
Data-Efficient Augmentation for Training Neural
Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Data augmentation is essential to achieve state-of-the-art performance in many1

deep learning applications. However, the most effective augmentation techniques2

become computationally prohibitive for even medium-sized datasets. To address3

this, we propose a rigorous technique to select subsets of data points that when4

augmented, closely capture the training dynamics of full data augmentation. We5

first show that data augmentation, modeled as additive perturbations, improves6

learning and generalization by relatively enlarging and perturbing the smaller7

singular values of the network Jacobian, while preserving its prominent directions.8

Then, we propose a framework to iteratively extract small subsets of training9

data that when augmented, closely capture the alignment of the fully augmented10

Jacobian with labels/residuals. We prove that stochastic gradient descent applied to11

augmented subsets found by our approach have similar training dynamics to that of12

fully augmented data. Our experiments demonstrate that our method outperforms13

state-of-the-art by 7.7% on CIFAR10 with 6.3x speedup and 4.7% on SVHN14

with 2.2x speedup, using 10% and 30% augmented subsets respectively. Besides,15

augmenting 10% and 30% subsets from our method beats random baselines by16

7.9% and 5.3% on TinyImageNet, and by 7.6% and 2.3% on ImageNet.17

1 Introduction18

Standard (weak) data augmentation transforms the training examples with e.g. rotations or crops for19

images, and trains on the transformed examples in place of the original training data. While weak20

augmentation is effective and computationally inexpensive, strong data augmentation (in addition21

to weak augmentation) is a key component in achieving nearly all state-of-the-art results in deep22

learning applications [34]. However, the most effective strong data augmentation techniques increase23

the training time by orders of magnitude. First, they often have a very expensive pipeline to24

generate transformations that best improves generalization [5, 16, 23, 39]. Second, appending25

transformed examples to the training data is often much more effective than training only on the26

(strongly or weakly) transformed examples in-place of the original data. Importantly, appending27

one transformed example is often much more effective than training on two transformed examples28

in place of every original training data, which has the same computational cost as that of training on29

original images appended with only one transformation per image (c.f. Appendix D.5). Hence, to30

obtain the state-of-the-art performance, multiple augmented examples are added for every single31

data point and to each training iteration [15, 39]. In this case, even if producing transformations are32

cheap, such methods increases the size of the training data by orders of magnitude. As a result, state-33

of-the-art data augmentation techniques become computationally prohibitive for even medium-sized34

real-world problems. For example, the state-of-the-art augmentation of [39] increases training time35

of ResNet20 on CIFAR10 by 13x on an Nvidia A40 GPU.36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

To make state-of-the-art data augmentation more efficient and scalable, an effective approach is to37

carefully select a small subset of the training data such that augmenting only the subset provides38

similar training dynamics to that of full data augmentation. If such a subset can be quickly found,39

it would directly lead to a significant reduction in storage and training costs. First, while standard40

in-place augmentation can be applied to the entire data, the strong and expensive transformations41

can be only produced for the examples in the subset. Besides, only the transformed elements of the42

subset can be appended to the training data. In addition, when the data is larger than the training43

budget, one can train on random subsets (with standard in-place augmentation) and augment coresets44

(by strong augmentation and/or appending transformations) to achieve a superior performance.45

Despite the efficiency and scalability that it can provide, this direction has remained largely unex-46

plored. Existing studies are limited to fully training a network and subsampling data points based47

on its loss or influence for augmentation in subsequent training runs [21]. However, this method is48

prohibitive for large datasets, provides a marginal improvement over augmenting random subsets,49

and does not provide any theoretical guarantee for the performance of the network trained on the50

augmented subsets. Besides, when the data contains mislabeled examples, augmentation methods51

that append transformations to the data (e.g. by max loss) degrade the performance by selecting and52

appending several noisy labels.53

A major challenge in finding the most effective data points for augmentation is to theoretically under-54

stand how data augmentation affects the optimization and generalization of neural networks. Existing55

theoretical results are mainly limited to simple linear classifiers and analyze data augmentation as56

enlarging the span of the training data [39], providing a regularization effect [4, 10, 36, 39], enlarging57

the margin of a linear classifier [32], or having a variance reduction effect [7]. However, such tools58

do not provide insights on the effect of data augmentation on training deep neural networks.59

Here, we study the effect of label invariant data augmentation on training dynamics of overparameter-60

ized neural networks. Theoretically, we model data augmentation by bounded additive perturbations61

[32], and analyze its effect on neural network Jacobian matrix containing all its first-order partial62

derivatives [1]. We show that label invariant additive data augmentation proportionally enlarges but63

more importantly perturbs the singular values of the Jacobian, particularly smaller ones, while main-64

taining its prominent directions. In doing so, data augmentation regularizes training with bounded but65

varying perturbations to the gradients and prevents overfitting. Empirically, we show that our analysis66

holds for various strong augmentations, e.g., AutoAugment [8], CutOut [11], and AugMix [15].67

Next, we develop a rigorous method to iteratively find small weighted subsets (coresets) that when68

augmented, closely capture the alignment between the Jacobian of the full augmented data with the69

label/residual vector. We show that the most effective subsets for data augmentation are the set of70

examples with the most centrally located gradients, and can be obtained by maximizing a submodular71

function. Such subsets can be efficiently extracted using a fast greedy algorithm which operates on72

small dimensional gradient proxies, with only a small additional cost. We prove that augmenting the73

coresets guarantees similar training dynamics to that of full data augmentation. We also show that74

augmenting our coresets achieve a superior accuracy in presence of noisy labeled examples.75

