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Abstract

We study the behavior of the Combinatorial Thompson Sampling policy (CTS) for1

combinatorial multi-armed bandit problems (CMAB), within an approximation2

regret setting. Although CTS has attracted a lot of interest, it has a drawback that3

other usual CMAB policies do not have when considering non-exact oracles: for4

some oracles, CTS has a poor approximation regret (scaling linearly with the time5

horizon T ) [Wang and Chen, 2018]. A study is then necessary to discriminate the6

oracles on which CTS could learn. This study was started by Kong et al. [2021]:7

they gave the first approximation regret analysis of CTS for the greedy oracle,8

obtaining an upper bound of order O
(
log(T )/∆2), where ∆ is some minimal9

reward gap. In this paper, our objective is to push this study further than the simple10

case of the greedy oracle. We provide the first O(log(T )/∆) approximation regret11

upper bound for CTS, obtained under a specific condition on the approximation12

oracle, allowing a reduction to the exact oracle analysis. We thus term this condition13

REDUCE2EXACT, and observe that it is satisfied in many concrete examples. In14

particular, it can be extended to the probabilistically triggered arms setting, thus15

capturing even more problems, such as online influence maximization.16

1 Introduction17

Stochastic multi-armed bandits (MAB) Robbins [1952], Berry and Fristedt [1985], Lai and Robbins18

[1985] are decision-making problems in which an agent acts sequentially in an uncertain environment.19

At each round t ∈ N∗, the agent must select one arm from a fixed set of n arms, denoted by20

[n] , {1, . . . , n}, using a policy, based on the feedback from the previous rounds. Then it gets21

as feedback an outcome Xi,t ∈ R — a random variable sampled from PXi
, independently from22

previous rounds — where i is the selected arm and PXi is a probability distribution — unknown to23

the agent — of mean µ∗i . The goal for the agent is to maximize the cumulative reward over a total of24

T rounds (T is the time horizon and may be unknown). The performance metric of a policy is its25

regret RT , which is the expectation of the difference over T rounds between the cumulative reward26

of the policy that always picked the arm with the highest expected reward and the cumulative reward27

of the learning policy. MAB models the so called dilemma between exploration and exploitation, i.e.,28

whether to continue exploring arms to obtain more information (and thus strengthen the confidence29

in the estimates of the distributions PXi
), or to use the information gathered by playing the best arm30

according to the observations so far.31

In this paper, we study stochastic combinatorial multi-armed bandit (CMAB), with semi-bandit32

feedback, a.k.a. stochastic semi-bandit (still abbreviated as CMAB here), an extension of MAB where33

the agent plays an action (also called super-arm) At ∈ A ⊂ P([n]) at each round t, where A is34

fixed and called action space. The feedback includes the outcomes of all base arms in the played35
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super-arm.1 The expected reward, given At, is assumed to be in the form2 r(At,µ∗) (traditionally,36

the reward is linear and equal to eT
At
µ∗). In recent years, CMAB has attracted a lot of interest (see37

e.g. Cesa-Bianchi and Lugosi [2012], Gai et al. [2012], Chen et al. [2013, 2016], Kveton et al. [2015],38

Wang and Chen [2017], Perrault [2020]), particularly due to its wide applications in network routing,39

online advertising, recommender system, influence marketing, etc.40

Many CMAB policies are based on the Upper Confidence Bound (UCB) approach, extending the41

classical UCB policy [Auer et al., 2002] from MAB to CMAB. This type of approach uses an42

optimistic estimate µt of µ∗ (i.e., for which the reward function is overestimated), lying in a well-43

chosen confidence region. Then, the action is chosen by plugging µt inside an oracle (typically,44

Oracle(µ∗) is a maximizer of the reward function A 7→ r(A,µ∗)). An example of such policy45

is Combinatorial Upper Confidence Bound (CUCB) [Chen et al., 2013, Kveton et al., 2015], that46

uses a Cartesian product of the individual confidence intervals of each arm as a confidence region.47

For mutually independent arms, Combes et al. [2015] provided the UCB-style policy Efficient48

Sampling for Combinatorial Bandit (ESCB), building a tighter axis-aligned ellipsoidal confidence49

region around the empirical mean, which helps to better restrict the exploration. Degenne and Perchet50

[2016] provided a policy called OLS-UCB, leveraging a sub-Gaussianity assumption on the arms to51

generalize the ESCB approach. These policies have been further extended to more general settings52

afterwards [Perrault et al., 2020b,c, 2019]. Although improving CUCB, all these generalizations are53

inefficient in terms of computation time.54

Another paradigm that has recently gained interest (and which will be our focus in this paper) is to rely55

on Thompson Sampling (TS) instead of UCB. Although introduced much earlier by Thompson [1933],56

the theoretical analysis of TS for MAB is quite recent: Kaufmann et al. [2012], Agrawal and Goyal57

