 0.08 16.63 13.31 6.63 15.99 12.88 12.98
Uniform (%) 63.90 65.68 65.75 59.96 60.32 59.13 62.0 62.94 63.92 73.83 75.66 76.25

∆ +39.6 +64.36 +65.71 +38.88 +57.34 +59.05 +45.37 +49.63 +57.29 +57.84 +62.78 +63.27

Table 2: Results on programs only containing actions. The generalization accuracy on action-only
programs in the existing test set is 99.24%. See Section 5 for details on the Action-Only Augmented
model.

Program length

Model type 1 2 3 4 5 6 7 8

Baseline 16.00% 30.00% 44.24% 52.88% 56.56% 66.94% 67.16% 73.06%
Action-Only Augmented 20.00% 41.60% 52.24% 61.72% 63.04% 72.20% 72.74% 78.12%

Dmarker count which would be the same for all I/O grids. Then, we follow the procedure below for each
grid: 1) sample the grid size (height and width) x, y ∼ U{10, . . . 16}; 2) randomly choose xy · rwall
cells to contain walls, and xy · rmarker cells for markers; 3) sample mci,j ∼ Dmarker count for all cells
(i, j) chosen to contain markers; 4) place Karel at a random location (not containing a wall) and with
a random orientation. In our experiments, we primarily used 3 different distributions for Dmarker count:
Geom(0.5) truncated at 9, U{1, . . . 9}, and 10−Geom(0.5) which, when sampled, has a value equal
to 10 minus a sample from Geom(0.5), truncated at 1.

The results are shown in Table 1 (row 1, “Baseline (%)”). We discovered that the most correlated
factor with model performance was the distribution Dmarker count. A more negative skew consistently
lowered model performance, and this effect was more pronounced at higher values of rmarker.

4.3 CHANGES IN THE DISTRIBUTION OF PROGRAMS

We will now examine how the existing model can surprisingly fail to perform well at synthesizing
certain programs that are different from those in the existing validation and test sets.

Performance on complex DSL constructs. We examined whether or not the model could succeed
in synthesizing programs which require nesting of conditional constructs. This was of interest
since these programs were relatively rare in the training dataset. We obtained approximations for
rwall, rmarker and Dmarker count for the provided training set, and subsequently generated an evaluation
dataset comprised solely of programs that contained while inside while statements, and another
dataset in which all programs had while inside if statements. We found that the model fared very
poorly on these datasets, achieving only 0.64% and 2.23% accuracy respectively.

Programs only containing actions. Intuitively, much of the difficulty in the Karel program syn-
thesis task should come from inferring the control flow statements, i.e. if, ifElse, and while.
Synthesizing a Karel program that only contains actions is intrinsically a much more straightforward
task, which a relatively simple search algorithm (such as A*) can perform well.

We performed an experiment using test datasets generated by enumerating action-only programs
of various lengths. As there are five actions (move, turnLeft, turnRight, putMarker,
pickMarker), there exist 5L textually unique action-only programs for length L. We sampled up
to 500 unique programs of lengths 1, 2, . . . , 8. For each program, we generated 10 specifications,
each containing 5 I/O pairs. We sampled each I/O pair from the set of all input grids in the existing
training data (of which there are 6.7 million), as to match its distribution as closely as possible.

Table 2 shows the results. Remarkably, even though the underlying programs have relatively low
complexity, the model’s accuracy is lower on every one of these action-only test sets than the existing
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Figure 2: Comparison of generalization accuracies across the datasets given in Table 1 plus perfor-
mance on the original test set. Both models, denoted Baseline and Uniform were trained on the same
programs. However, the I/O specifications for Uniform had homogenized random variables in the
way described in Section 4.2.1

provided test set. The generalization accuracy grows as the program length becomes longer, even
though those programs should be harder to synthesize.

Among the existing action-only programs in the test set, the model’s generalization accuracy on that
subset is 99.24%. Given the surprising nature of this result, we investigated the difference between
the action-only programs we generated, and those in the existing test set. We found that in the existing
training and test sets, all programs contain at least two actions, and also contain at least one move
action somewhere in the program. These and any undiscovered differences in the distribution of
programs seem to have caused the gap in performance.