We demonstrate the effectiveness of our approach applied to CIFAR10 (ResNet20,76

WideResNet-28-10), CIFAR10-IB (ResNet32), SVHN (ResNet32), noisy-CIFAR10 (ResNet20),77

Caltech256 (ResNet18,ResNet50), TinyImageNet (ResNet50), and ImageNet (ResNet50) compared78

to random and max-loss baselines [21]. We show the effectiveness of our approach (in presence of79

standard augmentation) in the following cases:80

• When producing augmentations is expensive and/or they are appended to the training data:81

we show that for the augmentation method of [39] applied to CIFAR10/ResNet20 it is 3.43x faster82

to train on the whole dataset and augment our coresets of size 30% than to train and augment the83

whole dataset. At the same time we achieve 75% of the accuracy improvement of training on and84

augmenting the full data with [39].85

• When data is larger than the training budget: we show that we can achieve 71.99% test86

accuracy on ResNet50/ImageNet when training on and augmenting only 30% subsets for 9087

epochs. Compared to AutoAugment [8] despite using only 30% subsets, we achieve 86% of88

the original reported accuracy while boasting 5x speed-up in training time. Similarly, on89

Caltech256/ResNet18, training on and augmenting 10% coresets with [8] yield 65.4% accuracy,90

improving over random 10% subsets by 5.8% and over weak augmentation only by 17.4%.91

2

• When data contains mislabeled examples: We show that training on and strongly augmenting92

50% subsets using our method on CIFAR-10 with 50% noisy labels achieves 76.20% test accuracy.93

This actually improves performance compared to training on and strongly augmenting the full data.94

95

2 Additional Related Work96

Strong data augmentation methods achieve state-of-the-art performance by finding the set of trans-97

formations for every example that best improves the performance. Methods like AutoAugment [8],98

RandAugment [9], and Faster RandAugment [9] search over a (possibly large) space of transforma-99

tions to find sequences of transformations that best improves generalization [8, 9, 25, 39]. Other100

techniques involve a very expensive pipeline for generating the transformations. For example, some101

use Generative Adversarial Networks to directly learn new transformations [2, 25, 28, 33]. Strong102

augmentations like Smart Augmentation [23], Neural Style Transfer-based [16], and GAN-based aug-103

mentations [5] require an expensive forward pass through a deep network for input transformations.104

For example, [16] increases training time by 2.8x for training ResNet18 on Caltech256.105

Strong data augmentation methods either replace the original example by its transformed version,106

or add the generated transformations to the training data. Crucially, augmenting the training data107

with transformations is much more effective in improving the generalization performance. Hence,108

the most effective data augmentation methods such as that of [39] and AugMix [15] append the109

transformed examples to the training data. In Appendix D.5, we show that even for cheaper strong110

augmentation methods such as AutoAugment [8], while replacing the original training examples with111

transformations may decrease the performance, appending the augmentations significantly improves112

the performance. Appending the training data with augmentations, however, increase the training113

time by orders of magnitude. For example, AugMix [15] that outperforms AutoAugment increases114

the training time by at least 3x by appending extra augmented examples, and [39] increases training115

time by 13x due to appending and forwarding additional augmented examples through the model.116

3 Problem Formulation117

We begin by formally describing the problem of learning from augmented data. Consider a dataset118

Dtrain = (Xtrain,ytrain), where Xtrain = (x1, · · · ,xn) ∈ Rd×n is the set of n normalized data119

points xi ∈ [0, 1]d, from the index set V , and ytrain = (y1,· · ·, yn) ∈ {y ∈ {ν1, ν2, · · · , νC}} with120

{νj}Cj=1 ∈ [0, 1]. Following [32] we model data augmentation as an arbitrary bounded additive pertur-121

bation �, with ���≤ �0. For a given �0 and the set of all possible transformations A, we study the trans-122

formations selected from S ⊆ A satisfying S = {Ti ∈ A | �Ti(x)−x�≤ �0 ∀x ∈ Xtrain}. While123

the additive perturbation model cannot represent all augmentations, most real-world augmentations124

are bounded to preserve the regularities of natural images. Thus, we see the effects of additive125

augmentation on the singular spectrum holds even under real-world augmentation settings (Fig. 3).126

This model is indeed limited when applied to augmentations that cannot be reduced to perturbations,127

such as horizontal/vertical flips and large translations. We extend our theoretical analysis to128

augmentations modeled as arbitrary linear transforms (e.g. as mentioned, horizontal flips) in B.5.129

The set of augmentations at iteration t generating r augmented examples per data point can be130

specified, with abuse of notation, as Dt
aug = {�r

i=1 (T
t
i (Xtrain),ytrain)}, where |Dt

aug|= rn and131

T t
i (Xtrain) transforms all the training data points with the set of transformations T t

i ⊂ S at iteration132

t. We denote Xt
aug = {�r

i=1 T
t
i (Xtrain)} and yt

aug = {�r
i=1 ytrain}.133

Let f(W ,x) be an arbitrary neural network with m vectorized (trainable) parameters W∈Rm. We134

assume that the network is trained using (stochastic) gradient descent with learning rate η to minimize135

the squared loss L over the original and augmented training examples Dt = {Dtrain ∪ Dt
aug}136

with associated index set V t, at every iteration t. I.e., L(W t,X) := 1
2

�
i∈V t Li(W

t,xi) :=137
1
2

�
(xi,yi)∈Dt�f(W t,xi)− yi�22. The gradient update at iteration t is given by138

W t+1 = W t − η∇L(W t,X), s.t. ∇L(W t,X) = J T (W t,X)(f(W t,X)− y), (1)

where Xt = {Xtrain ∪Xt
aug} and yt = {ytrain ∪ yt

aug} are the set of original and augmented139

examples and their labels, J (W ,X) ∈ Rn×m is the Jacobian matrix associated with f , and140

rt = f(W t,X) − y is the residual. We further assume that J is smooth with Lipschitz constant141