[2012] gave a regret bound matching the UCB policy theoretically. Moreover, TS often performs better58

than UCB in practice, making TS an attractive policy for further investigations. For CMAB, TS extends59

to Combinatorial Thompson Sampling (CTS). In CTS, the unknown mean µ∗ is associated with a60

belief (a prior distribution, that could be e.g. a product of Beta or Gaussian distributions) updated to a61

posterior with the Bayes’rule, each time a feedback is received. In order to choose an action at round t,62

CTS draws a sample θt from the current belief, and plays the action given by Oracle(θt). CTS is an63

attractive policy because it has similar advantages to the previously mentioned policies working with64

ellipsoidal confidence regions while being, like CUCB, computationally efficient. Indeed, recently, for65

mutually independent arms and sub-Gaussian arms respectively, Wang and Chen [2018], Perrault66

et al. [2020a] proposed tight analyses of CTS.67

Unlike UCB-based policies, the analysis of CTS is valid only when Oracle is exact, i.e., when68

Oracle(µ) ∈ arg max
A∈A

r(A,µ).

Although this holds true for many combinatorial problem described by the pair (r,A) (we recall that69

r is usually linear), there exist some problems where the requirement on Oracle has to be relaxed in70

order to make it tractable. This is usually done considering an α-approximation oracle [Chen et al.,71

2013, 2016, Wen et al., 2016], for α ∈ (0, 1):72

r(Oracle(µ),µ) ≥ αmax
A∈A

r(A,µ). (1)

Under an α-approximation oracle, the benchmark cumulative reward is the α-fraction of the optimal73

reward, leading to the notion of approximation regret [Kakade et al., 2009, Streeter and Golovin,74

2009, Chen et al., 2016].75

Aware of the limitation of their CTS analysis (that works only with exact oracles), Wang and Chen76

[2018] also proved, in their Theorem 2, that this limitation is not a technical artifact. More precisely,77

they provided a specific CMAB instance with an associated approximation oracle, such that CTS on78

this instance and with this oracle must have a regret scaling linearly in T . Although this negative79

result is of great interest to the research community, some concerns limit its consideration. Indeed,80

not only the CMAB instance provided by Wang and Chen [2018] is actually a MAB one (meaning81

1Note that we will consider the probabilistically triggered arms extension in this paper, i.e., where the
feedback is on triggered arms. For brevity, we do not present this generalization in the introduction.

2Henceforth, we typeset vectors and matrices in bold and indicate components with indices, e.g., a =
(ai)i∈[n] ∈ Rn. We also let ei be the ith canonical unit vector of Rn, and define the incidence vector of any
subset A ⊂ [n] as eA ,

∑
i∈A

ei. We denote by a�b , (aibi) the Hadamard product of two vectors a and b.
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that there is an efficient oracle that simply enumerates the arms), so the use of an approximation82

regret is not justified, but above all, both the oracle and the instance are uncommon and designed for83

the proof.84

Interested in the question of whether the example provided by Wang and Chen [2018] is pathological85

or generalizable, Kong et al. [2021] recently initiated a study, which revealed that linear approximation86

regret for CTS seems to be pathological. More precisely, they obtained a O
(
log(T )/∆2) bound for87

the specific case of a greedy oracle3, where ∆ is some reward gap. Notably, they obtained this result88

by bounding the approximation regret by a greedy regret, that simply replaces αmaxA∈A r(A,µ∗)89

with r(Oracle(µ∗),µ∗), using equation (1). They also gave a tight lower bound on the greedy regret.90

In this paper, we want to explore another class of oracles covering more problems in practice. Our91

goal is to demonstrate that although there are instrumental examples of problems where CTS has a92

linear regret, the majority of concrete problems do not follow this regime, and are in fact similar to93

the exact oracle case.94

Contributions With a specific condition on Oracle, we describe a general set of CMAB problems95

where the approximation regret of CTS has a O(log(T )/∆) bound, improving by a factor 1/∆ over96

the bound of Kong et al. [2021]. This does not contradict their lower bound, which is focused on97

the greedy regret. We call this set of CMAB problems REDUCE2EXACT, because, as we will see, a98

REDUCE2EXACT problem can be approximated using a reduction to exact subproblems. We note that99

REDUCE2EXACT is compatible with the probabilistically triggered arms setting, which allows us to100

capture even more problems, such as online influence maximization [Wen et al., 2017, Wang and101

