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ABSTRACT

Knowledge bases (KB), both automatically and manually constructed, are often
undercomplete — many valid facts can be inferred from the KB by synthesizing
existing information. We propose a new algorithm, MINERVA, that infers facts
represented implicitly in a KB to solve a practical query answering task involving
predicting which entity is the answer to a question. MINERVA is based on neural
reinforcement learning and learns how to navigate the graph to find predictive
paths. Empirically, MINERVA obtains state-of-the-art results on seven KB datasets,
significantly outperforming prior methods.

1 INTRODUCTION

Automated reasoning, the ability of computing systems to make new inferences from observed
evidence, has been a long standing goal of artificial intelligence. We are interested in automated
reasoning on large knowledge bases (KB) with rich and diverse semantics (Suchanek et al., 2007}
Bollacker et al., |2008}; |Carlson et al.,[2010). KBs are highly incomplete (Min et al., 2013)), and facts
not directly stored in a KB can often be inferred from those that are, creating exciting opportunities
and challenges for automated reasoning. For example, consider the small knowledge graph in figure|T]
We can infer the (unobserved fact) home stadium of Colin Kaepernick from the following reasoning
path: Colin Kaepernick — PlaysinTeam — 49ers — TeamHomeStadium — Levi’s Stadium. Our goal
is to automatically learn such reasoning paths in KBs. We frame the learning problem as one of query
answering, that is to say, answering questions of the form (Colin Kaepernick, PlaysinLeague, ?).

From its early days, the focus of automated reasoning approaches has been to build systems which can
learn crisp symbolic logical rules (McCarthy, |1960; Nilsson, |1991). Symbolic representations have
also been integrated with machine learning especially in statistical relational learning (Muggleton
et al.| (1992} |Getoor & Taskar, 2007} Kok & Domingos|, 2007; [Lao et al., [2011), but due to poor
generalization performance, these approaches have largely been superceded by distributed vector
representations. Learning embedding of entities and relations using tensor factorization or neural
methods has been a popular approach (Nickel et al., 2011; Bordes et al., 2013; Socher et al., 2013;
inter alia), but these methods cannot capture chains of reasoning expressed by KB paths. Neural
multi-hop models (Neelakantan et al., 2015} |Guu et al.l 2015 Toutanova et al., [2016)) address the
aforementioned problems to some extent by operating on KB paths in vector space. However, these
models take as input a set of paths which are gathered by performing random walks independent
of the query relation. This means that these models use the same set of initially collected paths to
answer a diverse set of query types (e.g. MarriedTo, Nationality, WorksiIn etc.).

This paper presents a method for efficiently searching the graph for answer-providing paths us-
ing reinforcement learning (RL) conditioned on the input question, eliminating any need for pre-
computed paths. Given a massive knowledge graph, we learn a policy, which, given the query
(entity|, relation, ?), starts from entity, and learns to walk to the answer node by choosing to take a
labeled relation edge at each step, conditioning on the query relation and entire path history. This
formulates the query-answering task as a reinforcement learning (RL) problem where the goal is to
take an optimal sequence of decisions (choices of relation edges) to maximize the expected reward
(reaching the correct answer node). We call the RL agent MINERVA for "Meandering In Networks of
Entities to Reach Verisimilar Answers.”
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Our RL-based formulation has many desirable properties. First, MINERVA has the built-in flexibility
to take paths of variable length, which is important for answering harder questions that require
complex chains of reasoning (Shen et al., [2017)). Secondly, MINERVA needs no pretraining and
trains on the knowledge graph from scratch with reinforcement learning; no other supervision or
fine-tuning is required representing a significant advance over prior applications of RL in NLP. Third,
our path-based approach is computationally efficient, since by searching in a small neighborhood
around the query entity it avoids ranking all entities in the KB as in prior work. Finally, the reasoning
paths found by our agent automatically form an interpretable provenance for its predictions.

