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ABSTRACT

Like many other machine learning applications, neural machine translation
(NMT) benefits from over-parameterized deep neural models. However, these
models have been observed to be brittle: NMT model predictions are sensi-
tive to small input changes and can show significant variation across re-training
or incremental model updates. This work studies a frequently used method in
NMT, pseudo-label training (PLT), which is common to the related techniques of
forward-translation (or self-training) and sequence-level knowledge distillation.
While the effect of PLT on quality is well-documented, we highlight a lesser-
known effect: PLT can enhance a model’s stability to model updates and input
perturbations, a set of properties we call model inertia. We study inertia effects
under different training settings and we identify distribution simplification as a
mechanism behind the observed results.

1 INTRODUCTION

Self-training (Fralick, 1967; Amini et al., 2022) is a popular semi-supervised technique used to
boost the performance of neural machine translation (NMT) models. In self-training for NMT, also
known as forward-translation, an initial model is used to translate monolingual data; this data is then
concatenated with the original training data in a subsequent training step (Zhang & Zong, 2016;
Marie et al., 2020; Edunov et al., 2020; Wang et al., 2021). Self-training is believed to be effective
through inducing input smoothness and leading to better learning of decision boundaries from the
addition of unlabeled data (Chapelle et al., 2006; He et al., 2020; Wei et al., 2021).

A closely related technique is that of knowledge distillation (Hinton et al., 2015; Gou et al., 2021),
particularly sequence-level knowledge distillation (SKD), which uses hard targets in training and
reduces to pseudo-labeled data augmentation (Kim & Rush, 2016). In NMT, knowledge distillation
is known to be effective through knowledge transfer from ensembles or larger-capacity models and
as a data augmentation method (Freitag et al., 2017; Gordon & Duh, 2019; Tan et al., 2019; Currey
et al., 2020). In non-autoregressive translation, Zhou et al. (2020) explored the effect of SKD on
training data complexity and showed that simpler training data from distillation is crucial for the
performance of non-autoregressive MT models.

This paper examines the component that is common to these techniques, the introduction of pseudo-
labeled training (PLT) data. We focus on the more common autoregressive NMT formulation and
show that in addition to the known quality gains, PLT has a wide impact on model brittleness by
increasing smoothness as well as stability across model re-training. Our main contributions are:

• We focus on a set of stability properties in NMT models, which we unify under the umbrella term
inertia, and show that PLT increases model inertia. We further show that both the quality gains
and the improved inertia are not properties of any one specific technique such as self-training or
knowledge distillation, but are common to the use of pseudo-labeled data in training.

• We investigate the hypothesis that the observed properties correlate with a training data simpli-
fication mechanism, similarly to the observations made in Zhou et al. (2020). We compare with
other popular semi-supervised techniques to investigate if the model quality and inertia properties
hold when distribution simplification effects are not present.
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2 RELATED WORK

Neural network models are known to be sensitive to input variations, i.e. lacking in smoothness,
making them brittle or open to adversarial attacks, a property observed across many application
domains (Goodfellow et al., 2014; Szegedy et al., 2014; Jia & Liang, 2017). Neural machine trans-
lation models are similarly prone to robustness issues and have been shown to be affected by both
synthetic and natural noise, leading to lower translation quality (Belinkov & Bisk, 2018; Li et al.,
2019; Niu et al., 2020). In MT, earlier works have found noisy data augmentation (Belinkov & Bisk,
2018) and subword regularization (Kudo, 2018; Provilkov et al., 2020) to be among the most simple
yet effective methods in addressing instability to input perturbations.