Chen, 2017]. We want to focus on concrete problems, so we provide several real-world examples102

that belongs to REDUCE2EXACT. In particular, REDUCE2EXACT includes concrete problems with a103

greedy oracle, which was the focus of Kong et al. [2021].104

Further related work We refer the reader to Wang and Chen [2018] for more related work on TS105

for combinatorial bandits. Briefly, one can mention Gopalan et al. [2014], that gave a frequentist106

high-probability regret bounds for TS with a general action space and feedback model — Komiyama107

et al. [2015], that studied TS for the m-sets action space — Wen et al. [2015], that studied TS for108

contextual CMAB problems, using the Bayesian regret metric (see also Russo and Van Roy [2016]).109

Other known limitations of CTS Apart from the limitation related to the approximation regret that110

interests us in this paper, there are some other existing limitations of CTS highlighted in the literature,111

which we review here: The CTS policy has an exponential constant term in its regret upper bound112

[Wang and Chen, 2018, Perrault et al., 2020a], and Wang and Chen [2018] proved in their Theorem 3113

that this is unavoidable. A similar behavior have been demonstrated in Zhang and Combes [2021],114

where it is shown that CTS does not scale polynomially in the ambient dimension n in general. In115

addition, Zhang and Combes [2021] also proved that CTS is not minimax optimal.116

The strengths of CTS Despite the weaknesses mentioned above, CTS remains a widely used policy,117

mainly because of its empirical performance. Indeed, CTS generally outperforms other policies such118

as CUCB and ESCB [Wang and Chen, 2018, Perrault et al., 2020a]. Moreover, it is relatively simple to119

implement, and is computationally efficient (just like CUCB). On the theory side, another advantage120

is that for an exact oracle, CTS is asymptotically quasi-optimal4 for many settings where CUCB is121

not, and where ESCB is computationally inefficient [Perrault et al., 2020a]. It would be desirable that122

these advantages also apply to the case of approximation regret, thus motivating our investigations.123

2 Model and definitions124

For more generality, we consider the probabilistically triggered arms extension of CMAB [Chen125

et al., 2016, Wang and Chen, 2017], abbreviated to CMAB-T. In this context, the action A ∈ A126

selected is not necessarily equal to the triggered super-arm S. More precisely, the action space A is127

no longer necessarily a subset of P([n]), and can be infinite. At round t, the agent selects At ∈ A,128

3It is worth mentioning that this oracle is one of the most common, so it is logical to focus on it first.
4This means that it has a distribution-dependent regret upper bound whose leading term in T has an optimal

rate, up to a poly-logarithmic factor in n.
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based on the history of observations Ht , σ
(
X1 � eS1 , . . . ,Xt−1 � eSt−1

)
and a possible extra129

source of randomness (we denote by Ft the filtration containing Ht and the extra randomness of130

round t — in particular, At ∈ Ft). Then, an independent sample Xt ∼ PX, Xt ∈ Rn is drawn and a131

random subset St ∈ S ⊂ P([n]) of arms are triggered (S is called super-arm space or subset space).132

We assume that St is drawn independently from a distribution Dtrig(At,Xt). For the feedback, the133

outcomes of each triggered arm is observed, i.e., eSt
�Xt is observed. The expected reward is of134

the form r(At,µ∗), where r is a function defined on a domain A×M, withM⊂ Rn. Quantities135

A, Dtrig, r are known to the agent. Under an α-approximation Oracle, we use the approximation136

regret to evaluate the performance of a policy π, defined as follows.137

Definition 1 (Approximation regret). The T -round α-approximation regret of a learning policy π138

that selects action At ∈ A at round t is defined as follows, where the approximation gap is defined as139

∆t = ∆(At) , 0 ∨ (αr(A∗,µ∗)− r(At,µ∗)), with A∗ ∈ arg maxA∈A r(A,µ∗).140

RT,α(π) , E

∑
t∈[T ]

∆t

.
To approach the problem of minimizing RT,α, assumptions are often made [Wang and Chen, 2017]:141

Assumption 1 (Approximation oracle). The agent has access to an Oracle such that for any mean142

vector µ ∈M, r(Oracle(µ),µ) ≥ αr(A∗,µ).143

Assumption 2 (1-norm triggering probability modulated bounded smoothness). There exists B ∈ Rn+144

such that for all A ∈ A, for all µ,µ′ ∈M,145

|r(A,µ)− r(A,µ′)| ≤
∑
i∈[n]

pi(A)Bi|µi − µ′i|,

where the triggering probabilities are defined as pi(A) , P[i ∈ S], with S ∼ Dtrig(A,X), X ∼ PX146

(we thus have
∑
i∈[n] pi(A)Bi|µi − µ′i| = E[‖eS �B� (µ− µ′)‖1]).147

Assumption 3 (Sub-Gaussianity of the outcome distribution). PX is such that ∀λ ∈ Rn,148

E
[
eλT(X−µ∗)

]
≤ e‖λ‖

2
2/8.