The main contributions of the paper are: (a) We present agent MINERVA, which learns to do query
answering by walking on a knowledge graph conditioned on an input query, stopping when it reaches
the answer node. The agent is trained using reinforcement learning, specifically policy gradients (§ [2)).
(b) We evaluate MINERVA on several benchmark datasets and compare favorably to Neural Theorem
Provers (NTP) (Rocktéschel & Riedel, |2017)) and Neural LP (Yang et al.|[2017), which do logical
rule learning in KBs, and also state-of-the-art embedding based methods such as DistMult (Yang
et al.l 2015)) and ComplEx (Trouillon et al., |2016). (c) We also extend MINERVA to handle partially
structured natural language queries and test it on the WikiMovies dataset (§ @ (Miller et al., 2016)).

We also compare to DeepPath (Xiong et al., 2017) which uses reinforcement learning to pick paths
between entity pairs. The main difference is that the state of their RL agent includes the answer entity
since it is designed for the simpler task of predicting if a fact is true or not. As such their method
cannot be applied directly to our more challenging query answering task where the second entity is
unknown and must be inferred. Nevertheless, MINERVA outperforms DeepPath on their benchmark
NELL-995 dataset when compared in their experimental setting (§ {.1)).

2 TASK AND MODEL

We formally define the task of query answering in a KB. Let £ denote the set of entities and R be the
set of binary relations. Then a KB is a collection of facts stored as triplets (e,r,e;) where ej,e; € €
and r € R. Query answering seeks to answer questions of the form (ej,r, ?), e.g. Toronto, locatedlIn,
?. We would also like to clearly point out the difference between query answering and the task of
fact prediction. Fact prediction involves predicting if a fact is true or not, e.g. (Toronto, locatedIn,
Canada)?. This task is easier than predicting the correct entity as the answer in query answering
since the latter require finding the answer entity among many possible entities.

Next we describe how we reduce the problem of query answering in a KB to a finite horizon sequential
decision making problem and solve it using reinforcement learning. We begin by representing the
environment as a deterministic Markov decision model on a knowledge graph G derived from the
KB (. Our RL agent is given an input query of the form (elq,rq,?). Starting from vertex
corresponding to e, in the knowledge graph G, the agent learns to traverse the environment/graph to
mine the answer and stop when it determines the answer (§ [2.2). The agent is trained using policy
gradient more specifically by REINFORCE (Williams, [1992) with control variates (§ [2.3). Let us begin
by describing the environment.
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2.1 ENVIRONMENT - STATES, ACTIONS, TRANSITIONS AND REWARDS

Our environment is a finite horizon deterministic Markov decision model that lies on a knowledge
graph derived from the KB. Recall that a KB is collection of facts stored as triplets (e;,r,e;) where
ej,er € £ and r € R. From the KB, a knowledge graph G can be constructed where the entities s, ¢
are represented as the nodes and relation r as labeled edge between them. Formally, a knowledge
graph is a directed labelled multigraph G = (V,E, R), where V and E denote the vertices and edges
of the graph respectively. Note that V =& and E CV x R x V. Also, following previous approaches
(Bordes et al., 2013 [Neelakantan et al., 2015} Xiong et al., |2017), we add the inverse relation of
every edge, i.e. for an edge (e1,r,e;) € E, we add the edge (e,,r!,e) to the graph. (If the set of
binary relations R does not contain the inverse relation r—!, it is added to R as well.) On this graph
we will now specify a deterministic partially observable Markov decision process, which is a 5-tuple
(8,0,A,8,R), each of which we elaborate below.

States. The state space S consists of all possible query-answers cartesian product with the set of
entities. Intuitively, we want a state to encode the query (e1q,1q), the answer (e24), and a location
of exploration e, (current node of the entity). Thus overall a state S € S is represented by S =
(er,e1q,1q,€2q) and the state space consists of all valid combinations.

Observations. The complete state of the environment is not observable, but only its current location of
exploration and query can be observed but not the answer, i.e. only (e(,eiq,rq) is observed. Formally
the observation function O : § — V x V x R is defined as O(s = (e, €1q,1q,€2q)) = (€, €1q,1q)-

Actions. The set of possible actions .Ags from a state S = (e, e14,1q,€2q) consists of all outgoing edges
of the vertex e in G. Formally Ag = {(e;,r,v) € E : § = (e(,€1q,1q,€2q),7 € R,v € V}U{(s,2,5)}.
Basically, this means an agent at each state has option to select which outgoing edge it wishes to take
having the knowledge of the label of the edge r and destination vertex v.