In addition to smoothness, neural models are known be sensitive to the various sources of ran-
domness in training, such as initialization or dropout (Bengio, 2012; Reimers & Gurevych, 2017;
Madhyastha & Jain, 2019). This instability negatively impacts end-users in the form of spurious
differences in outputs between model updates, or more acutely, as quality regressions on specific
data points, also known as negative flips (Shen et al., 2020; Xie et al., 2021; Yan et al., 2021). In
NLP, Cai et al. (2022) focus on a set of structured prediction tasks and show that when random
initialization changes, up to 30% of all errors can be regression errors, and that improved accuracy
does not always mean reduced regressions. While negative flips are more difficult to measure in
MT as oftentimes many different translations are valid, the lack of consistency across re-training
is a known problem: in our experiments ∼80% of the translations change due to different random
initialization alone. Despite this, to the best of our knowledge, minimizing regressions or improving
stability across incremental model updates or re-training has not yet been addressed in MT.

This paper examines pseudo-label training in NMT and its effect on stability to both input variations
and incremental model updates, which we group under the term inertia. Earlier work on pseudo-
label training in MT focused on measuring quality alone and did not shed light into stability-related
properties (Wang et al., 2021; He et al., 2020; Wei et al., 2021; Yuan et al., 2020). In terms of stability
to input variations, or smoothness, our findings are related to the work of Papernot et al. (2015),
where authors introduce defensive distillation and show that (self-)distillation increased smoothness
when tested on digit and object recognition tasks. They show that the effect is one of reducing the
amplitude of the network gradients. Unlike our work, they do not test pseudo-label training, but
soft-target distillation, where a student is trained using the prediction probabilities of a teacher.

Finally, we hypothesize that PLT techniques are able to increase model inertia based on their distri-
bution simplification properties. Earlier works have explored the distribution simplification property
of PLT methods in terms of model performance. In non-autoregressive NMT, Zhou et al. (2020) and
Xu et al. (2021) explored the effect of SKD on training data complexity and its correlation with
model performance. As in previous work, they hypothesized that SKD alleviates the multiple modes
problem, i.e., the existence of multiple alternative translations (Gu et al., 2018).Similarly to Zhou
et al. (2020), we measure training data complexity when adding pseudo-labeled data and use the
entropy of a conditional word level alignment as a complexity metric.

3 TRAINING WITH PSEUDO-LABELS IN NMT

Neural Machine Translation (NMT) We use the auto-regressive formulation of NMT, where
given parallel data containing source and target sequences, a model θ is learned using the following
objective:

L = −
J∑
j=1

|V |∑
k=1

1{yj = k} × log p(yj = k|y<j,x, θ), (1)

where x = [x1, ...,xI] and y = [y1, ...,yJ] are the source/target sequences respectively, I and J
are the source/target length, and |V | is the size of the vocabulary. Unless otherwise stated, we use
beam search with a fixed number of hypotheses in order to generate a translation from this model.

Pseudo-label training (PLT) In this paper we introduce the term PLT to refer to the general
technique of adding pseudo-labeled data in training, where the labels are obtained using a previously
trained NMT model. Specifically, we consider two-step pseudo-label training. In a first stage we
estimate a teacher model θ∗ trained with a supervised loss on samples drawn from p, the empirical
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distribution of the original training data:

L = −Ex∼p(x)Ey∼p(y|x)p(y|x) log pθ∗(y|x)
In a second step we estimate the final student model θ, combining the supervised loss with a PL
(pseudo-label) loss L+ LPL, where:

LPL = −Ex∼pPL(x),y′ log pθ(y
′|x)

In this case the targets y′ are given by the teacher distribution pθ∗ and the samples are drawn from a
second distribution, pPL, which varies in the experiments below.

Related techniques As discussed earlier, PLT is a common feature of several widely used tech-
niques in NMT such as self-training (a.k.a. forward-translation) and sequence-level knowledge dis-
tillation. This paper opts for the more precise term pseudo-label training (PLT) in order to avoid
confusion with additional assumptions made by these techniques. Specifically:

• PLT does not necessarily imply semi-supervision, as self-training does.
• PLT is more specific than KD in that it is restricted to hard labels (as opposed to training on soft

targets (Hinton et al., 2015)), but more generic as it does not assume model compression.
• Another technique for introducing synthetic data is the use of back-translation (BT) where target

segments are translated into source segments (Sennrich et al. (2016a); Hoang et al. (2018); Edunov
et al. (2020); among others). PLT does not include BT since the latter does not introduce synthetic
targets or labels.