3

L. I.e., �J (W ,xi)−J (W ,xj)�≤ L� xi − xj� ∀ xi,xj ∈ X . Thus, for any transformation142

Tj ∈ S, we have �J (W ,xi)−J (W , Tj(xi))�≤ L�0. Denoting J = J (W,Xtrain) and J̃ =143

J (W,Tj(Xtrain)),we getJ̃=J+E, where E is the perturbation matrix with�E�2≤�E�F≤
√
nL�0.144

4 Data Augmentation Improves Learning145

In this section, we analyze the effect of data augmentation on training dynamics of neural networks,146

and show that data augmentation can provably prevent overfitting. To do so, we leverage the recent147

results that characterize the training dynamics based on properties of neural network Jacobian and the148

corresponding Neural Tangent Kernel (NTK) [17] defined as Θ = J (W ,X)J (W ,X)T . Formally:149

150

rt=

n�

i=1

(1− ηλi)(uiu
T
i)r

t−1=

n�

i=1

(1− ηλi)
t(uiu

T
i)r

0, (2)

where Θ = UΛUT =
�

i=1 λiuiu
T
i is the eigendecomposition of the NTK [1]. Although the151

constant NTK assumption holds only in the infinite width limit, [22] found close empirical agreement152

between the NTK dynamics and the true dynamics for wide but practical networks, such as wide153

ResNet architectures [40]. Eq. (2) shows that training dynamics depend on the alignment of the154

NTK with the residual vector at every iteration t. Next, we prove that for small perturbations �0,155

data augmentation prevents overfitting and improves generalization by proportionally enlarging and156

perturbing smaller eigenvalues of the NTK relatively more, while preserving its prominent directions.157

4.1 Effect of Augmentation on Eigenvalues of the NTK158

We first investigate the effect of data augmentation on the singular values of the Jacobian, and use159

this result to bound the change in the eigenvalues of the NTK. To characterize the effect of data160

augmentation on singular values of the perturbed Jacobian J̃ , we rely on Weyl’s theorem [38]161

stating that under bounded perturbations E, no singular value can move more than the norm of the162

perturbations. Formally, |σ̃i − σi|≤ �E�2, where σ̃i and σi are the singular values of the perturbed163

and original Jacobian respectively. Crucially, data augmentation affects larger and smaller singular164

values differently. Let P be orthogonal projection onto the column space of J T , and P⊥ = I−P be165

the projection onto its orthogonal complement subspace. Then, the singular values of the perturbed166

Jacobian J̃ T are σ̃2
i = (σi + µi)

2 + ζ2i , where |µi|≤ �PE�2, and σmin(P⊥E) ≤ ζi ≤ �P⊥E�2,167

σmin the smallest singular value of J T [35]. Since the eigenvalues of the projection matrix P are168

either 0 or 1, as the number of dimensions m grows, for bounded perturbations we get that on average169

µ2
i = O(1) and ζ2i = O(m). Thus, the second term dominates and increase of small singular values170

under perturbation is proportional to
√
m. However, for larger singular values, first term dominates171

and hence σ̃i − σi
∼= µi. Thus in general, small singular values can become proportionally larger,172

while larger singular values remain relatively unchanged. The following Lemma characterizes the173

expected change to the eignvalues of the NTK.174

Lemma 4.1. Data augmentation as additive perturbations bounded by small �0 results in the175

following expected change to the eigenvalues of the NTK:176

E[λ̃i] = E[σ̃2
i] = σ2

i + σi(1− 2pi)�E�+�E�2/3 (3)

where pi := P(σ̃i − σi < 0) is the probability that σi decreases as a result of data augmentation,177

and is smaller for smaller singular values.178

All the proofs can be found in the Appendix. Next, we discuss the effect of data augmentation on179

singular vectors of the Jacobian and show that it mainly affects the non-prominent directions of the180

Jacobian spectrum, but to a smaller extent compared to the singular values.181

4.2 Effect of Augmentation on Eigenvectors of the NTK182

Here, we focus on characterizing the effect of data augmentation on the eigenspace of the NTK.183

Let the singular subspace decomposition of the Jacobian be J = UΣV T . Then for the NTK, we184

have Θ = JJ T = UΣV TV ΣUT = UΣ2UT (since V TV = I). Hence, the perturbation of the185

eigenspace of the NTK is the same as perturbation of the left singular subspace of the Jacobian J .186

4

(a) MNIST - Δσi (b) CIFAR - Δσi (c) MNIST - Subspace
Angle

(d) CIFAR - Subspace An-
gle

Figure 1: Effect of augmentations on the singular spectrum of the network Jacobian of ResNet20
trained on CIFAR10, and a MLP on MNIST, trained till epoch 15. (a), (b) Difference in singular
values and (c), (d) singular subspace angles between the original and augmented data with bounded
perturbations with �0 = 8 and �0 = 16 for different ranges of singular values. Note that augmentations
with larger bound �0 results in larger perturbations to the singular spectrum.