During implementation, we unroll the computation graph up to a fixed number of time steps T. We
augment each node with a special action called ‘NO_OP’ which goes from a node to itself. Some
questions are easier to answer and needs lesser steps of reasoning than others. This design decision
allows the agent to remain at a node for any number of time steps. This is especially helpful when
the agent has managed to reach a correct answer at a time step # < T and can continue to stay at
the ‘answer node’ for the rest of the time steps. Alternatively, we could have allowed the agent to
take a special ‘STOP’ action, but we found the current setup to work sufficiently well. Following
previous approaches (Bordes et al., 2013} [Yang et al., 2017} Xiong et al., 2017), we also add the
inverse relation of a triple, i.e. for the triple (e, r,e>), we add the triple (e2,7~ ', e1) to the graph. We
found this important because this actually equips our agent to undo a potentially wrong decision as it
can retract back to the current node in the next step.

Transition. The environment evolves deterministically by just updating the state to the new vertex
pointed by the edge selected by the agent through its action. The query and answer remains the
same. Formally, the transition function is 8 : S x A — S defined by 8(S,A) = (v,e1q,1q,€2q), Where
S = (e, e1q,Tq,€2q) and A = (e, 1, v)).

Rewards. We only have a terminal reward of +1 if the current location is the correct answer at the
end and 0 otherwise. To elaborate, if S; = (e, e 3Tgs egq) is the final state, then we receive a reward
of +1 if e; = eyq else 0.=,i.e. R(S7) =I{e; = ezqq}.

2.2 PoLicY NETWORK

To solve the finite horizon deterministic partially observable Markov decision process described
above, we aim to design a randomized history-dependent policy © = (dy,d,...,dr_1), where dy :
H; — P(As,) and history H; = (H;—1,A;—1, O;) is just the sequence of observations and actions taken.
We restrict ourselves to the function class expressed by long short-term memory network (LSTM)
(Hochreiter & Schmidhuber, |1997) for learning the randomized history-dependent policy.

An agent based on LSTM encodes the history H; as a continuous vector hy € R??. We also have

embedding matrix r € RI®I*? and e € RI€/* for the binary relations and entities respectively. The
history embedding for H; = (H;_1,A;_1,0;) is updated according to LSTM dynamics:

h¢ = LSTM (h¢_1, [a¢_1;0)) (1)
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where a;_; € R? and o, € R? denote the vector representation for action/relation at time # — 1
and observation/entity at time ¢ respectively and [;] denote vector concatenation. To elucidate,
ag_1 =ry,_ |, i.e. the embedding of the relation corresponding to label of the edge the agent chose at
time r — 1 and oy = e, if O; = (e, €1qs rq) i.e. the embedding of the entity corresponding to vertex
the agent is at time ¢.

Based on the history embedding hg, the policy network makes the decision to choose an action
from all available actions (As, ) conditioned on the query relation. Recall that each possible action
represents an outgoing edge with information of the edge relation label / and destination vertex/entity
d. So embedding for each A € Ay, is [r;eq], and stacking embeddings for all the outgoing edges
we obtain the matrix A¢. The network taking these as inputs is parameterized as a two-layer feed-
forward network with ReLU nonlinearity which takes in the current history representation h¢ and the
embedding for the query relation rq and outputs a probability distribution over the possible actions
from which a discrete action is sampled. In other words,

d; = softmax (A¢(W3ReLU (W [hg;04:1¢])))
A, ~ Categorical (dy)

Note that the nodes in G do not have a fixed ordering or number of edges coming out from them. The
size of matrix A¢ is |As, | X 2d, so the decision probabilities d; lies on simplex of size |Asg,|. Also the
procedure above is invariant to order in which edges are presented as desired and falls in purview of
neural networks designed to be permutation invariant Zaheer et al.|(2017). Finally, to summarise,
the parameters of the LSTM, the weights Wy, W3, the corresponding biases (not shown above for
brevity), and the embedding matrices form the parameters 6 of the policy network.

