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ABSTRACT

A capsule is a group of neurons whose outputs represent different properties of the
same entity. We describe a version of capsules in which each capsule has a logis-
tic unit to represent the presence of an entity and a 4x4 pose matrix which could
learn to represent the relationship between that entity and the viewer. A capsule in
one layer votes for the pose matrix of many different capsules in the layer above
by multiplying its own pose matrix by viewpoint-invariant transformation matri-
ces that could learn to represent part-whole relationships. Each of these votes is
weighted by an assignment coefficient. These coefficients are iteratively updated
using the EM algorithm such that the output of each capsule is routed to a cap-
sule in the layer above that receives a cluster of similar votes. The whole system
is trained discriminatively by unrolling 3 iterations of EM between each pair of
adjacent layers. On the smallNORB benchmark, capsules reduce the number of
test errors by 45% compared to the state-of-the-art. Capsules also show far more
resistance to white box adversarial attack than our baseline convolutional neural
network.

1 INTRODUCTION

Convolutional neural nets are based on a simple fact and a simple mechanism: a vision system needs
to use the same knowledge at all locations in the image; this can be achieved by tying the weights
of features detectors so that features learned at one location are available at other locations. Con-
volutional capsules extend the sharing of knowledge across locations to include knowledge about
the part-whole relationships that characterize a familiar shape. Viewpoint changes have complicated
effects on pixel intensities but simple, linear effects on the pose matrix that represents the relation-
ship between an object or object-part and the viewer. The aim of capsules is to make good use
of this underlying linearity, both for dealing with viewpoint variation and improving segmentation
decisions.

Capsules use high-dimensional coincidence filtering: a familiar object can be detected by looking
for agreement between votes for its pose matrix. These votes come from parts that have already been
detected. A part produces a vote by multiplying its own pose matrix by a transformation matrix that
represents the viewpoint invariant relationship between the part and the whole. As the viewpoint
changes, the pose matrices of the parts and the whole will change in a coordinated way so that any
agreement between votes from different parts will persist. Finding tight clusters of high-dimensional
votes that agree in a mist of irrelevant votes is one way of solving the problem of assigning parts to
wholes. It is non-trivial because we cannot grid the high-dimensional space. To solve this challenge,
we use a fast iterative process called ”routing-by-agreement” that updates the probability with which
a part is assigned to a whole based on the proximity of the vote coming from that part to the votes
coming from other parts that are assigned to the whole. This is a powerful segmentation principle
that allows knowledge of familiar shapes to drive segmentation, rather than just using low-level cues
such as proximity or agreement in color or velocity.

1.1 PREVIOUS WORK ON CAPSULES

Hinton et al. (2011) used a transformation matrix in a transforming autoencoder that learned to
transform a stereo pair of images into a stereo pair from a slightly different viewpoint. However,
that system required the transformation matrix to be supplied externally. More recently, routing-by-
agreement was shown to be very effective for segmenting highly overlapping digits (Sabour et al.
(2017)), but that system has several deficiencies that we have defeated in our work:
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1. It uses the length of the pose vector to represent the probability that the entity represented by
a capsule is present. To keep the length less than 1 requires an unprincipled non-linearity
that prevents there from being any sensible objective function that is minimized by the
iterative routing procedure.

2. It uses the cosine of the angle between two pose vectors to measure their agreement. Unlike
the log variance of a Gaussian cluster, the cosine is not good at distinguishing between quite
good agreement and very good agreement.

3. It uses a vector of length n rather than a matrix with n elements to represent a pose, so its
transformation matrices have n2 parameters rather than just n.

1.2 RELATED WORK

Among the multiple recent attempts on bringing underlying affine manifold of images to CNNs, the
two main streams are attempts on gaining viewpoint invarient vs equivarient. Spatial transformer
networks (Jaderberg et al. (2015) seeks viewpoint invarient by changing the sampling of CNNs
according to a selection of affine transformations. De Brabandere et al. (2016) extends spatial trans-
former networks where filters are adapted during inference depending on the input. They generate
different filters for each locality in the feature map rather than applying the same transformation
to all filters. Their approach is a step toward input covariance detection from traditional pattern
matching frameworks like standard convolutional neural networks (LeCun et al. (1990)). Dai et al.
(2017) also improves upon STNs by generalizing the sampling method of filters. Our work differs
substantially in that a unit is not activated based on the matching score with a filter (either fixed or
dynamically changing during inference). In our case, a capsule is activated only if the transformed
poses coming from the layer below match each other. This is a more effective way to capture co-
variance and leads to models with many fewer parameters that generalize better.