Suppose σi are singular values of the Jacobian. Let the perturbed Jacobian be J̃ = J + E, and187

denote the eigengap γ0 = min{σi − σi+1 : i = 1, · · · , r} where σr+1 := 0. Assuming γ0 ≥ 2�E�2,188

a combination of Wedin’s theorem [37] and Mirsky’s inequality [27] implies189

�ui − ũi�≤ 2
√
2�E�/γ0. (4)

This result provides an upper-bound on the change of every left singular vectors of the Jacobian.190

However as we discuss below, data augmentation affects larger and smaller singular directions191

differently. To see the effect of data augmentation on every singular vectors of the Jacobian, let192

the subspace decomposition of Jacobian be J = UΣV T = UsΣsV
T
s + UnΣnV

T
n , where Us193

associated with nonzero singular values, spans the column space of J , which is also called the194

signal subspace, and Un, associated with zero singular values (Σn = 0), spans the orthogonal space195

of Us, which is also called the noise subspace. Similarly, let the subspace decomposition of the196

perturbed Jacobian be J̃ = ŨΣ̃Ṽ T = ŨsΣ̃sṼ
T
s + ŨnΣ̃nṼ

T
n , and Ũs = Us +ΔUs, where ΔUs197

is the perturbation of the singular vectors that span the signal subspace. Then the following general198

first-order expression for the perturbation of the orthogonal subspace due to perturbations of the199

Jacobian characterize the change of the singular directions: ΔUs = UnU
T
n EVsΣ

−1
s [24]. We200

see that singular vectors associated to larger singular values are more robust to data augmentation,201

compared to others. Note that in general singular vectors are more robust than singular values.202

Fig. 1 shows the effect of perturbations with �0 = 8, 16 on singular values and singular vectors of the203

Jacobian matrix for a 1 hidden layer MLP trained on MNIST, and ResNet20 trained on CIFAR10. As204

calculating the entire Jacobian spectrum is computationally prohibitive, data is subsampled from 3205

classes. We report the effect of other real-world augmentation techniques, such as random crops, flips,206

rotations and Autoaugment [8] - which includes translations, contrast, and brightness transforms - in207

Appendix C. We observe that data augmentation increases smaller singular values relatively more.208

On the other hand, it affects prominent singular vectors of the Jacobian to a smaller extent.209

4.3 Augmentation Improves Training & Generalization210

By making relatively larger changes to the smaller singular values of the Jacobian with a high211

probability, and making relatively larger perturbations to non-prominent singular vectors, data212

augmentation results in bounded but varying perturbations to particularly the nuisance space of the213

Jacobian during the training. Under label-preserving transformations, data augmentation prevents214

the network parameters from overfitting over the nuisance space. This results in a potentially larger215

training loss, but better generalization performance, as shown in Appendix D. Theorem B.1 in the216

Appendix characterizes the expected training dynamics resulted by data augmentation.217

At the same time, the relative growth of the smaller singular values resulted by data augmentation218

improves the generalization performance of the network. In general, learning along small eigenvectors219

of the Jacobian is slower [6]. Data augmentation speeds up training along these dimensions by220

increasing the eigenvalues of the smaller eigendirections of the NTK, while preserving eigenvectors,221

and hence enhance learning along these (harder to learn) components. The following Lemma captures222

the improvement in the generalization performance, as a result of data augmentation.223

Lemma 4.2. Assume gradient descent with learning rate η is applied to train a neural network224

with constant NTK and Lipschitz constant L, on data points augmented with additive perturbations225

5

bounded by �0 as defined in Sec. 3. Let σmin be the minimum singular value of Jacobian J associated226

with training data Xtrain. With probability 1− δ, generalization error of the network trained with227

gradient descent on augmented data Xaug enjoys the following bound:228 �
2

(σmin +
√
nL�0)2

+O
�
log

1

δ

�
. (5)

5 Effective Subsets for Data Augmentation229

Here, we focus on identifying subsets of data that when augmented similarly improve generalization230

and prevent overfitting. To do so, our key idea is to find subsets of data points that when augmented,231

closely capture the alignment of the NTK (or equivalently the Jacobian) corresponding to the232

full augmented data with the residual vector, J (W t,Xt
aug)

Trtaug. If such subsets can be found,233

augmenting only the subsets will change the NTK and its alignment with the residual in a similar way234

as that of full data augmentation, and will result in similar improved training dynamics. However,235

generating the full set of transformations Xt
aug is often very expensive, particularly for strong236

augmentations and large datasets. Hence, generating the transformations, and then extracting the237

subsets may not provide a considerable overall speedup.238

In the following, we show that weighted subsets (coresets) S that closely estimate the alignment of the239

Jacobian associated to the original data with the residual vector J T (W t,Xtrain)rtrain can closely240

estimate the alignment of the Jacobian of the full augmented data and the corresponding residual241

J T (W t,Xt
aug)r

t
aug . Thus, the most effective subsets for augmentation can be directly found from242

the training data. Formally, subsets St
∗ weighted by γt

S that capture the alignment of the full Jacobian243

with residual by an error of at most ξ can be found by solving the following optimization problem:244