Lastly, note that self-training is closely related to entropy minimization (Grandvalet & Bengio,
2004), a semi-supervised technique that encourages high-confidence predictions on un-labeled data.
When reducing this objective to its mode, it becomes identical to LPL above, also observed in He
et al. (2020).

4 MODEL INERTIA

This section introduces a set of desired stability-related MT properties that we group under the term
inertia. All our metrics are closed-box (based on user-observed model behaviour alone) and we
investigate two types of model inertia: (1) robustness to input perturbations (or smoothness) and (2)
stability across incremental model updates.

4.1 INPUT SMOOTHNESS

Robustness to input variations is important in MT models, which have been shown to be negatively
affected by misspellings and other small variations in input (Belinkov & Bisk, 2018). Niu et al.
(2020) introduced metrics that contrast translations of noisy input with those of their clean counter-
parts in order to disentangle robustness from generic quality changes. We evaluate model robust-
ness and consistency to input changes following the definitions introduced in Niu et al. (2020):
Robustness measures degradation in translation quality when small variations are present in
the input, while Consistency is a reference-free metric for changes in translation output alone.
Specifically:

Robustness =
BLEU(Y ′, Yref )

BLEU(Y, Yref )
Consistency = H(BLEU(Y ′, Y ),BLEU(Y, Y ′)) (2)

where Yref stands for reference translations, Y, Y ′ are translations of a clean/noisy versions of the
test set (e.g., one with introduced misspellings) and H(·, ·) stands for the harmonic mean. In this
paper, we expand these definitions to consider robustness not only to synthetic misspellings, but also
to natural grammatical errors.

4.2 STABILITY TO MODEL UPDATES

Unlike smoothness metrics, stability metrics are functions of two models: an original one (e.g., one
that is deployed and available to users) and an update of this model which implements an incremental
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change. We denote a model update as a pair (θ, D, A)i, (θ, D, A)i+1, where θ are the model
parameters obtained when training using data D and algorithm A. While many incremental updates
are possible, in this work we keep the model size and architectures intact and vary the random
parameter initialization in training, following Xie et al. (2021) and Cai et al. (2022). We define
stability as a measure of similarity between model outputs, irrespective of quality changes, while
regressions (negative flips) measure output changes that result in lower quality on a given input
segment (Cai et al., 2022; Xie et al., 2021; Shen et al., 2020; Yan et al., 2021).

STABILITY Stability is measured as string similarity between the different outputs Yi, Yi+1.
We use a symmetric BLEU-based metric, the harmonic mean between BLEU(Yi, Yi+1) and
BLEU(Yi+1, Yi), where Yi and Yi+1 are translations obtained with models θi and θi+1, respectively.

NFR Similarly to earlier works (Cai et al., 2022; Xie et al., 2021; Yan et al., 2021), we measure
regressions as Negative Flip Rate, the number of sentences for which the translation degrades be-
tween model updates over the total number of segments. We consider degradations in terms of both
overall quality and a targeted translation error category. Unlike other tasks, NMT lacks a reliable
automatic segment-level quality metric; we use human evaluations for this reason. Having an addi-
tional targeted error category allows us to measure segment-level regression automatically. In this
work, we adopt gender translation accuracy as the targeted error category.

NFI Following Cai et al. (2022), we also measure regressions in terms of Negative Flip Impact. NFI
is defined as the proportion of negative flips to the total number of errors made by the new model.
Note that in NMT, error is less well-defined for quality since it is not a categorical concept. This is
not the case with targeted translation error categories.