The success of CNNs has motivated many researchers to extend the translational equivariance built
in to CNNs to include rotational equivariance (Cohen & Welling (2016), Dieleman et al. (2016),
Oyallon & Mallat (2015)). The recent approach in Harmonic Networks (Worrall et al. (2017))
achieves rotation equivariant feature maps by using circular harmonic filters and returning both the
maximal response and orientation using complex numbers. This shares the basic representational
idea of capsules: By assuming that there is only one instance of the entity at a location, we can
use several different numbers to represent its properties. They used a fixed number of streams of
rotation orders. By enforcing the equality of the sum of rotation orders along any path they achieve
patch-wise rotation equivariance. This approach is more parameter-efficient than data augmentation
approaches, duplicating feature maps, or duplicating filters (Fasel & Gatica-Perez (2006), Laptev
et al. (2016)). Our approach encodes general viewpoint equivarience rather than only Affine 2D
rotations. Symmetry networks (Gens & Domingos (2014)) uses iterative Lucas-Kanade optimization
to find poses that are supported by the most low-level features. Their key weakness is that the
iterative algorithm always starts at the same poses, rather than the mean of the bottom-up votes.

Lenc & Vedaldi (2016) proposes a feature detection mechanism (DetNet) that is equivariant to affine
transformations. DetNet is designed to detect the same points in the image under different viewpoint
variations. This effort is orthogonal to our work but DetNet might be a good way to implement the
de-rendering first-stage that activates the layer of primary capsules.

Our routing algorithm can be seen as an attention mechanism. In this view it is related to work of
Gregor et al. (2015), where they improved the decoder performance in a generative model by using
Gaussian kernels to attend to different parts of the feature map generated by the encoder. Vaswani
et al. (2017) uses a softmax attention mechanism to match parts of the query sequence to parts of
the input sequence for the translation task and when generating an encoding for the query. They
show improvement upon previous translation efforts using recurrent architectures. Our algorithm
has attention in the opposite direction. The competition is not between the lower-level capsules that
a higher-level capsule might attend to. It is between the higher-level capsules that a lower-level
capsule might send its vote to.

2 USING EM FOR ROUTING-BY-AGREEMENT

Let us suppose that we have already decided on the poses and activation probabilities of all the
capsules in a layer and we now want to decide which capsules to activate in the layer above and
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how to assign each active lower-level capsule to one active higher-level capsule. For explanatory
purposes, we start by assuming that all of the transformation matrices are the identity matrix because
this makes it easy to map the assignment task onto the task of fitting a mixture of Gaussians. Each
capsule in the higher layer corresponds to a Gaussian and each active capsule in the lower layer
corresponds to a data-point (or a fraction of a data-point if the capsule is partially active). The only
difference from a standard mixture of Gaussians is that we have far too many Gaussians so we need
to introduce a penalty to stop us from assigning every data-point to a different Gaussian.

Using the minimum description length principle we have a choice when deciding whether or not
to activate a higher-level capsule. Choice 0: if we do not activate it, we must pay a fixed cost per
data-point for describing the means of all the lower-level capsules that are assigned to a higher-
level capsule (assuming an improper uniform prior). For fractional assignments we pay that fraction
of the fixed cost. Choice 1: if we do activate the higher-level capsule we must pay a fixed cost
for coding its mean and the fact that it is active and then pay additional costs, pro-rated by the
assignment probabilities, for describing the discrepancies between the lower-level means and the
values predicted for them when the mean of the higher-level capsule is used to predict them via
the inverse of the transformation matrix. A much simpler way to compute the cost of describing
the discrepancies is to use the squared distance between the mean of the higher-level capsule and
the vote from the lower-level capsule, scaled by the variance of the higher-level capsule. This is
incorrect because the transformation matrix may compress or expand probability density but we
use it anyway because it saves us from having to perform any additional transformations during
the iterative routing process. The difference in cost between these two choices, is put through the
logistic function on each iteration to determine the higher-level capsule’s activation probability.

If the transformation matrices are not the identity matrix, the iterative routing process differs from
fitting a standard mixture of Gaussians and the difference makes it converge much faster. The higher-
level capsules all get different views of the same set of data-points because they see the data-points
transformed by different part-whole relationships. This means that data-points that form a tight
cluster from the perspective of one capsule may be widely scattered from the perspective of another
capsule. These different perspectives break the symmetry of the Gaussians much more strongly than
simply starting with different means and variances.