St
∗ =argmin

S⊆V
|S| s.t. �J T (W t,Xt)rt − diag(γt

S)J T (W t,Xt
S)r

t
S�≤ ξ. (6)

Solving the above optimization problem is NP-hard. However, as we discuss in the Appendix A, a245

near optimal subset can be found by minimizing the Frobenius norm of a matrix GS , in which the ith246

row contains the euclidean distance between data point i and its closest element in the subset S, in247

the gradient space. Formally, [GS]i. = minj�∈S�J T (W t,xi)ri − J T (W t,xj�)rj��. Intuitively,248

such subsets contain the set of medoids of the dataset in the gradient space. Medoids of a dataset249

are defined as the most centrally located elements in the dataset [19]. The weight of every element250

j ∈ S is the number of data points closest to it in the gradient space, i.e., γj =
�

i∈V I[j =251

argminj�∈S�J T (W t,xi)ri − J T (W t,xj�)rj��]. The set of medoids can be found by solving the252

following submodular1 cover problem:253

St
∗ = argminS⊆V |S| s.t. C − �GS�F≥ C − ξ, (7)

where C ≥ �GS�F is a constant. The classical greedy algorithm provides a logarithmic approxima-254

tion for the above submodular maximization problem, i.e., |S|≤ (1 + ln(n)). It starts with the empty255

set S0 = ∅, and at each iteration τ , it selects the training example e ∈ V that maximizes the marginal256

gain F (e|Sτ) = F (Sτ ∪ {e}) − F (Sτ). Formally, Sτ = Sτ−1 ∪ {argmaxe∈V F (e|Sτ−1)}. The257

O(nk) computational complexity of the greedy algorithm can be reduced to O(n) using randomized258

methods [29] and further improved using lazy evaluation [26] and distributed implementations [31].259

The rows of the matrix G can be efficiently upper-bounded using the gradient of the loss w.r.t. the260

input to the last layer of the network, which has been shown to capture the variation of the gradient261

norms closely [18]. The above upper-bound is only marginally more expensive than calculating the262

value of the loss. Hence the subset can be found efficiently. Better approximations can be obtained263

by considering earlier layers in addition to the last two, at the expense of greater computational cost.264

At every iteration t during training, we select a coreset from every class c ∈ [C] separately, and apply265

the set of transformations {T t
i }ri=1 only to the elements of the coresets, i.e., Xt

aug = {∪r
i=1T

t
i (XSt)}.266

We divide the weight of every element j in the coreset equally among its transformations, i.e. the267

final weight ρtj = γt
j/r if j ∈ St. We apply the gradient descent updates in Eq. (1) to the weighted268

Jacobian matrix of Xt = Xt
aug or Xt = {Xtrain ∪Xt

aug} (viewing ρt as ρt ∈ Rn) as follows:269

W t+1 = W t − η
�
diag(ρt)J (W t,Xt)

�T
rt. (8)

1A set function F : 2V → R+ is submodular if F (S ∪ {e}) − F (S) ≥ F (T ∪ {e}) − F (T), for any
S ⊆ T ⊆ V and e ∈ V \ T . F is monotone if F (e|S) ≥ 0 for any e∈V \S and S ⊆ V .

6

Table 1: Training ResNet20 (R20) and WideResnet-28-10 (W2810) on CIFAR10 (C10) using small
subsets, and ResNet18 (R18) on Caltech256 (Cal). We compare accuracies of training on and
strongly (and weakly) augmenting subsets. For CIFAR10, training and augmenting subsets selected
by max-loss performed poorly and did not converge. Average number of examples per class in each
subset is shown in parentheses.
Model/Data C10/R20 C10/W2810 Cal/R18

Subset 0.1% (5) 0.2% (10) 0.5% (25) 1% (50) 1% (50) 5% (3) 10% (6) 20% (12) 30% (18) 40% (24) 50% (30)

Loss < 15% < 15% < 15% < 15% < 15% 19.2 50.6 71.3 75.6 77.3 78.6
Random 33.5 42.7 58.7 74.4 57.7 41.5 61.8 72.5 75.7 77.6 78.5

Ours 37.8 45.1 63.9 74.7 62.1 52.7 65.4 73.1 76.3 77.7 78.9

The pseudocode is in Alg.1, Appendix. The following Lemma upper bounds the difference between270

the alignment of the Jacobian and residual for augmented coreset vs. full augmented data.271

Lemma 5.1. Let S be a coreset that captures the alignment of the full data NTK with residual272

with an error of at most ξ as in Eq. (5). Augmenting the coreset with perturbations bounded by273

�0≤ 1

n
3
2
√
L

captures the alignment of the fully augmented data with the residual by an error of at most274

�J T (W t,Xaug)r − diag(ρt)J t(W t,XSaug)rS�≤ ξ +O
�√

L
�
. (9)

5.1 Coreset vs. Max-loss Data Augmentation275

In the initial phase of training the NTK goes through rapid changes. This determines the final basin276

of convergence and network’s final performance [12]. Regularizing deep networks by weight decay277

or data augmentation mainly affects this initial phase and matters little afterwards [13]. Crucially,278

augmenting coresets that closely capture the alignment of the NTK with the residual during this279

initial phase results in less overfitting and improved generalization performance. On the other hand,280

augmenting points with maximum loss early in training decreases the alignment between the NTK281

and the label vector and impedes learning and convergence. After this initial phase when the network282

has good prediction performance, the gradients for majority of data points become small. Here, the283

alignment is mainly captured by the elements with the maximum loss. Thus, as training proceeds, the284

intersection between the elements of the coresets and examples with maximum loss increases. We285

visualize this pattern in Appendix D. The following Theorem characterizes the training dynamics of286

training on the full data and the augmented coresets, using our additive perturbation model.287