5 TRAINING THE KAREL MODEL ON NEW DATASETS

In Section 4, we saw that the existing model performs much more poorly on certain test datasets
that we constructed, compared to its performance on the existing test set as reported in Section 4.2.
In light of the framework in Section 3, various imbalances of the salient random variables in the
existing training data could have caused these gaps in performance. Then a natural solution is to to
train using datasets constructed to avoid undesirable skews in the salient random variables, which
should hopefully perform better across a variety of distributions.

Training datasets with uniform I/O. We generated a training dataset by taking the programs of
the existing training set and synthesizing I/O pairs using the procedure described in Section 4.2.1. We
trained a model on this data and then evaluated it on the same set of narrow distribution evaluation
datasets as mentioned in Section 4.2.2. Figure 2 compares how this new model performs to the
baseline model. The model trained on uniform I/O distributions maintains much higher inference
accuracy on the test sets of Section 4.2.2 than the baseline model. Note that the uniform I/O
distribution is not simply a union of the tested distributions and is intended to cover all possible input
specifications.

Real-world benchmarks. We evaluated both the baseline model and the uniform model on a set
of 36 real-world Karel programming problems. This dataset was compiled from the Hour of Code
Initiative and Stanford University’s introductory computer science course, CS106A, with the problems
being hand-designed as educational exercises for students. We found that the baseline model got
4 correct (11.1%) while the uniform model got 7 correct (19.4%). This further demonstrates the
uniform model’s increased ability to generalize to out-of-distribution datasets, including those which
are of interest to humans.

Adding action-only programs. We observed in Section 4.3 that the model fails to do well on either
action-only programs or programs with many control-flow statements. In the case of action-only
programs, we found that the training data had been pruned to only include programs with at least two
actions and at least one move, and in the case of programs with complex control flow, we found a
similar sparsity in the train set.

As discussed in Section 3, the principled way to counteract this sparsity is to introduce uniformity
into a set of salient variables. This methodology allows us to counteract both naturally sparse data
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Figure 3: Evaluation of models that were trained on narrow distributions. When evaluated on their
own training distribution, they consistently achieved similar results. When evaluated on a different
narrow distribution, the performance was rarely similar and usually very low.

(such as complex control-flow) and spurious data pre-processing (such as enforcing programs to have
at least two actions).

In our case, we introduce uniformity into the length of action-only programs by synthesizing 20,000
programs of each length 1 to 20, by uniformly selecting tokens from the five action choices and
generating I/O with other salient random variables as close to the original training set as possible;
we append these new programs to the original dataset to train a new model. Table 2 shows a clear
improvement when homogenizing this salient random variable.

Narrowly specified training datasets. As done in for the uniform training dataset, we generated
“narrow” training datasets by keeping the same programs as in the existing training data and replacing
the I/O pairs with the process from Section 4.2.2.

We trained a variety of models and evaluated them on 12 datasets of different I/O feature distributions.
Figure 5 summarizes the results of evaluating each model on each dataset by noting the performance
of the model on the narrow dataset of the same type and the outcome on every other narrow dataset.
For the models trained on the low variance datasets, we observed that they all consistently achieved
between 60 and 70 percent accuracy on their own training distribution; however, the uniform model
was able to achieve similar performance (between 57 and 80 percent accuracy). Hence, we conclude
that models can be trained to perform well on out-of-distribution data (e.g., the uniform model), while
still achieving comparable performance on narrow sub-distributions, as measured against models
explicitly trained on such distributions.

6 CALCULATOR

The Calculator task is given as follows: given an expression such as "5+4*(2+3)", compute the
result mod 10; in this case, 5. We are interested in the Calculator domain because, while Calculator
is not a program synthesis task, creating data for the Calculator problem involves sampling from a
context-free grammar. Additionally, Calculator is not as intricate a domain as Karel and thus we can
more completely control the environment of data generation with less fear of lurking variables.

Calculator Model. Similar to the work by Zaremba & Sutskever (2014), we implement an LSTM
that parses calculator expressions on a character level. We perform a 10-class classification problem
using a dense network on the final hidden state of the LSTM. The prediction is correct if it exactly
matches the parsed expression value, mod 10.

Distributions of Calculator tasks. We propose 4 distributions for calculator tasks: direct CFG
sampling (DCFG), tensor2tensor sampling (T2T), “runs” CFG sampling (RCFG), and balanced
sampling (BAL).