For example, PX = ⊗i∈[n]PXi
, and Xi

a.s.
∈ [0, 1] (from Hoeffding’s Lemma [Hoeffding, 1963]).149

Definition 2 (Other useful definitions). We also define: • B , maxi∈[n]Bi, • ∀i ∈ [n], ∆i,min ,150

infA∈A: pi(A)>0, ∆(A)>0 ∆(A), •∆min , mini∈[n] ∆i,min, •∆max , maxA∈A∆(A), • For A ∈151

A, Ã , {i ∈ [n] : pi(A) > 0}, • m , maxA∈A
∣∣∣Ã∣∣∣, • m∗ , ∑i∈[n] I{pi(A∗) > 0} =

∣∣∣Ã∗∣∣∣,152

• p∗ , mini∈[n]: A∈A pi(A)>0 pi(A).153

3 Combinatorial Thompson Sampling and exact regret analysis154

In this section, we present the CTS policy, focusing on two versions, one working with a Beta prior,155

and the other with a Gaussian prior. Then, we present an associated analysis for the exact regret (i.e.,156

with α = 1).157

3.1 Algorithms158

Based on the above assumptions, we focus on two versions of CTS. The first version is CTS-BETA159

[Wang and Chen, 2018] (Algorithm 1), working when we assume furthermore that PX = ⊗i∈[n]PXi160

and X
a.s.
∈ [0, 1]n. For each arm i ∈ [n], CTS-BETA maintains a Beta prior distribution with161

parameters γi and δi (initialized to 1). At each round t, for each arm i, the algorithm sample θi,t from162

the corresponding prior, representing the current estimate of µ∗i . Then the oracle outputs the action163

At to play according to the input vector θt. Based on the observation feedback, the algorithm then164

updates the corresponding Beta distributions. The second version is CTS-GAUSSIAN [Perrault et al.,165

2020a] (Algorithm 2), that works under the more general Assumption 3. It is essentially the same as166
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Algorithm 1 CTS-BETA

Initialization: For each arm i, let γi = δi = 1.
For all t ≥ 1:

Draw θt ∼ ⊗i∈[n]Beta(γi, δi).
Play At = Oracle(θt).
Get the observation Xt � eSt

, and draw Yt ∼ ⊗i∈St
Bernoulli(Xi,t).

For all i ∈ St update γi ← γi + Yi,t and δi ← δi + 1− Yi,t.

Algorithm 2 CTS-GAUSSIAN

Input: β > 1.
Initialization: Play each arm once (if the agent knows that µ∗ ∈ [a, b]n, this might be skipped)
For every subsequent round t:

Draw θt ∼ ⊗i∈[n]N
(
µi,t−1, N

−1
i,t−1β/4

)
(θi,t ∼ U [a, b] if Ni,t−1 = 0).

Play At = Oracle(θt).
Get the observations Xt � eSt and let Yt = Xt.
Update µt−1 and counters accordingly.

CTS-BETA, except that the prior distributions are Gaussian. For both algorithms, and an arm i ∈ [n],167

we define the number of time i has been triggered at the beginning of round t, called counter of arm i,168

as Ni,t−1 ,
∑
t′∈[t−1] I{i ∈ St′}. We also define the empirical mean at the beginning of round t as169

µi,t−1 ,
∑
t′∈[t−1]

I{i∈St′}Yi,t′

Ni,t−1
.170

3.2 Analysis of CTS: the α = 1 case171

Although this is close to some known results in the current literature [Huyuk and Tekin, 2019, Perrault172

et al., 2020a], there is no proof for the classicalO
(

log2(m) log(T )
∑
i∈[n]B

2
i /∆i,min

)
regret bound173

under the above assumptions in the CMAB-T setting. We thus provide such a result in Theorem 1174

(the proof is postponed to Appendix A). We can notice a notable difference with the work of Huyuk175

and Tekin [2019] concerning the Assumption 2, where the triggering probabilities do not appear (and176

are present in their final regret bound). The main difference with Perrault et al. [2020a] is that they177

do not consider probabilistically triggered arms.178

Theorem 1. For α = 1, the policy π described in Algorithm 1 (under Assumptions 1, 2 and PX =179

⊗i∈[n]PXi
, X

a.s.
∈ [0, 1]n) or Algorithm 2 (under Assumptions 1, 2 and 3) has regret of order180

RT,1(π) = O

∑
i∈[n]

B2
i log2(m) log(T )

∆i,min

·
In addition to being a new result in itself, Theorem 1 will be useful for the α < 1 case.181