Theorem 5.2. Let Li be β-smooth, L be λ-smooth and satisfy the α-PL condition, that is for288

α > 0, �∇L(W)�2 ≥ αL(W) for all weights W . Let f be Lipschitz in X with constant L�, and289

L̄ = max{L,L�}. Let G0 be the gradient at initializaion, σmax the maximum singular value of290

the coreset Jacobian at initialization. Choosing �0 ≤ 1

σmax

√
L̄n

and running SGD on full data with291

augmented coreset using constant step size η = α
λβ , result in: the following bound:292

E[�∇Lf+caug(W t)�] ≤ 1√
α

�
1− αη

2

� t
2

�
2G0 + ξ +O

� √
L̄

σmax

��
.

293 Theorem 5.2 shows that training on full data and augmented coresets converges with the same rate294

as training on the fully augmented data, to a close neighborhood of the optimal solution. The size295

of the neighborhood depends on the error of the coreset ξ in Eq. (5), and the error in capturing the296

alignment of the full augmented data with the residual derived in Lemma 5.1. The first term decrease297

as the size of the coreset grows, and the second term depends on the network structure. We also298

analyze convergence of training only on the augmented coresets, and augmentations modelled as299

arbitrary linear transformations using a linear model [39] in Appendix B.300

6 Experiments301

Setup and baselines. We extensively evaluate the performance of our approach in three different302

settings. Firstly, to evaluate the quality of our coresets for augmentation we consider training only on303

coresets and their augmentations. Secondly, we investigate the effect of adding augmented coresets304

to the full training data. Finally, we consider adding augmented coresets to random subsets. We305

compare our coresets with max-loss loss and/or random subsets as baselines. For all methods, we306

7

Table 2: Caltech256/ResNet18 with same set-
tings as Tab. 1 with default weak augmenta-
tions but varying strong augmentations.

Augmentation Random Ours

30% 40% 50% 30% 40% 50%

CutOut 43.32 62.84 76.21 55.53 66.10 76.91
AugMix 40.77 61.81 72.17 52.72 64.91 73.01
Perturb 48.51 66.20 75.34 58.29 67.47 76.50

Table 3: Training on full data and strongly (and
weakly) augmenting random subsets, max-loss
subsets and coresets on TinyImageNet/ResNet50,
R = 15.

Random Max-loss Ours

20% 30% 50% 20% 30% 50% 20% 30% 50%

50.97 52.00 54.92 51.30 52.34 53.37 51.99 54.30 55.16

Table 4: Accuracy improvement by augmenting subsets found by our method vs. max-loss and
random, over improvement of full (weak and strong) data augmentation (F.A.) compared to weak
augmentation only (W.A.). The table shows the results for training on CIFAR10(C10)/ResNet20
(R20), SVHN/ResNet32(R32), and CIFAR10-Imbalanced(C10-IB)/ResNet32, with R = 20.

Dataset W.A. F.A. Random Max-loss Ours

Acc Acc 5% 10% 30% 5% 10% 30% 5% 10% 30%

C10/R20 89.46 93.50 21.8% 39.9% 65.6% 32.9% 47.8% 73.5% 34.9% 51.5% 75.0%
C10-IB/R32 87.08 92.48 25.9% 45.2% 74.6% 31.3% 39.6% 74.6% 37.4% 49.4% 74.8%
SVHN/R32 95.68 97.07 5.8% 36.7% 64.1% 35.3% 49.7% 76.4% 31.7% 48.3% 80.0%

select a new augmentation subset every R epochs. We note that while the original maxloss method307

[21] selects points from a fully trained model hence limits to only one subset throughout training, to308

maximize fairness, our max-loss baseline selects a new subset at every subset selection step. For all309

experiments, standard weak augmentations (random crop and horizontal flips) are always performed310

on both the original and strongly augmented data.311

6.1 Training on Coresets and their Augmentations312

First, we evaluate the effectiveness of our approach for training on the coresets and their augmenta-313

tions. Our main goal here is to compare the performance of training on and augmenting coresets vs.314

random and max-loss subsets. Tab. 1 shows the test accuracy for training ResNet20 and Wide-ResNet315

on CIFAR10 when we only train on small augmented coresets of size 0.1% to 1% selected at every316

epoch (R = 1), and ResNet18 on Caltech256 using coresets of size 5% to 50% with R = 5. We see317

that the augmented coresets outperform augmented random subsets by a large margin. This clearly318

shows the effectiveness of augmenting the coresets, and the importance of capturing the alignment of319

the NTK with the residual for data augmentation. Note that for CIFAR10 experiments, training on320

the augmented max-loss points did not even converge in absence of full data.321

Generalization across augmentation techniques Our coresets are not dependent on the type of322

data augmentation. To confirm this, we show the superior generalization performance of our method323

in Tab. 2 on ResNet18/R=5 on coresets vs random subsets of Caltech256, augmented with CutOut324