The cost of explaining a whole data-point i by using capsule c that has an axis-aligned covariance
matrix is simply the sum over all dimensions of the cost of explaining each dimension, h, of i. This
is simply −ln(Pih) where Pih is the probability density of the hth component of the vote from i
under the capsule’s Gaussian model for dimension h which has variance σ2

h:

Pih =
1√
2πσ2

h

e
− (Vih−µh)2

2σ2
h

ln(Pih) = −
(Vih − µh)2

2σ2
h

− ln(σh)− ln(2π)/2 (1)

(2)

Summing over all lower-level capsules for a single dimension of one higher-level capsule we get:

costh =
∑
i

−riln(Pih) =
∑
i riσ

2
h

2σ2
h

+ (ln(σh) + ln(2π)/2)
∑
i

ri = (ln(σh) + k)
∑
i

ri (3)

Where
∑
i ri is the amount of data assigned to c (i.e. the sum of its assignment probabilities, ri), k

is a constant and Vih is the value on dimension h of the vote from capsule i to capsule c. Vih is the
product of the the transformation matrixWic that is learned discriminatively. Turning on c increases
the description length for the means of the lower-level capsules assigned to c by the sum of the cost
over all dimensions, so we define the activation function of capsules c to be:

ac = logistic(λ(b−
∑
h

costh)) (4)

where −b represents the cost of describing the mean of capsule c and λ is an inverse temperature
parameter. We learn b discriminatively and set a fixed schedule for λ as a hyper-parameter.

For finalizing the pose parameters and activations of the capsules in layer L + 1 we run the EM
algorithm for few iterations (normally 3) after the pose parameters and activations have already
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Figure 1: A network with one ReLU convolutional layer followed by a primary convolutional cap-
sule layer and two more convolutional capsule layers.

been finalized in layer L. The non-linearity implemented by a whole capsule layer is a form of
cluster finding using the EM algorithm, so we call it EM Routing.

Procedure 1 Routing algorithm1 returns activation and pose of the capsules in layer L + 1 given
the activations and votes of capsules in layer L. Vich is an H dimensional vote from capsule i with
activation ai in layer L to capsule c in layer L + 1. βa, βv are learned discriminatively and the
inverse temperature λ increases at each iteration with a fixed schedule.

1: procedure EM ROUTING(a, V )
2: ∀i, c: Ric ← 1/size(L+ 1)
3: for t iterations do
4: ∀c: Mc:, Sc:,a

′
c ← M-STEP(R:c, a, V:c:)

5: ∀i: Ri: ← E-STEP(M , S, a′, Vi::)
return a′,M

1: procedure M-STEP(r,a, V ′) . for one higher-level capsule
2: ∀i: r′i ← ri ∗ ai
3: ∀h: µh ←

∑
i r
′
iV
′
ih∑

i r
′
i

4: ∀h: σ2
h ←

∑
i r
′
i(V
′
ih−µh)

2∑
i r
′
i

5: costh ← (βv + log(σh))
∑
i r
′
i

6: a′ ← sigmoid(λ(βa −
∑
h costh))

7: return µ,σ, a′

1: procedure E-STEP(a′, S, M , V ′′) . for one lower-level capsule

2: ∀c: pc ← 1√∏H
h 2πS2

ch

e
−

∑H
h

(V ′′ch−Mch)2

2S2
ch

3: ∀c: rc ← a′cpc∑
j a
′
jpj

4: return r

2.1 THE OBJECTIVE FUNCTION FOR EM ROUTING

There is a free energy function that is reduced by each step of the routing. The recomputation
of the means and the variances reduces an energy equal to the squared distances of the votes from
the means, weighted by the assignment probabilities. The recomputation of the capsule activations
reduces a free energy equal to the sum of the (scaled) costs used in the logistic function minus the
entropy of the activation values. The recomputation of the assignment probabilities reduces the sum
of the two energies above minus the entropies of the assignment probabilities.