2.3 TRAINING

For the policy network (mg) described above, we want to find parameters 6 that maximizes the
expected reward:

J(0) =E(e, rer)~DEA . Ap_ ~mg[R(ST)|S1 = (e1,e1,1,€2)]

where we assume there is a true underlying distribution (e,r,e) ~ D. To solve this optimization
problem, we employ REINFORCE |Williams| (1992) as follows:

e The first expectation is replaced with empirical average over the training dataset.

e For the second expectation, we approximate by running multiple rollouts for each training
example. The number of rollouts is fixed and for all our experiments we set this number to 20.

e For variance reduction, a common strategy is to use an additive control variate baseline
Hammersley| (2013); [Fishman| (2013); [Evans & Swartz|(2000). We use a moving average of
the cumulative discounted reward as the baseline. We tune the weight of this moving average
as a hyperparameter. Note that in our experiments we found that learnt baseline performed
similarly, but we finally settled for cumulative discounted reward as the baseline owing to its
simplicity.

e To encourage the policy to sample more diverse paths rather than sticking with a few, we add
an entropy regularization term to our cost function after multiplying it by a constant (3). We
treat 3 as a hyperparameter to control the exploration exploitation trade-off.

Experimental Details We choose the relation and embedding dimension size as 200. The action
embedding is formed by concatenating the entity and relation embedding. We use a 3 layer LSTM
with dimension size of 400. The hidden layer size of MLP (weights W1 and W;) is set to 400. We
use Adam |Kingma & Bal (2014) with the default parameters in REINFORCE for the update.

3 DATA

We test our model on the following query answering datasets. (a) COUNTRIES (Bouchard et al., [2015)),
(b) Alyawarra kinship (KINSHIP), (c) Unified Medical Language Systems (UMLS) (Kok & Domingos),
2007) (d) WN18RR (Dettmers et al.,[2017), () NELL-995 and (f) WikiMovies (Miller et al., 2016)).
We also test on a synthetic grid world dataset released by |Yang et al.[(2017) to test the ability of the
model to learn rules of long length.
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Dataset #entities  #relations  #facts  #queries
COUNTRIES 272 2 1158 24
UMLS 135 49 5,216 661
KINSHIP 104 26 10686 1074
WN18RR 40,945 15 86,835 3134
NELL-995 75,492 200 154,213 3992
FB15K-237 14,505 237 272,115 20,466
WikiMovies 43,230 9 196,453 9952

Table 1: Statistics of various datasets used in experiments.

Corpus Metric Model
NeuralLP ComplEx NTP NTP-A MINERVA
S1 - 99.37+0.4 90.83+154  100.0+0.0  100.040.0
COUNTRIES S2 AUC-PR - 87.95+2.8 87.4+11.7 93.04+-0.4 91+0.01
S3 - 48.44+6.3 56.68+17.6 77.26+17.0 93+0.01
HITS@1 - 0.47 0.47 0.51 0.53
UMLS HITS @3 - 0.63 0.60 0.64 0.67
HITS@10 0.70 0.80 0.79 0.81 0.81
HITS@1 - 0.34 0.24 0.39 0.46
KINSHIP HITS@3 - 0.49 0.40 0.47 0.62
HITS@10 0.73 0.74 0.60 0.71 0.76

Table 2: Performance on COUNTRIES, UMLS and KINSHIP datasets. Our model consistently out-
performs baselines across datasets and can learn complex logical rules as seen e.g. in results of
COUNTRIES(S3). NEURAL LP only report HITS @ 10 scores on two datasets.

The COUNTRIES dataset is carefully designed to explicitly test the logical rule learning and reasoning
capabilities of link prediction models. The dataset has 3 tasks (S1-3 in table each requiring
reasoning steps of increasing length and difficulty (see|Rocktaschel & Riedel| (2017) for more details
about the tasks).

We also test our model on existing large and challenging KG datasets ((d) - (f)). WN18RR is created
from the original WORDNET 18 dataset by removing test triples which can be answered trivially,
making the datasets more realistic and challenging. Additionally, we test our model on a question
answering dataset - WikiMovies (Miller et al.,|2016) where the query is in natural language but the
answers can be found in an accompanying KB. Table[I]report the various statistics of the datasets.