[11], AugMix [15], and noise perturbations (color jitter, gaussian blur). For example, On 30%325

subsets, we obtain 28.2%, 29.3%, 20.2% improvement over random when using CutOut, AugMix,326

and perturbation augmentations respectively.327

6.2 Training on Full Data and Augmented Coresets328

Next, we study the effectiveness of our method for training on full data and augmented coresets.329

Tab. 4 demonstrates the accuracy improvement resulted by augmenting subsets of size 5%, 10%,330

and 30% selected by our method vs. max-loss and random over full data augmentation. We observe331

that augmenting coresets effectively improves generalization, and outperforms augmenting random332

and max-loss subsets across different models and datasets. In Appendix D, we also show that our333

approach is effective when trained with full data even for small augmentation subset sizes of 0.2%334

and 0.5% with R = 1. We also report results on TinyImageNet/ResNet50 (R=15) in Tab. 3, where335

we show that augmenting coresets outperforms baseline max-loss and random subsets - For 30%336

subsets, we improve over max-loss and random on TinyImageNet by 3.7% and 4.4% respectively.337

Training speedup In Fig. 2, we measure the improvement in training time in the case of training338

on full data and augmenting subsets of various sizes. While our method yields similar or slightly339

lower speed-up to the max-loss policy and random approach respectively, our resulting accuracy340

8

Table 5: Training ResNet20 on CIFAR10 with 50% label noise, R = 20. Accuracy without strong
augmentation is 70.72 ± 0.20 and the accuracy of full (weak and strong) data augmentation is
75.87± 0.77. Note that augmenting 50% subsets outperforms augmenting the full data (marked ∗∗).

Subset Random Loss Ours

10% 72.32± 0.14 71.83± 0.13 73.02± 1.06
30% 74.46± 0.27 72.45± 0.48 74.67± 0.15
50% 75.36± 0.05 73.23± 0.72 76.20± 0.75∗∗

outperforms these two approaches on average. For example, for SVHN/Resnet32 using 30% coresets,341

we sacrifice 10% of the speed-up to obtain an additional 24.8% of the gain in accuracy from full data342

augmentation when compared to a random subset of the same size. We also provide wall-clock times343

for finding coresets from Caltech256 and TinyImageNet in Appendix D.

(a) CIFAR10/ResNet20 (b) CIFAR10/ResNet20 (c) SVHN/ResNet32 (d) SVHN/ResNet32

Figure 2: Accuracy improvement and speedups by augmenting subsets found by our method vs.
max-loss and random.(a), (b) show speed and accuracy of ResNet20 trained on CIFAR10, and (c), (d)
shows show speed and accuracy of ResNet32 trained on SVHN.

344

Augmenting noisy labeled data. We also experimentally confirm the robustness of our coresets to345

label noise. Tab. 5 shows the result of augmenting coresets vs. max-loss and random subsets of346

different sizes selected from CIFAR10 with 50% label noise for training ResNet20. Augmenting347

coresets selected by our method not only outperforms max-loss and random, but provides a superior348

performance over full data augmentation. This confirms the effectiveness of the coresets in capturing349

the alignment of the NTK with the residual of clean data.350

6.3 Training on Random Data and Augmented Coresets351

Finally, we evaluate the performance of our method for training on random subsets and augmenting352

coresets. We report results on ImageNet and TinyImageNet on ResNet50 (90 epochs, R=15). In353

Tab. 6, we train on random subsets and augment random subsets and coresets of the same size. We354

show that our results hold for large-scale datasets, where we improve by 7.6%, 2.3%, and 1.3% over355

random with 10%, 30%, and 50% subsets respectively on ImageNet.356

Table 6: Training on random subsets and strongly (and weakly) augmenting random subsets and
coresets for TinyImageNet (left) and ImageNet (right) with ResNet50.

Random Ours

10% 20% 30% 10% 20% 30%

28.64 38.97 44.10 30.90 40.88 46.42

Random Ours

10% 30% 50% 10% 30% 50%

63.67 70.39 72.35 68.53 71.99 73.28

7 Conclusion357

We showed that data augmentation improves training and generalization by relatively enlarging358

and perturbing the smaller singular values of the neural network Jacobian while preserving its359

prominent directions. Then, we proposed a framework to iteratively extract small coresets of360

training data that when augmented, closely capture the alignment of the fully augmented Jacobian361

with the label/residual vector. We showed the effectiveness of augmenting coresets in providing a362

superior generalization performance when added to the full data, in presence of noisy labels, or as a363

standalone subset. While under local smoothness of images, our additive perturbation can be applied364

to model many bounded transformations such as small rotations, crops, shearing, and pixel-wise365

transformations like sharpening, blurring, color distortions, structured adversarial perturbation [25],366

the additive perturbation model is indeed limited when applied to augmentations that cannot be367

reduced to perturbations, such as horizontal/vertical flips and large translations. Further theoretical368

analysis of complex data augmentations is indeed an interesting direction for future work.369

9

References370

[1] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-371

timization and generalization for overparameterized two-layer neural networks. In International372

Conference on Machine Learning, pages 322–332. PMLR, 2019.373

[2] Shumeet Baluja and Ian Fischer. Adversarial transformation networks: Learning to generate374

adversarial examples. arXiv preprint arXiv:1703.09387, 2017.375

[3] Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponential convergence of sgd in non-convex376

over-parametrized learning. arXiv preprint arXiv:1811.02564, 2018.377

[4] Chris M Bishop. Training with noise is equivalent to tikhonov regularization. Neural computa-378

tion, 7(1):108–116, 1995.379

[5] Christopher Bowles, Roger Gunn, Alexander Hammers, and Daniel Rueckert. Gansfer learning:380