4 The α < 1 case for REDUCE2EXACT problems182

We will now look at the α < 1 case. Our strategy is based on the following observation: many183

approximation algorithms involve a relaxation, or a reduction to one or more problems that can be184

solved exactly. Thus, just as the approximation relation is obtained by linking the original problem185

to exact subproblems, here we want to link the approximation regret, in a similar way, to exact186

subregrets. We formalize this idea through the following assumption.187

Assumption 4 (REDUCE2EXACT). Oracle is of the form Oracle = Oracle2 ◦Oracle1. The aim of188

Oracle1 is to solve one or more exact subproblems, while the aim of Oracle2 is to build an action for189

the original approximation problem using the intermediate solutions provided by Oracle1. Formally:190

• Oracle1 : There are ` reward functions (rj)j∈[`]. For µ ∈ M, Oracle1(µ) is a sequence of191

exact subactions (Ej)j∈[`]: for all j ∈ [`], Ej belongs to a subaction space Ej , Ej can depends on192

E1, . . . , Ej−1 (the subproblems can be nested) and Ej ∈ arg maxE∈Ej
rj(E,µ).193
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• Oracle2 : There is some vector c ∈ R`+ such that the following is true. We fix the input as194

E1 ∈ E1, . . . , E` ∈ E`. For all j ∈ [`], let E∗j ∈ arg maxE∈Ej
rj(E,µ∗). We have:195

∆
(
Oracle2

(
(Ej)j∈[`]

))
≤
∑
j∈[`]

0 ∨
(
rj
(
E∗j ,µ

∗)− rj(Ej ,µ∗)) · cj . (2)

Each rj must satisfy Assumption 2 with some constant Bj ∈ Rn+ and with the triggering probabilities196

pi
(
Oracle2

(
(Ej)j∈[`]

))
.197

At first sight, this Assumption 4 seems very specific and rather difficult to fulfill. However, we will198

see in subsection 4.2 that many problems satisfy it.199

4.1 Analysis200

In this section, we give in Theorem 2 the main result of this paper. It basically states that under201

Assumptions 4, the CTS policy have a regret bound comparable to the exact oracle case. The proof is202

postponed to Appendix B.203

Theorem 2. The policy π described in Algorithm 1 (under Assumptions 4 and PX = ⊗i∈[n]PXi
,204

X
a.s.
∈ [0, 1]n) or Algorithm 2 (under Assumptions 3 and 4) has regret of order205

RT,α(π) = O

∑
i∈[n]

∑
j∈[`]

c2jB
2
ij log2(m) log(T )

∆i,min

·
The idea of the proof is quite simple once Assumption 4 has been made. We can see that the206

approximation regret can be decomposed into ` exact sub-regrets, according to equation (2). The207

point to note with these sub-regrets is that they can be nested and depend on each other, so we must208

be careful handling them.209

4.2 Examples of REDUCE2EXACT problems210

Here, we present several problems belonging to REDUCE2EXACT. Each time, after a quick introduc-211

tion of the problem, we translate it into our CMAB-T context, and finally show how it satisfies the212

REDUCE2EXACT criteria.213

Probabilistic maximum coverage (PMC) This is one of the main examples proposed by Kong214

et al. [2021]. Given a weighted bipartite graph G = (L,R,E), with weights µ∗ , (µ∗(u,v))(u,v)∈E ,215

the goal is to find an action A ∈ A , {A ⊂ L : |A| = k} maximizing the expected number216

of influenced nodes in R, where each node v ∈ R can be independently influenced by u ∈ A217

with probability µ∗(u,v), i.e., maximizing f(A,µ∗) ,
∑
v∈R

(
1−

∏
u∈A: (u,v)∈E(1− µ∗(u,v))

)
. This218

problem can be applied to the semi-bandit framework called the ad placement problem, where L219

are the web pages, R are the users and µ∗(u,v) is the probability that user v clicks on the ad on web220

page u. In this application, the user’s click probabilities are unknown and must be learned as the221

rounds progress. The Greedy oracle can provide an approximate solution with approximation ratio222

α = 1− 1/e [Nemhauser et al., 1978]. It fits REDUCE2EXACT as follows:223

• Oracle1(µ) : For i ∈ [k], we define Ei , {(a1, . . . , ai) : (a1, . . . , ai−1) = Ei−1, ai ∈ L\Ei−1}224

and ri((a1, . . . , ai),µ) , f({a1, . . . , ai},µ).225

• Oracle2
(
(Ej)j∈[k]

)
: Let (a1, . . . , ak) , Ek. Oracle2 returns A = {a1, . . . , ak}. Let Ai =226

{a1, . . . , ai} for some i ∈ [k] and by abuse of notation, let f = f( · ,µ∗). The following is true227

using that f is monotone submodular5 (this is actually the way Nemhauser et al. [1978] proved the228

approximation guarantee, and is true for any monotone submodular function):229

f(A∗)− f(Ai) ≤
∑

a∈A∗\Ai

(
f({a} ∪Ai)− f(Ai+1)

)
+ k
(
f(Ai+1)− f(Ai)

)
.