3 THE CAPSULES MODEL

The general architecture of our model is shown in Fig. 1. The model starts with a 5x5 convolutional
layer with 32 channels (A=32) and a stride of 2 with a ReLU non-linearity. All the other layers

1We use Matlab-like notation for indexing tensors and matrices. An index replaced with ”:” indicates a slice
over that index.
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Figure 2: Histogram of distances of votes to the mean of each of the 5 final capsules after each
routing iteration. Each distance point is weighted by its assignment probability. All three images
are selected from the smallNORB test set. The routing procedure correctly routes the votes in the
truck and the human example. The plane example shows a rare failure case of the model where the
plane is confused with a car in the third routing iteration. The histograms are zoomed-in to visualize
only votes with distances less than 0.05. Fig. A.2 shows the complete histograms for the ”human”
capsule without fixing the y axis.

are capsule layers starting with the primary capsule layer. Each capsule has a 4x4 pose matrix and
one logistic activation unit. The 4x4 pose of each of the B=32 primary capsule types is a linear
transformation of the output of all the lower layer ReLUs centered at that location. The activations
of the primary capsules are produced by applying the sigmoid function to weighted sums of the same
set of loer layer ReLUs.

The primary capsules are followed by two 3x3 convolutional capsule layers (K=3), each with 32
capsule types (C=D=32) with strides of 2 and one, respectively. The last layer of convolutional
capsules is connected to the final capsule layer which has one capsule per output class.

When connecting the last convolutional capsule layer to the final layer we do not want to throw away
information about the location of the convolutional capsules but we also want to make use of the fact
that all capsules of the same type are extracting the same entity at different positions. We therefore
share the transformation matrices between different positions of the same capsule type and add the
scaled coordinate (row, column) of the center of the receptive field of each capsule to the first two
elements of its vote. We refer to this technique as Coordinate Addition. This should encourage the
shared final transformations to produce values for those two elements that represent the fine position
of the entity relative to the center of the capsule’s receptive field.

The routing procedure is used between each adjacent pair of capsule layers. For convolutional cap-
sules, each capsule in layer L+ 1 sends feedback only to capsules within its receptive field in layer
L. Therefore each convolutional instance of a capsule in layer L receives at most kernel size X ker-
nel size feedback from each capsule type in layer L + 1. The instances closer to the border of the
image receive fewer feedbacks with corner ones receiving only one feedback per capsule type in
layer L+ 1.
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Table 1: The effect of varying different components of our capsules model on smallNORB.

Routing iterations Pose structure Loss Coordinate Addition Test error rate

1 Matrix Spread Yes 9.7%
2 Matrix Spread Yes 2.2%
3 Matrix Spread Yes 1.8%
5 Matrix Spread Yes 3.9%
3 Vector Spread Yes 2.9%
3 Matrix Spread No 2.6%
3 Vector Spread No 3.2%
3 Matrix Margin2 Yes 3.2%
3 Matrix CrossEnt Yes 5.8%

Baseline CNN with 4.2M parameters 5.2%
CNN of Cireşan et al. (2011) with extra input images & deformations 2.56%

Our Best model (third row), with multiple crops during testing 1.4%

3.1 SPREAD LOSS

In order to make the training less sensitive to the initialization and hyper-parameters of the model,
we use ”spread loss” to directly maximize the gap between the activation of the target class (at) and
the activation of the other classes. If the activation of a wrong class, ai, is closer than the margin,
m, to at then it is penalized by the squared distance to the margin:

Li = (max(0,m− (at − ai))2, L =
∑
i6=t

Li (5)

By starting with a small margin of 0.2 and linearly increasing it to 0.9, we avoid dead capsules.

4 EXPERIMENTS

The smallNORB dataset (LeCun et al. (2004)) has gray-level stereo images of 5 classes of toy:
airplanes, cars, trucks, humans and animals. There are 10 physical instances of each class which are
painted matte green. 5 physical instances of a class are selected for the training data and the other 5
for the test data. Every individual toy is pictured at 18 different azimuths (0-340), 9 elevations and
6 lighting conditions, so the training and test sets each contain 24,300 stereo pairs of 96x96 images.
We selected smallNORB as a benchmark for developing our capsules system because it is carefully
designed to be a pure shape recognition task that is not confounded by context and color, but it is
much closer to natural images than MNIST .

We downsample smallNORB to 48×48 pixels and normalize each image to have zero mean and unit
variance. During training we randomly crop 32 × 32 patches and, after add random brightness and
contrast to the image. During test we crop a 32× 32 patch from the center of the image. We achieve
1.4% test error on smallNORB when averaging the class activations over multiple patches and 1.8%
when only using the cetral crop. The best reported result on smallNORB is 2.56% (Cireşan et al.
(2011)). To achieve this they added two additional stereo pairs of input images that are created by
using an on-center off-surround filter and an off-center on-surround filter. They also applied affine
distortions to the images. Our work also beats the Sabour et al. (2017) capsule work which achieves
2.7% on smallNORB.