4 EXPERIMENTS

4.1 KNOWLEDGE GRAPH QUERY ANSWERING

This section describes the experimental results on the various knowledge graph query answering
datasets. For each dataset, we compare with the models which have state-of-the-art results. During
inference, we do beam search with a beam width of 40 and rank entities by the probability of the
trajectory the model took to reach the entity.

COUNTRIES, KINSHIP, UMLS. We first test MINERVA on the COUNTRIES dataset which is explicitly
designed to test the ability of models to learn logical rules. It contains countries, regions and
subregions as entities. The queries are of the form LocatedIn(c, ?) and the answer is a region.
For example, LocatedIn(Egypt, ?) with the answer as Africa. We also test on two other datasets
reported in |Rocktidschel & Riedel| (2017) - KINSHIP and UMLS. We left out the NATIONS dataset
since the performance of aforementioned baseline models are already quite high (0.99 HITS @ 10).
Our experimental settings and scores are directly comparable to NTP. Other baselines are ComplEx
(Trouillon et al., 2016) and Neural LP (Yang et al., 2017). NTP-A is a NTP model trained with an
additional objective function of ComplEx.

The evaluation metric we report is HITS @k - which is the percentage of correct entities ranked in
top-k. For the COUNTRIES dataset, we report the area under the precision-recall curve for comparing
with the baselines. Following the design of the COUNTRIES dataset, for task S1 and S2, we set the
maximum path length 7 = 2 and for S3, we set T = 3.
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Task DeepPath MINERVA 1.0 S — ;
athleteplaysinleague 0.960 0.970 0.9 jl: S~ ® - o |
worksfor 0.711 0.825 ' .
organizationhiredperson 0.742 0.851 > 0.8} S 1
athleteplayssport 0.957 0.985 © 071 ‘m i
teamplayssport 0.738 0.846 2 AN
personborninlocation 0.795 0.793 2 0.6 \ 1
athletehomestadium 0.890 0.895 0.5||® ® MINERVA AN
organizationheadquarteredincity 0.790 0.946 B # Neural LP |
athleteplaysforteam 0.750 0.824 0.41L . . L
2-4 4-6 6-8 8-10

Table 3: MAP scores for different query relations on Path length

the NELL-995 dataset. Note that in this comparison,

MINERVA refers to only a single learnt model for all query Figure 2: Grid world experiment:

relations which is competitive with individual DeepPath We significantly outperform Neu-

models trained separately for each query relation. ralLP for longer path lengths.

Table [2shows that MINERVA outperforms all the baseline models except on the task S2 of COUNTRIES,
where the ensemble model NTP-A outperforms it, albeit with a higher variance across runs. Our
gains are much more prominent in task S3, which is the hardest among all the tasks. We similarly
outperform the baselines on the UMLS and KINSHIP datasets.

NELL-995 We also compare MINERVA to DeepPath. For a fair comparison, we only rank the answer
entities against the negative examples in the dataset used in their experimentsﬂ and report the mean
average precision (MAP) scores for each query relation. DeepPath feeds the paths its agent gathers
as input features to the path ranking algorithm (PRA) (Lao et al.| 2011]) which trains a per-relation
classifier. But unlike them, we train one model which learns for all query relations. If our agent is not
able to reach the correct entity or one of the negative entities, the corresponding query gets a score of
negative infinity. As show in table [9] we outperform them or achieve comparable performance for all
the query relations For this experiment, we set the maximum length 7 = 3.

WN18RR Next we test MINERVA on another large KB

. . Model HITS@1 HITS@3 HITS@10
dataset — WN18RR. On this dataset, we compare with —=2-—m 0306 0360 0411
three recently proposed latest factorization model — (a)  pigMult 0.389 0.439 0.491
ConvE (Dettmers et al.,|2017), (b) DistMult (Yang et al., ComplEx 0411 0.458 0.507

2015)), (c) ComplEx (Trouillon et al.l|2016). We report MINERVA 0.413 0.456 0.513

HITS at various k and we compare favorably with the
state-of-the-art results of ComplEx in all settings (table
M)). For this experiment, we also set the maximum length 7' = 3.