5f is monotone if for every A ⊂ B, we have f(A) ≤ f(B). It is submodular if for every A, B we have that
f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).
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Once the above relation is obtained, we can actually continue the original proof from Nemhauser230

et al. [1978], skipping each step where we would need to use property of Oracle1(µ∗), thus leaving231

a term in the right-hand side for each time we skipped.232

f(A∗)− f(Ak)
= f(A∗)− f(Ak−1)−

(
f(Ak)− f(Ak−1)

)
≤
(
f(A∗)− f(Ak−1)

)(
1− 1

k

)
+ 1
k

∑
a∈A∗\Ak−1

(
f({a} ∪Ak−1)− f(Ak)

)
. . . ≤ f(A∗)

(
1− 1

k

)k
+

k∑
i=1

(
1− 1

k

)i−1

k

∑
a∈A∗\Ak−i

(
f({a} ∪Ak−i)− f(Ak−i+1)

)
.

Finally, since
(
1− 1

k

)k ≤ e−1, we get that ∆
(
(Ej)j∈[k]

)
= (1− e−1)f(A∗)− f(A) is bounded by233

k∑
i=1

(
1− 1

k

)i−1

k

∑
a∈A∗\Ak−i

(
rk−i+1(E∗k−i+1,µ

∗)− rk−i+1(Ek−i+1,µ
∗)
)
.

Note in passing that we recover the classical approximation if the right-hand-side was bounded by 0.234

It is proved that the reward function satisfies Assumption 2 [Chen et al., 2016], which directly implies235

that each rj satisfies Assumption 2.236

Online influence maximization (OIM) As the analysis mentioned above only uses submodularity,237

it can be extended to the problem of online influence maximization in a social network. A social238

network is modeled as a directed graph G = (V,E), with nodes V representing users and edges E239

representing connections. For a node i ∈ V , a subset A ⊂ V , and a vector x ∈ {0, 1}E , the predicate240

A
x
 i holds if, in the graph defined by Gx , (V, {ij ∈ E, xij = 1}), there is a forward path from241

a node in A to the node i. If it holds, we say that i is influenced by A under x. The goal is to find242

an action A ∈ A , {A ⊂ V : |A| = k} maximizing σ(A,µ∗) , E
[∣∣∣{i ∈ V, A X

 i
}∣∣∣], where243

X ∼ ⊗(u,v)∈EBernoulli(µ∗(u,v)). This model is called the independent cascade model. A notable244

property to use the greedy oracle is that σ is monotone submodular. As the exact calculation of245

σ is prohibitive, it is estimated by a Monte Carlo simulation, resulting in an approximation factor246

α = 1− e−1 − ε [Feige, 1998, Chen et al., 2010] in the above greedy oracle analysis.247

Metric k-center Given a set of cities, one wants to build k warehouses in different cities and248

minimize the maximum distance of a city to a warehouse. Formally, given a complete undirected249

weighted graph G = (V,E) whose distances d(vi, vj) satisfy the triangle inequality, the goal is to250

find an action A ∈ A , {A ⊂ V : |A| = k} that minimizes maxv∈V d(v,A). We can consider the251

semi-bandit setting where the set of base arms is E, µ∗ , (d(vi, vj))(vi,vj)∈E and the feedback set252

S includes the edges of the graph induced by the chosen action. We can target an approximation253

regret with α = 1/2 using the following oracle (which is simply the standard greedy algorithm).254

• Oracle1(µ) : For i ∈ [k], we define Ei , {(a1, . . . , ai) : (a1, . . . , ai−1) = Ei−1, ai ∈ V \Ei−1}255

and ri((a1, . . . , ai),µ) , minj∈[i−1] µai,aj (with r1 = 0). One can notice we thus have E∗i ∈256

arg max(a1,...,ai)∈Ei
d(ai, {a1, . . . , ai−1}) = arg max(a1,...,ai)∈Ei

d(ai, Ei−1).257

• Oracle2
(
(Ej)j∈[k]

)
: Let (a1, . . . , ak) , Ek. Oracle2 returns A = {a1, . . . , ak}. Let w ∈258

arg maxv∈V d(v,A). We thus have:259

1
2 max
v∈V

d(v,A)−max
v∈V

d(v,A∗) ≤ 1
2

(
max
v∈V

d(v,A)− min
a∈A∪{w}

min
a′∈A\{a}

d(a, a′)
)

= 1
2 max
j∈[k−1]

(
max
v∈V

d(v,A)− d(aj+1, Ej)
)

≤ 1
2 max
j∈[k−1]

(
max
v∈V

d(v,Ej)− d(aj+1, Ej)
)

= 1
2 max
j∈[k−1]