Two of our distributions represent reasonable ways in which a researcher might choose to sample data.
The first is DCFG sampling, which involves returning a digit with some probability (1− p), or else
recursively sampling two productions and combining them with a −, ∗, or +, each with probability p

3 .
This corresponds to a direct, weighted, sampling of the CFG for the calculator grammar. The second
is T2T sampling1, which is used by the tensor2tensor library to sample arithmetic expressions in one

1
https://github.com/tensorflow/tensor2tensor/blob/8bd81e8fe9dafd4eb1dfa519255bcbe3e33c7ffa/

tensor2tensor/data_generators/algorithmic_math.py
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Original Length Max Depth Mean Depth #Operations #Parens

T2T 83.83% +4.35pp +4.24pp +2.14pp +1.19pp +2.32pp
DCFG 78.25% +3.84pp +5.92pp +4.02pp +6.72pp +4.51pp

Table 3: Improvements in Calculator performance over unhomogenized distributions when various
homogenizations were applied. See Section 6 for details on performance metrics.

of its examples. It involves sampling a depth d, then ensuring that the resulting AST has depth d by
forcing a random side of the operation production to be sampled to d − 1 and the other side to be
sampled to a depth d′ ∼ U{0, 1, . . . , d− 1}.
The other two distributions represent potentially difficult or nonstandard problems that might appear
in practical environments. RCFG is similar to DCFG sampling but involves increasing the frequency
of “runs” of the associative operations picking 2, 3, or 4 productions and then combining them with
the given symbol. Balanced sampling involves selecting a depth and then creating an AST that
is a balanced binary tree at that depth. Importantly, regardless of sampling technique, redundant
parentheses are removed. This is to increase the difficulty somewhat as order of operations needs to
be established.

6.1 SALIENT VARIABLES AND METHODOLOGY

We use the following salient variables: length (rounded to the nearest even number), number of
operations, number of pairs of parentheses, mean parenthesized depth, and maximum parenthesized
depth. Parenthesized depth is defined for each digit and refers to the number of nested parentheses it
is in. For example in (1+2)*(3-4)+5, the 1, 2, 3, and 4 are at depth 1 while the 5 is at depth 0.

We constructed 2× (1 + 5) distributions in total, corresponding to a total of 2 task distributions, T2T
and DCFG, which represent the “natural” sampling techniques a researcher might employ, and 1 + 5
homogenization strategies, one unhomogenized and five homogenized corresponding to each salient
variable with ε = 0.025. We then evaluated each model on a fresh evaluation set sampled from a
mixture of the four unhomogenized distributions (T2T, DCFG, RCFG, BAL).

6.2 RESULTS

The original performances and improvements created by homogenizing different random variables
can be found in Table 3. On average, homogenizing the DCFG and T2T distributions caused them to
increase by 5.00pp and 2.84pp, respectively.

We note that the Calculator domain is much simpler than Karel when considering both input com-
plexity (grid worlds versus arithmetic expressions) and output complexity (a DSL program versus a
single digit). Furthermore, the difference in distributions between the naive sampling approaches
and the versions with one homogenized random variable are not as different in Calculator as what
we observed in Karel (see Table 1 for the dramatic effect of Dmarker). We hypothesize that it is this
difference in complexity that explains the smaller (but still consistent) effect of homogenizing salient
random variables in Calculator as compared to in Karel.

7 CONCLUSION

We demonstrate that uniform sampling, a widely accepted method for randomly generating input-
output examples, has unintended and overlooked distribution flaws in both the Calculator and the
Karel domain. These flaws prevent predictive models from generalizing to many simple distributions.
To resolve these problems, we propose a robust strategy for controlling and evaluating the bias
of synthetic data distributions over programs and specifications by homogenizing salient random
variables, such as the number of parentheses in a calculator expression. Equipped with our method,
deep networks exhibit an increase in cross-distribution test accuracy, at the expense of a minor
decrease in on-distribution test accuracy. We choose program synthesis as a convenient domain, but
any domain with synthetically generated data would benefit well from homogenization of salient
variables.
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8 APPENDIX

8.1 THE KAREL DOMAIN

Prog p := def main():s

Stmt s := while(b) : s | repeat(r) : s | s1; s2

| a | if(b) : s | if(b) : s1else : s2

Cond b := markersPresent() | leftIsClear()
| rightIsClear() | frontIsClear()
| not(b)

Action a := move() | turnLeft() | turnRight()
| pickMarker() | putMarker()

Cste r := 0 | 1 | · · · | 19

GridWidth : m
GridHeight: n
Markers: {(i, j, k)l}l
Walls: {(i, j)t}t
KarelLoc: (i, j)
Orientation: d ∈ {N,S,E,W}
2 ≤ m,n ≤ 16; i ≤ m;
j ≤ n; 1 ≤ k ≤ 9

(a) (b)

Figure 4: (a) The DSL of Karel programs taken from Bunel et al. (2018), and (b) a declarative
specification of the space of valid input worlds for Karel programs.