Table 4: Performance on WN18RR

4.2 GRID WORLD PATH FINDING

As we empirically find and also noted by previous work (Rocktischel & Riedel, 2017; Das et al.,
2017 [Yang et al.|[2017), often the reasoning chains required to answer queries in KB is not too long
(restricted to 3 or 4 hops). To test if our model can learn long reasoning paths, we test our model on
a synthetic 16-by-16 grid world dataset created by |Yang et al.|(2017), where the task is to navigate
to a particular cell (answer entity) starting from a random cell (start entity) by following a set of
directions (query relation). The KB consists of atomic triples of the form ((2,1), North, (1,1)) — entity
(1,1) is north of entity (2,1). The queries consists of a sequence of directions (e.g. North, SouthWest,
East). The queries are classified into classes based on the path lengths. Figure 2 shows the accuracy
on varying path lengths. Compared to Neural LP, MINERVA is much more robust for queries which
require longer path lengths showing a very little degrade in performance for even the longest path
length in the dataset.

4.3  PARTIALLY STRUCTURED QUERIES

Queries in KB datasets are structured in the form of triples. However, this is un-
satisfactory since for most real applications, the queries appear in natural language.

'We are grateful to Xiong et al.| (2017) for releasing the negative examples used in their experiments.
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Figure 3: Based on the query relation our agent assigns different probabilities to different actions.
The figure in the right is from the WikiMovies dataset. The natural language questions are “Who was
the director of Pennies from Heaven?” and “Who starred in Pennies from Heaven?”

As a first step in this direction, we extend MINERVA to take ~ Model Accuracy
in “partially structured” queries. We use the WikiMovies ~ Memory Network 78.5
dataset (Miller et al., |2016) which contains questions in QA system 93.5
natural language albeit generated by templates created by ~ Key-Value Memory Network 93.9
human annotators. An example question from the dataset ~ Neural LP 94.6
is “Which is a film written by Herb Freed?”. WikiMovies _MINERVA 96.7

also has an accompanying KB which can be used to answer

all the questions. Table 5: Performance on WikiMovies

We link the entity occurring in the question to the KB via simple string matching. To form the vector
representation of the query relation, we design a simple question encoder which computes the average
of the embeddings of the question words. The word embeddings are learned from scratch and we do
not use any pretrained embeddings. We compare our results with those reported in|Yang et al.[(2017)
(table [5). We got the best result using T = 1, suggesting that WikiMovies is not the best testbed for
multihop reasoning, but this experiment is a promising first step towards the realistic setup of having
textual queries and knowledge bases.

5 ANALYSIS

Effectiveness of Remembering Path History. MINERVA encodes the history of decisions it has
taken in the past using LSTMs. We replaced the LSTM with a simple 2 layer MLP, which takes
in the query and the current entity. For the KINSHIP dataset, we observe a 27% points decrease in
HITS@1 (0.184 v/s 0.46) and 13% decrease in HITS@ 10 (0.63 v/s 0.76). For grid-world, it is also not
surprising that we see a big drop in performance (0.23 for path lengths 2-4 and 0.04 for lengths 8-10).

NO-OP and Inverse Rrelations. At each step, MINERVA can choose to take a NO-OP edge and
remain at the same node. This gives the agent the flexibility of taking paths of variable lengths.
Some questions are easier to answer than others and require lesser steps of reasoning and if the agent
reaches the answer early, it can choose to remain there. Example (i) in table [6]shows such an example.
Similarly inverse relation gives the agent the ability to recover from a potentially wrong decision it
has taken before. Example (ii) shows such an example, where the agent took a incorrect decision at
the first step but was able to revert the decision because of the presence of inverted edges.

Query based Decision Making. At each step before making a decision, our agent conditions on the
query relation. Figure [3|shows examples, where based on the query relation, the probabilities are
peaked on different actions.

Inference Time. MINERVA is efficient at inference time since it has to essentially search for answer
entities in its small neighborhood, whereas previous methods rank all the entities in the dataset. On
the test dataset of WN18RR, the wall clock running time of MINERVA is 63 seconds whereas that of a
GPU implementation of DistMult is 211 seconds (with the maximum batch size).
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Can general rules:

(S1) LocatedIn(X, Y) < LocatedIn(X, Z) & LocatedIn(Z, Y)

(S2) LocatedIn(X, Y) < NeighborOf(X, Z) & LocatedIn(Z, Y)

(S3) LocatedIn(X, Y) < NeighborOf(X, Z) & NeighborOf(Z, W) & LocatedIn(W, Y)

(1) Can learn shorter path: Richard F. Velky Mf?