(
rj+1

(
E∗j+1,µ

∗)− rj+1(Ej+1,µ
∗)
)
.
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Where the first inequality is deduced as follows: the map f : v 7→ arg mina∗∈A∗ d(a∗, v) defines260

a partition of V into k = |A∗| clusters. By the the pigeonhole principle, one cluster contains261

2 different points a, a′ ∈ A ∪ {w} (simply because its size is k + 1). We can assume a′ ∈ A262

without loss of generality. Thus, since f(a) = f(a′), we get d(a, a′) ≤ d(a, f(a)) + d(a′, f(a′)) =263

d(a,A∗) + d(a′, A∗) ≤ 2 maxv∈V d(v,A∗).264

Vertex cover The problem consists, given an undirected graph G = (V,E), in finding a set of265

vertices with minimal cost to cover all the edges of E. Formally, with µ∗ ∈ RV+ , the goal is to find an266

action A ∈ A , {A ⊂ V : ∀(u, v) ∈ E, u ∈ A or v ∈ A} that minimizes eT
Aµ
∗. The semi-bandit267

feedback is defined directly as S = A. We can target an approximation regret with α = 1/2 using268

the following linear programming (LP) relaxation oracle.269

•Oracle1(µ) : Let6 E1 ,
{

x ∈ {0, 1/2, 1}V : ∀(u, v) ∈ E, xu + xv ≥ 1
}

and r1(x,µ) , −xTµ.270

• Oracle2(E1) : Let x , E1. Oracle2 returns A = {v ∈ V : xv ≥ 1/2}, that belongs to A since271

∀ (u, v) ∈ E, xu + xv ≥ 1, so xu ≥ 1/2 or xv ≥ 1/2, so u ∈ A or v ∈ A. Let x∗ , E∗1 . We have:272

1
2eT

Aµ
∗ − eT

A∗µ
∗ ≤ xTµ∗ − eT

A∗µ
∗

≤ xTµ∗ − x∗Tµ∗

= r1(E∗1 ,µ∗)− r1(E1,µ
∗).

Notice, r1 satisfies Assumption 2 with the constants being 1, using x ∈ {0, 1/2, 1}V , so that x ≤ eA.273

Max-Cut Given an undirected weighted graph G = (V,E), with weights µ∗ , (µ∗(u,v))(u,v)∈E ,274

the goal is to find an action A ∈ A , {A ⊂ V } maximizing the total weight of the edges between275

A and its complement, i.e., 1
2
∑

(u,v)∈E µ
∗
(u,v)(1− yuyv), where y , eA − eV \A. We consider the276

semi-bandit context where E is the set of arms, and the feedback set includes the edges between A277

and its complement, i.e., S = {(u, v) ∈ E, yuyv = −1}. To include randomization within the oracle,278

we can extend the action space A to the set of probability measures on {A ⊂ V }, replacing ∆(A)279

by its expectation on A, as a function of the distribution of A. The polynomial-time approximation280

algorithm for Max-Cut with the best known approximation ratio [Goemans and Williamson, 1995]281

uses semidefinite programming and randomized rounding, and achieves an approximation ratio of282

α = 2
π min0≤θ≤π

θ
1−cos θ ≈ 0.878. In our context, it can be defined as follows.283

• Oracle1(µ) : We define E1 ,
{

(vu)u∈V ∈
{

v ∈ RV : ‖v‖2 = 1
}V }

and r1((vu)u∈V ,µ) ,284

1
2
∑

(u,v)∈E µ(u,v)(1− vT
uvv).285

• Oracle2(E1) : Let (vu)u∈V , E1. Oracle2 returns the distribution of A = {u ∈ V, vT
uZ ≥ 0},286

where Z ∼ U
({

v ∈ RV : ‖v‖2 = 1
})

. The following is proved by Goemans and Williamson [1995]:287

∑
(u,v)∈E

µ(u,v)P[(u, v) ∈ S] = E

 ∑
(u,v)∈E

µ(u,v)
1− sign(vT

uZ)sign(vT
vZ)

2


=

∑
(u,v)∈E

µ(u,v)
arccos(vT

uvv)
π

≥ α
∑

(u,v)∈E

µ(u,v)
1− vT

uvv
2 = αr1((vu)u∈V ,µ).