5 EXPERIMENTS

We perform experiments across 6 language pairs (LPs): English (en)↔German (de), Russian (ru),
and Japanese (ja). We adapt the Transformer-base architecture (Vaswani et al., 2017) to 20 encoder
layers and 2 decoder layers (denoted 20:2) as recommended by Domhan et al. (2020) and SSRU
decoder layers for faster decoding (Kim et al., 2019). The deep-encoder-shallow-decoder configu-
ration is widely used (Miceli Barone et al., 2017; Kim et al., 2019; Kasai et al., 2021), and the 20:2
model was found by Domhan et al. (2020) to yield comparable quality to the 6:6 and 10:10 models
while significantly decreasing latency. Unless otherwise noted, we use beam decoding with a beam
size of 5 (further details in Appendix A).

Experiments are carried out with the WMT21 dataset (Akhbardeh et al., 2021). For en↔de we
use 286M parallel segments, for en↔ja we use 17.2M parallel segments, and for en↔ru we use
34M parallel segments. For development, we use WMT newstest datasets from earlier years (see
Appendix B for more details on datasets used). We evaluate quality using BLEU1 (Papineni et al.,
2002) on the WMT21 newstest sets (Akhbardeh et al., 2021). We use only source-original test sets in
order to avoid misestimating model performance by using translationese input (Marie et al., 2020).

We train PLT-augmented models using a mix of the original training data and pseudo-labeled data
in a joint training setting following Zhang & Zong (2016); Gordon & Duh (2019). Based on recom-
mendations by He et al. (2020), we use dropout for all the models, set to 0.1. We do not tune the
trade-off between the two losses L and LPL (we use an equal amount of original and PLT data) or
the number of incremental applications of the PLT augmentation.

5.1 QUALITY AND INERTIA USING PSEUDO-LABELED DATA

This section evaluates PLT for both generic model quality and for inertia. Unless otherwise noted,
student models share the same architecture as the teacher and are trained using the same parallel data
with the addition of pseudo-labeled data. PLT can be implemented by sampling and labeling data
from different source distributions pPL: the original training data (as in KD) or unseen monolingual
data (i.e. semi-supervised). This section tests both: to that end, teacher models are trained on half
of the available parallel data, while the other half is reserved as a source of unlabeled monolingual
data. Specifically, we compare:

1Specifically, using sacreBLEU (Post, 2018) with signature: nrefs:1|case:mixed|eff:no|tok:
13a|smooth:exp|version:2.0.0 except for en→ja where we use the ja-mecab tokenizer.
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SRC Thousands of people aree guven a drug and thousands of others are given a placebo..
BASELINE Tausende von Menschen erhalten Guven ein Medikament und Tausende von anderen

erhalten ein Placebo.
PLT(TRAIN) Tausende von Menschen erhalten eine Droge und Tausende von anderen erhalten ein

Placebo.
SRC Can yo put cites on those?
BASELINE Können Sie Zitate darauf setzen?
PLT(TRAIN) Kannst du diese zitieren?

Table 1: Example translations from BASELINE and PLT(TRAIN) on the synthetic misspellings
and GMEG test sets. In the first example (synthetic misspelling), the baseline invents the word
Guven as a translation of the original miss-spelled word, guven(given). PLT translates the second
example (English learner error) as Can you cite these? using the informal register, while the Baseline
translates it literally as Can you put citations on these? (formal register).

• BASELINE: Model trained on half the available data without any data augmentation.
• PLT(TRAIN): Data used in PLT augmentation is sampled from the training data.
• PLT(UL): Data used in PLT augmentation is sampled from unused parallel data.
• ALLDATA: Finally, to account for the differences in training data size, we also compare against a

model trained on all available parallel data without any PLT.

5.1.1 INPUT SMOOTHNESS

For each of these models we compute newstest set quality (BLEU score) as well as model smooth-
ness (robustness and consistency). We measure robustness and consistency as defined in Section 4
with the following sources of input variations:

• Synthetic misspellings: We introduce misspellings as proposed by Niu et al. (2020) into the new-
stest set. Each word is misspelled with probability of 0.1, and the strategy is randomly chosen
from single-character deletion, insertion, and substitution (Karpukhin et al., 2019).