We also tested our model on NORB which is a jittered version of smallNORB with added back-
ground and we achieved a 2.6% error rate which is on par with the state-of-the-art of 2.7% (Ciresan
et al. (2012)).

As the baseline for our experiments on generalization to novel viewpoints we train a CNN which has
two convolutional layers with 32 and 64 channels respectively. Both layers have kernel size 5 and
stride of 1 with a 2×2 max pooling. The third layer is a 1024 unit fully connected layer with dropout

2The loss proposed by Sabour et al. (2017) for training Capsules.
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Table 2: A comparison of the smallNORB test error rate of the baseline CNN and the capsules
model on novel viewpoints when the capsules model is matched to the CNN for error rate on familiar
viewpoints.

Test set Azimuth Elevation

CNN Capsules CNN Capsules

Novel viewpoints 20% 13.5% 17.8% 12.3%
Familiar viewpoints 3.7% 3.7% 4.3% 4.3%

and connects to the 5-way softmax output layer. All hidden units use the ReLU non-linearity. We
use the same image preparation for CNN baseline as described above for the capsule network. Our
baseline CNN was the result of an extensive hyperparameter search over filter sizes, numbers of
channels and learning rates.

The CNN baseline achieves 5.2% test error rate on smallNORB and has 4.2M parameters. We
deduce that the Cireşan et al. (2011) network has 2.7M parameters. By using small matrix multiplies
we reduced the number of parameters by a factor of 15 to 310K compared with our baseline CNN
(and 9 w.r.t Cireşan et al. (2011)). A smaller capsule network of A = 64, B = 8, C = D = 16 with
only 68K trainable parameters achieves 2.2% test error rate which also beats the prior state-of-the-
art.

Replacing the MDL-derived capsule activation term with posterior probabilities that are proportional
to the sum of the assignment probabilities increases the test error rate on smallNORB to 4.5%. Tab. 1
summarizes the effects of the number of routing iterations, the type of loss and the use of matrices
rather than vectors for the poses.

Exactly the same capsules model as Fig. 1 achieves 0.44% test error rate on MNIST. If the number
of channels in the first hidden layer is increased to 256, it achieves 11.9% test error rate on Cifar10
(Krizhevsky & Hinton (2009)).

4.1 GENERALIZATION TO NOVEL VIEWPOINTS

A more severe test of generalization is to use a limited range of viewpoints for training and to test on
a much wider range. We trained both our convolutional baseline and our capsule model on one third
of the training data containing azimuths of (300, 320, 340, 0, 20, 40) and tested on the two thirds of
the test data that contained azimuths from 60 to 280. In a separate experiment we trained on the 3
smaller elevations and tested on the 6 larger elevations.

It is hard to decide if the capsules model is better at generalizing to novel viewpoints because it is
better at all viewpoints. To eliminate this confounding factor we stopped training the capsules model
when its performance matched the baseline CNN on the third of the test set that used the training
viewpoints. Then we compared these matched models on the two thirds of the test set with novel
viewpoints. Results in Tab. 2 show that, compared with the baseline CNN, capsules with matched
performance on familiar viewpoints reduce the test error rate on novel viewpoints by about 30% for
both novel azimuths and novel elevations.

5 ADVERSARIAL ROBUSTNESS

There is growing interest in the vulnerability of neural networks to adversarial examples; inputs that
have been slightly changed by an attacker so as to trick a neural net classifier into making the wrong
classification. These inputs can be created in a variety of ways, but straightforward strategies such as
FGSM (Goodfellow et al. (2014)) have been shown to drastically decrease accuracy in convolutional
neural networks on image classification tasks. We compared our capsule model and a traditional
convolutional model on their ability to withstand such attack.

FGSM computes the gradient of the loss w.r.t. each pixel intensity and then changes the pixel
intensity by a fixed amount ε in the direction that increases the loss. So the changes only depend on
the sign of the gradient at each pixel. This can be extended to a targeted attack by updating the input
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Figure 3: Accuracy against ε after an adversarial attack (left) and Success Rate after a targeted
adversarial attack (right). The targeted attack results were evaluated by averaging the success rate
after the attack for each of the 5 possible classes.

to maximize the classification probability of a particular wrong class. We generated adversarial
attacks using FGSM because it has only one hyper-parameter and it is easy to compare models
that have very different gradient magnitudes. To test the robustness of our model we generated
adversarial images from the test set using a fully trained model. We then reported the accuracy of
the model on these images.