Thus, r1 satisfies Assumption 2 with the constants being 1/α. We also get, with y∗ , eA∗ − eV \A∗ :288

∆(Oracle2(E1)) = α
∑

(u,v)∈E

µ∗(u,v)
1− y∗uy∗v

2 − E

 ∑
(u,v)∈E

µ∗(u,v)
1− sign(vT

uZ)sign(vT
vZ)

2


≤ α(r1(E∗1 ,µ∗)− r1(E1,µ

∗)).
6The LP relaxation of vertex cover is half-integral, so that we can allow each variable to be in {0, 1/2, 1}

rather than the interval from 0 to 1.
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4.3 A counter-example289

We give here a case that does not belong to REDUCE2EXACT, while being concrete (compared to the290

example provided by Wang and Chen [2018]). The goal is to show that some concrete examples do291

not belong to our oracle class.292

Travelling salesman problem (TSP) Given a complete undirected weighted graph G = (V,E)293

whose distances µ∗ , (d(u, v))(u,v)∈E satisfy the triangle inequality, the goal is to find an Hamilto-294

nian cycle A ∈ A ,
{

(v1, . . . , v|V |) :
{
v1, . . . , v|V |

}
= V

}
of minimum cost

∑
i∈[|V |] d(vi−1, vi),295

with v0 = v|V |. We consider the following oracle from the Christofides [1976] algorithm (α = 2/3).296

• Oracle1(µ) : The algorithm of Christofides and Serdyukov combines E1 , {spanning trees of G}297

and E2 , {perfect matchings of the subgraph G′ of G induced by the vertices of odd order in E1},298

with r1 being the weight of the spanning tree and r2 the weight of the perfect matching.299

• Oracle2(E1, E2) : Oracle2 combines the edges of E1 and E2 to form a connected multigraph in300

which all vertices have even degree (so it is Eulerian), forms an Eulerian circuit in this multigraph, and301

finally, outputs the Hamiltonian cycle obtained by skipping repeated vertices (shortcutting). Thanks302

to the triangle inequality, shortcutting does not increase the weight, so we have303

eT
Aµ
∗ ≤ r1(E1,µ

∗) + r2(E2,µ
∗).

Let’s now deal with A∗. Removing an edge from A∗ produces a spanning tree, so eT
A∗µ

∗ ≥304

r1(E∗1 ,µ∗). On the other hand, by the triangle inequality, the weight of the optimal TSP solution for305

G′ is lower than eT
A∗µ

∗ (visiting more nodes does not, in any case, reduce the total cost). Taking306

every second edge of this cycle (which is of even length since it has an even number of vertices) we307

obtain a matching that has a weight less than half the weight of the cycle (if this is not the case we308

can take the complementary), so eT
A∗µ

∗/2 ≥ r2(E∗2 ,µ∗). To summarize, we have309

2
3eT

Aµ
∗ − eT

A∗µ
∗ ≤ 2

3(r1(E1,µ
∗)− r1(E∗1 ,µ∗) + r2(E2,µ

∗)− r2(E∗2 ,µ∗)).

From the above, we can see that all the criteria of REDUCE2EXACT are satisfied, except Assumption 2.310

Indeed, we assume that we receive feedback from A, while we would need feedback from the larger311

set E1∪E2. We could probably have foreseen that the TSP would pose a difficulty in our assumption:312

indeed, among the many operations performed by the oracle to build the final solution, shortcutting is313

the one that does not imply an optimization, but rather makes the solution feasible. In other words,314

if we allowed the tour to pass over the same vertex several times, then the TSP would belong to315

REDUCE2EXACT by skipping the shortcutting step. Although this gives more information, the fact316

that it is better to go through the same vertex multiple times is rather counterintuitive, suggesting that317

perhaps another approach can overcome this issue.318

5 Conclusion319

In this article, our main objective is to further expand the scope of the CTS policy. We not only320

expand CTS to probabilistically triggered arms (which was one of the open questions in the Kong321

et al. [2021]), but we also consider a broader class of oracle compatible with CTS. More precisely, we322

propose a condition, REDUCE2EXACT, which may seem unnatural at first, but which in fact simply323

expresses that exact sub-problems must be hidden in the original approximation problem, and that324

the approximation oracle exploit them to output the final solution. Knowing that the majority of325

approximation algorithms use one or more relaxations to an exact problem (e.g., solving a convex326

programming relaxation to obtain a fractional solution and then rounding this fractional solution to327

get a feasible solution), our assumption falls within the range of many CMAB-T settings. From this328

reduction to exact problems, we naturally obtain the standard tight regret bound O(log(T )/∆). This329

is the first tight bound for the approximation regret on non-exact oracles.330

As future work, it may be interesting to explore other types of assumption leading to a similar331

bound. Through the exploration of new assumptions, we can hope to see some counterexamples332

disappear (like the TSP for our case). Another point deserving further work would be to better333

understand/reduce the ` dependency in the approximation regret bound given in Theorem 2. Finally,334

we have that the approximation regret is in some way concervative compared to the greedy regret.335

For a given oracle, we can easily consider the equivalent of the greedy regret for that oracle. An336

interesting question would then be to extend the work of Kong et al. [2021] to other types of oracle.337
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