• GMEG: The GMEG corpus (Napoles et al., 2019) contains data with natural errors made by En-
glish language learners (grammatical misuse, misspellings, etc.). We compute consistency using
the noisy input and a reference correction made by a professional annotator. We report the average
consistency over the four provided reference corrections.2

Example translations and results are show in Tables 1 and 2, respectively. Across all LPs, translation
quality improves when pseudo-labeled data is used in training, irrespective of the source of the data
added. However, sampling from unseen data does not bring additional improvements over using
seen data for PLT. Similarly, using all parallel data vs. only half is not beneficial across the board,
suggesting limitations of the training data w.r.t. the test domain.

PLT shows significantly higher model consistency on both synthetic misspellings and the GMEG test
sets.3 Unlike Niu et al. (2020), however, we find that robustness scores (translation quality changes
relative to input changes) are not as well correlated with consistency scores, suggesting that while
translations are more stable under noisy conditions they may not necessarily be better. In the context
of semi-supervised learning, it has been hypothesized that self-training has the effect of making
models smoother through the addition of new data (He et al., 2020; Wei et al., 2021). Our results
suggest that this is not necessarily the case, as smoothness results are similar irrespective of the use
of new unlabeled (monolingual) data (i.e., PLT(TRAIN) and PLT(UL) have similar smoothness).

5.1.2 STABILITY TO MODEL UPDATES

Next we investigate stability properties with respect to model updates when PLT is used in training.
We fix the training data as the source of the pseudo-labeled data (i.e., we consider only PLT(TRAIN))
and compare translation changes when re-training a model. Recall, a model update consists of a pair

2It is not possible to compute robustness scores for GMEG as this set does not contain reference translations.
3The noise datasets (synthetic misspellings and GMEG) do not cover the ja→en translation direction. It is

therefore not included in Table 2.
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Misspellings GMEG
LP Setting Teacher Student (Original + PL) BLEU Rob Const Const

en→de

ALLDATA – 286M + 0 27.83 0.88±0.01 73.9±0.9 83.1
BASELINE – 143M + 0 27.62 0.88±0.01 73.1±0.9 82.8
PLT(TRAIN) 143M 143M + 143M (Train) 27.88 0.87±0.01 76.5±0.8 85.1
PLT(UL) 143M 143M + 143M (UL) 28.08 0.86±0.01 76.8±0.8 85.3

en→ru

ALLDATA – 34M + 0 25.72 0.84±0.02 66.4±1.1 79.3
BASELINE – 17M + 0 25.08 0.84±0.02 64.9±1.0 78.4
PLT(TRAIN) 17M 17M + 17M (Train) 26.12 0.85±0.01 70.2±1.0 81.5
PLT(UL) 17M 17M + 17M (UL) 25.89 0.85±0.02 70.1±1.0 82.2

en→ja

ALLDATA – 17.2M + 0 23.71 0.85±0.02 59.3±1.1 72.6
BASELINE – 8.6M + 0 22.66 0.86±0.02 59.3±1.1 71.5
PLT(TRAIN) 8.6M 8.6M + 8.6M (Train) 24.31 0.86±0.01 64.5±1.1 75.9
PLT(UL) 8.6M 8.6M + 8.6M (UL) 24.56 0.86±0.01 64.5±1.1 75.9

de→en

ALLDATA – 286M + 0 32.34 0.89±0.01 77.4±1.0 -
BASELINE – 143M + 0 32.38 0.89±0.01 76.9±1.0 -
PLT(TRAIN) 143M 143M + 143M (Train) 32.97 0.88±0.01 80.0±0.8 -
PLT(UL) 143M 143M + 143M (UL) 32.51 0.88±0.01 80.2±0.9 -

ru→en

ALLDATA – 34M + 0 36.42 0.95±0.01 85.6±0.8 -
BASELINE – 17M + 0 36.27 0.95±0.01 84.2±0.9 -
PLT(TRAIN) 17M 17M + 17M (Train) 37.02 0.97±0.01 87.6±0.7 -
PLT(UL) 17M 17M + 17M (UL) 36.87 0.97±0.01 87.0±0.7 -