We found that our model is significantly less vulnerable to both general and targeted FGSM adver-
sarial attacks; a small epsilon can be used to reduce a convolutional model’s accuracy much more
than an equivalent epsilon can on the capsule model (Fig. 3). It should also be noted that the capsule
model’s accuracy after the untargeted attack never drops below chance (20%) whereas the convo-
lutional model’s accuracy is reduced to significantly below chance with an epsilon of as small as
0.2.

We also tested our model on the slightly more sophisticated adversarial attack of a Basic Iterative
Method (Kurakin et al. (2016)) which is simply the aforementioned attack except we take multiple
smaller steps when creating the adversarial image. Here too we find that our model is much more
robust to the attack than the traditional convolutional model.

It has been shown that some robustness to adversarial attacks in models can be due to simply nu-
merical instability in the calculation of the gradient Brendel & Bethge (2017). To insure that this
was not the sole cause of our model’s robustness we calculated the percentage of zeros values in the
gradient with respect to the image in the capsule model and found it to be smaller than that of the
CNN. Furthermore the capsule gradients, although smaller that those of the CNN, are only smaller
by 2 orders of magnitude, as opposed to 16 orders of magnitude in Brendel et al.’s work.

Finally we tested our model’s robustness to black box attacks by generating adversarial examples
with a CNN and testing them on both our capsule model and a different CNN. We found that the
capsule model did not perform noticeably better at this task than the CNN.

6 CONCLUSION

Building on the work of Sabour et al. (2017), we have proposed a new capsule network architecture
in which each capsule has a logistic unit to represent the presence of an entity and a 4x4 pose
matrix to represent the relationship between that entity and the viewer. We also introduced a new
iterative routing procedure between capsule layers, making use of the EM algorithm, which allows
the output of each lower-level capsule to be routed to a capsule in the layer above so that each higher-
level capsule receives a cluster of similar pose votes, if such a cluster exists. This new architecture
achieves significantly better accuracy on the smallNORB data set then the state-of-the-art CNN,
reducing the number of errors by 45%. We have also shown it to be significantly more robust to
white box adversarial attacks than a baseline CNN.

SmallNORB is an ideal data-set for developing new shape-recognition models precisely because it
lacks many of the additional features of images in the wild. Now that our capsules model works
well on NORB, we plan to implement an efficient version so that we can test much larger models on
much larger data-sets such as ImageNet.
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A SUPPLEMENTARY FIGURES

Figure A.1: Sample smallNORB images at different viewpoints. All images in first row are at
azimuth 0 and elevation 0. The second row shows a set of images at a higher elevation and different
azimuth.

Figure A.2: Log scale histogram of distances between the receiving votes and the center of each
of 5 final capsule. Each row visualizes the 5 histograms for iteration 1, 2 and 3. Unlike Fig. 2 the
histograms are Log scale, not sharing their y axis and the considered distance range is 60 which
results in non-empty histograms where most of the bins have height less than 1.0.
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Figure A.3: Adverserial images generated with FGSM with ε = 0.1 and ε = 0.4 on the CNN model
and the Capsule model.

(a) ε = 0.1 on CNN (b) ε = 0.4 on CNN (c) ε = 0.1 on Capsules (d) ε = 0.4 on Capsules

Figure A.4: Effect of tweaking the first two dimmensions of the capsules network trained on MNIST
and reconstructing the image by passing the target capsule’s pose through a 3 layer fully-connected
decoding network. For this experiment the decoder was trained along the discriminative task and
the squared distance of the reconstructed image with the original image was added to the discrim-
inative loss. The decoder network is similar to the architecture Sabour et al. (2017) has used for
reconstructions. In most of the digits adding same epsilon to the first two dimmensions of the pose
matrix tends to shift the image toward the right boundary. In digit 6 adding the epsilon increases
the distance to the right boundary of the image. In 3 and 5 it only shifts the bottom part toward
the right boundary which results in a clock wise rotation. Since the decoder has only seen MNIST
training data (without any transformation or augmentation), it can only reconstruct the part of the
pose changes that is explainable by the MNIST digits.
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