PersonLeadsO: - -
Richard F. Velky o, Schaghticokes No-op, Schaghticokes No-op, Schaghticokes

.. . ‘WorksFor
(ii) Can recover from mistakes: Donald Graham ———?

OrgTerminatedPerson OrgTerminatedPerson ™!

Donald Graham ————————— TNT Post OrgHiredPerson,

Donald Graham Wash Post

Table 6: A few example paths found by MINERVA on the COUNTRIES and NELL datasets. MINERVA
can learn general purpose rules as required by the COUNTRIES dataset. It can also learn shorter paths
if necessary (example (i)) and also has the ability to correct a previously taken decision (example (ii))

6 RELATED WORK

Learning vector representations of entities and relations using tensor factorization (Nickel et al.|
20115 2012 Bordes et al., 2013} Riedel et al., |2013; |Nickel et al.l |2014; [Yang et al., [2015) or
neural methods (Socher et al., [2013; Toutanova et al., 2015} [Verga et al.,[2016)) has been a popular
approach to reasoning with a knowledge base. However, these methods cannot capture more complex
reasoning patterns such as those found by following inference paths in KBs. Multi-hop link prediction
approaches (Neelakantan et al., [2015; |Guu et al.| 2015} [Toutanova et al., 2016; Das et al.| [2017)
address the problems above, but the reasoning paths that they operate on are gathered independent of
the type of query relation. Our approach eliminates any necessity to pre-compute paths and learns to
efficiently search the graph conditioned on the input query relation.

Inductive Logic Programming (ILP) (Muggleton et al.,|1992)) aims to learn general purpose predicate
rules from examples and background knowledge. Early work in ILP such as FOIL (Quinlan, [1990),
PROGOL (Muggleton, [1995) are either rule-based or require negative examples which is often hard
to find in KBs (by design, KBs store true facts). Statistical relational learning methods (Getoor
& Taskar, 2007} |[Kok & Domingos, |2007; Schoenmackers et al., |2010) along with probabilistic
logic (Richardson & Domingos, [2006; [Broecheler et al.,2010; [Wang et al.,[2013) combine machine
learning and logic but these approaches operate on symbols rather than vectors and fail to generalize
to new facts.

Neural Theorem Provers (NTP) (Rocktdschel & Riedel, 2017) and Neural LP (Yang et al., [2017)
are two recent methods in learning logical rules that can be trained end-to-end with gradient based
learning. NTPs are constructed by Prolog’s backward chaining inference method. It operates on
vectors rather than symbols, thereby providing a success score for each proof path. However, since a
score can be computed between any two vectors, the computation graph becomes quite large because
of such soft-matching during substitution step of backward chaining. For tractability, it resides to
heuristics such as only keeping the top-K scoring proof paths, but it loses any guarantee of computing
exact gradients. Also the efficacy of NTPs has yet to be shown on large KBs. Neural LP introduces
a differential rule learning system using operators defined in TensorLog (Cohenl 2016) and has a
LSTM based controller and a differentiable memory component (Graves et al., 2014; [Sukhbaatar
et al., 2015) and the rule scores are calculated via attention. Even though, differentiable memory
allows the network to be trained end to end, it necessitates accessing the entire memory which can be
computationally expensive. RL approaches which can make hard selection of memory (Zaremba &
Sutskever,2015) are computationally attractive. MINERVA uses a similar hard selection of relation
edges to walk on the graph. More importantly, MINERVA outperforms both these methods on their
respective benchmark datasets.
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DeepPath (Xiong et al.,2017) uses RL based approaches to find paths in KBs. However, the state of
their MDP requires the target entity to be known in advance and hence their path finding strategy
is dependent on knowing the answer entity. MINERVA does not need any knowledge of the target
entity and instead learns to find the answer entity among all entities. DeepPath, additionally feeds
its gathered paths to Path Ranking Algorithm (Lao et al |2011), whereas MINERVA is a complete
system trained to do query answering. DeepPath also uses fixed pretrained embeddings for its entity
and relations. Lastly, on comparing MINERVA with DeepPath in their experimental setting on the
NELL dataset, we match their performance or outperform them. MINERVA is also similar to methods
for learning to search for structured prediction (Collins & Roark}, 2004; Daumé III & Marcul 2005}
Daumé et al., 2009; Ross et al., 2011} [Chang et al.,|2015). These methods are based on imitating a
reference policy (oracle) which make near-optimal decision at every step. In our problem setting, it
is unclear what a good reference policy would be. For example, a shortest path oracle between two
entities would be bad, since the answer providing path should depend on the query relation.