A declarative specification of the space of valid input worlds to Karel programs is shown in Figure 4(b).
As with Bunel et al. (2018), we assume a bound on the input grid size to be 2 ≤ m,n ≤ 16. Each
cell (i, j) in a grid can either be empty, contain an obstacle (i.e. a wall, specified by the list Walls),
or contain k ≤ 9 markers (defined using the list Markers). The agent starts at some cell denoted by
KarelLoc in the grid (which may contain markers but no obstacle) with a particular orientation
direction denoted by Orientation.

The grammar for the Karel DSL we consider in this work is shown in Figure 4(a). The DSL allows the
Karel agent to perform a move action to move one step in the grid in the direction of the orientation,
actions turnLeft and turnRight to change its orientation direction, and actions pickMarker
and putMarker to manipulate markers. The language contains if, ifElse, while constructs
with conditionals {front,left,right}IsClear, markersPresent, and their negations.
The repeat construct allows for a fixed number of repetitions. Note that the language does not
contain any variables or auxiliary functions.

8.2 SALIENT VARIABLE HOMOGENIZATION: PROOF OF CORRECTNESS

We wish to show that if ε = 0, the salient variable analysis technique will always result in a distribution
where the homogenized salient variable X is uniform. Let the initial sampling distribution be q
and the resulting distribution be r. Since we are performing rejection sampling, we have that the
probability of selecting any given sample s in our model is

Pr[S = s] ∝ q(s)g(s)

where g(s) =
minx Pq [X=x]
Pq [X=X(s)] ∝ Pq[X = X(s)]−1. We thus have that

Pr[X = x] =
∑

s:X(s)=x

Pr[S = s] ∝
∑

s:X(s)=x

q(s)g(s) ∝
∑

s:X(s)=x

q(s)Pq[X = X(s)]−1 = 1

And thus we have that Pr[X = x] = k and is therefore uniform.

8.3 SALIENT VARIABLE HOMOGENIZATION: EFFICIENCY ANALYSIS

In the Salient Variable Homogenization algorithm, we have the probability of not rejecting a given
sample as g(s) = minx P [X=x]+ε

P [X=X(s)]+ε . We know that
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g(s) =
minx P [X = x] + ε

P [X = X(s)] + ε
≥ ε

P [X = X(s)] + ε
≥ ε

1 + ε

and thus we have that the expected number of tries t = 1
g(s) ≤ 1+ 1

ε . We thus have that in expectation,
we need to sample O( 1

ε ) samples from the original distribution to produce one homogenized sample.

8.4 EMPIRICAL EFFECT OF VARYING ε

Figure 5: Number of samples required by salient variable homogenization parameterized by an ε
before a new sample is returned.

The solid line is an upper bound ε
1+ε derived in Section 8.3. Seen in the measured samples for

different values of ε, the upper bound appropriately reflects the maximum height of the samples, with
very little remaining space on the DCFG dataset and some but not much on the T2T dataset, and is
thus a close bound. As the values of ε→∞ the bound approaches the limit 1, indicating no samples
are rejected by the algorithm.

Original ε = 0.025 ε = 0.050 ε = 0.100 ε = 0.200

T2T 83.83% +2.84pp +1.31pp +1.33pp +2.45pp
DCFG 78.25% +5.00pp +4.50pp +3.54pp +3.42pp

Table 4: Improvements in Calculator performance with homogenized datasets of various sampling
parameters ε. See Section 6 for details on performance metrics.

Increasing the parameter ε has the theoretical affect of causing the homogenized distribution to
deviate more from uniform in its salient random variables, as shown in 8.3. In practice, we discover
that performance boosts tend to decrease with increasing ε, although the effect was not as pronounced
on the T2T dataset, potentially because the unhomogenized T2T distribution is closer to uniform and
thus homogenization has a limited effect for any larger ε values.
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