Combining labelled and unlabelled data for gan based data augmentation. arXiv preprint381

arXiv:1811.10669, 2018.382

[6] Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding383

the spectral bias of deep learning. arXiv preprint arXiv:1912.01198, 2019.384

[7] Shuxiao Chen, Edgar Dobriban, and Jane H Lee. Invariance reduces variance: Understanding385

data augmentation in deep learning and beyond. arXiv preprint arXiv:1907.10905, 2019.386

[8] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:387

Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on388

Computer Vision and Pattern Recognition, pages 113–123, 2019.389

[9] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical390

automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF391

Conference on Computer Vision and Pattern Recognition Workshops, pages 702–703, 2020.392

[10] Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and Christopher Ré. A393

kernel theory of modern data augmentation. In International Conference on Machine Learning,394

pages 1528–1537. PMLR, 2019.395

[11] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural396

networks with cutout. arXiv preprint arXiv:1708.04552, 2017.397

[12] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,398

and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape399

geometry and the time evolution of the neural tangent kernel. Advances in Neural Information400

Processing Systems, 33, 2020.401

[13] Aditya Sharad Golatkar, Alessandro Achille, and Stefano Soatto. Time matters in regularizing402

deep networks: Weight decay and data augmentation affect early learning dynamics, matter403

little near convergence. Advances in Neural Information Processing Systems, 32:10678–10688,404

2019.405

[14] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.406

[15] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-407

narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.408

arXiv preprint arXiv:1912.02781, 2019.409

[16] Philip TG Jackson, Amir Atapour Abarghouei, Stephen Bonner, Toby P Breckon, and Boguslaw410

Obara. Style augmentation: data augmentation via style randomization. In CVPR Workshops,411

volume 6, pages 10–11, 2019.412

[17] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and413

generalization in neural networks. arXiv preprint arXiv:1806.07572, 2018.414

10

[18] Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning415

with importance sampling. In International conference on machine learning, pages 2525–2534.416

PMLR, 2018.417

[19] L Kaufman, PJ Rousseeuw, and Y Dodge. Clustering by means of medoids in statistical data418

analysis based on the, 1987.419

[20] Byungju Kim and Junmo Kim. Adjusting decision boundary for class imbalanced learning.420

IEEE Access, 8:81674–81685, 2020.421

[21] Michael Kuchnik and Virginia Smith. Efficient augmentation via data subsampling. In Interna-422

tional Conference on Learning Representations, 2018.423

[22] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha424

Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear425

models under gradient descent. In NeurIPS, 2019.426

[23] Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. Smart augmentation learning an optimal427

data augmentation strategy. Ieee Access, 5:5858–5869, 2017.428

[24] Fu Li, Hui Liu, and Richard J Vaccaro. Performance analysis for doa estimation algorithms:429

unification, simplification, and observations. IEEE Transactions on Aerospace and Electronic430

Systems, 29(4):1170–1184, 1993.431

[25] Calvin Luo, Hossein Mobahi, and Samy Bengio. Data augmentation via structured adversarial432

perturbations. arXiv preprint arXiv:2011.03010, 2020.433

[26] Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In434

Optimization techniques, pages 234–243. Springer, 1978.435

[27] Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. The quarterly journal436

of mathematics, 11(1):50–59, 1960.437

[28] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint438

arXiv:1411.1784, 2014.439

[29] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas440

Krause. Lazier than lazy greedy. In Twenty-Ninth AAAI Conference on Artificial Intelligence,441

2015.442

[30] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of443

machine learning models. In International Conference on Machine Learning, pages 6950–6960.444

PMLR, 2020.445

[31] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodu-446

lar maximization: Identifying representative elements in massive data. In Advances in Neural447

Information Processing Systems, pages 2049–2057, 2013.448

[32] Shashank Rajput, Zhili Feng, Zachary Charles, Po-Ling Loh, and Dimitris Papailiopoulos. Does449

data augmentation lead to positive margin? In International Conference on Machine Learning,450

pages 5321–5330. PMLR, 2019.451

[33] Alexander J Ratner, Henry R Ehrenberg, Zeshan Hussain, Jared Dunnmon, and Christopher452

Ré. Learning to compose domain-specific transformations for data augmentation. Advances in453

neural information processing systems, 30:3239, 2017.454

[34] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep455

learning. Journal of Big Data, 6(1):1–48, 2019.456

[35] GW Stewart. A note on the perturbation of singular values. Linear Algebra and Its Applications,457

28:213–216, 1979.458

[36] Stefan Wager, Sida Wang, and Percy Liang. Dropout training as adaptive regularization. arXiv459

preprint arXiv:1307.1493, 2013.460

11

[37] Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition. BIT461

Numerical Mathematics, 12(1):99–111, 1972.462

[38] Hermann Weyl. The asymptotic distribution law of the eigenvalues of linear partial differential463

equations (with an application to the theory of cavity radiation). mathematical annals, 71(4):441–464

479, 1912.465

[39] Sen Wu, Hongyang Zhang, Gregory Valiant, and Christopher Ré. On the generalization effects of466

linear transformations in data augmentation. In International Conference on Machine Learning,467

pages 10410–10420. PMLR, 2020.468

[40] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision469

Conference 2016. British Machine Vision Association, 2016.470

12