7 CONCLUSION

We explored a new way of automated reasoning on large knowledge bases in which we use the
knowledge graphs representation of the knowledge base and train an agent to walk to the answer node
conditioned on the input query. We achieve state-of-the-art results on multiple benchmark knowledge
base completion tasks and we also show that our model is robust and can learn long chains-of-
reasoning. Moreover it needs no pretraining or initial supervision. Future research directions include
applying more sophisticated RL techniques and working directly on textual queries and documents.
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Dataset B A Path Length
UMLS 00510 2
KINSHIP 0.05 ] 0052
Countries S1 0.01 | 0.1 2
Countries S2 002 002 1|2
Countries S3 001 | 001 |3
WNI18RR 0.05 ] 0053
NELL-995 0.05 100213
FB15K-237 0.02 | 0053
WIKIMOVIES | 0.15 | 0 1

Table 7: Best hyper parameters

Corpus Metric Model
NeuralLP ComplEx NTP NTP-A MINERVA
HITS@1 - 0.47 0.47 0.51 0.71
UMLS HITS@3 - 0.63 0.60 0.64 0.87
HITS@10 0.70 0.80 0.79 0.81 0.91
HITS@1 - 0.34 0.24 0.39 0.50
KINSHIP HITS@3 - 0.49 0.40 0.47 0.76
HITS@10 0.73 0.74 0.60 0.71 0.93

Table 8: Performance on UMLS and KINSHIP datasets when the entity embeddings are muted

8 APPENDIX 1

8.1 EXPERIMENTS ON FB15K-237

In this section, we present a negative result. We test on yet another popular KB dataset — FB15K-
237. Similar to previous case, on this dataset as well we compare with the three recently proposed
latest factorization model — (a) ConvE (Dettmers et al., 2017), (b) DistMult (Yang et al., 2015), (c)
ComplEx (Trouillon et al., | 2016). We report HITS @ 10, however we donot achieve favourable results.
Upon delving more into the structure of knowledge graph derived from FB15K-237, we find that its
behaviour is similar to a random graph unlike previous graphs which exhibit behaviours closer to
scale free graphs as can be seen from figure 3. Its known for random graphs that it will contain many
wedges like A — B — C, however has limited number of triangles, i.e. we would not observe A — C
frequently (Blum et al., 2015). As a consequence it becomes hard for MINERVA to learn equivalent
relations.

8.2 HYPERPARAMETERS

In our experiments, we tune our model over two hyper parameters, viz., § which is the entropy
regularization constant and A which is the moving average parameter for the REINFORCE baseline.
The table[??]lists the best hyper parameters for all the datasets.

8.3 REMOVING ENTITY EMBEDDINGS

On trying to analyze the relation and entity embeddings, we tried muting the training of the entity
embeddings for the KINSHIP and UMLS datasets. This resulted in huge jump in our scores. For
consistency in our model, we report the results with both entity and relation embeddings in the paper.
The new scores with entity embeddings muted are reported here in table[§] We plan to correctly
investigate these numbers in the future.
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3% 107 Kinship NELL-995 FB15k-237
Model HITS@ 10 1ot
ConvE 0.458 )10 \ )
. 4 10

DistMult 0.568 10

ComplEx 0.419 107

MINERVA 0.456 , 10° 10

10 10! 102 103 100 10! 102 10° 10! 102 10° 104

Table 9: Performance on
FB15K-237 Figure 4: Zipf plots for various datasets
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