Table 2: Training data sizes and performance scores for PLT/Baseline models. Quality is measured
with BLEU on the WMT21 newstest set. Smoothness is measured as robustness and consistency to
synthetic (Misspellings) and natural (GMEG) noise. GMEG scores are computed as the average over
four reference corrections. Robustness measures changes in translation quality w.r.t input variations,
while Consistency measures translation changes alone.

en→de de→en en→ja ja→en en→ru ru→en
Setting St. EM St. EM St. EM St. EM St. EM St. EM
ALLDATA 73.32 15.6% 77.45 28.8% 54.56 2.1% 44.73 4.6% 63.45 7.9% 69.78 14.1%
BASELINE 72.48 14.2% 77.95 30.4% 53.64 2.1% 40.78 3.6% 60.48 7.4% 67.01 11.3%
PLT-δ(STUDENT) 82.03 27.9% 86.34 46.3% 65.12 5.6% 56.89 8.4% 72.93 14.3% 77.11 24.8%
PLT-δ(TEACHER) 81.45 26.3% 85.04 42.4% 63.25 5.5% 54.75 5.6% 69.97 11.3% 74.81 20.6%
DISTIL. 75.44 16.2% 80.57 35.3% 44.73 4.6% 44.54 3.5% 64.51 7.0% 70.20 15.0%

Table 3: Stability (St.) to model updates, in this case re-training with different random seed. Exact
match (EM) is the percent of outputs that stay identical across the two models. For Distillation
(Distil.), the second model is trained to mimic the first model.

(θ, D, A)1, (θ, D, A)2, where θ are the model parameters obtained when training using data D and
algorithm A. In these experiments, we keep the network architecture identical and hold A1 = A2,
modulo the random seed used in initialization. We contrast several settings:

• BASELINE: Models are trained and re-trained with half the original data (D1 = D2), and no
pseudo-labeled data is used. As above, we also evaluate the case where all of the original data is
used (ALLDATA). We vary the random seed, leading to θ1 6= θ2.

• PLT-δ(STUDENT): This tests the hypothesis that using PLT leads to more stable models that
behave similarly when varying minor training conditions. We consider an identical setup as the
baseline (D1 = D2), except that the data is augmented to contain PLT data

• PLT-δ(TEACHER): In this setting, the two models θ1 and θ2 use PLT data in training; however,
two different teachers are used to create it (the teachers are trained with different random seeds).
This simulates a realistic setting where the teachers used to create pseudo-labels are not likely to
stay constant. Note however that this is not an direct comparison to the baseline and PLT methods:
the models do not vary in random seed alone, but also the contents of the training data (D1 6= D2).

• DISTILLATION: In this setting D2 is obtained from D1 using pseudo-labeled data obtained with
model θ1. The training data D1 is re-translated and merged with the original D1 to create D2.
This setting is a standard distillation approach for minimizing regressions, where θ2 is trained to
explicitly mimic θ1’s predictions (Yan et al., 2021; Cai et al., 2022).
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WMT21 WinoMT
en→de en→ja en→ru en→de en→ru

Setting NFR NFR NFR NFR NFI NFR NFI
ALLDATA 18.1% 16.5% 14.1% 4.7% 14.3% 5.4% 9.2%
BASELINE 18.0% 14.9% 16.1% 5.2% 17.0% 5.4% 9.0%
PLT-δ(STUDENT) 7.4% 15.0% 10.2% 3.2% 9.8% 3.2% 5.2%
PLT-δ(TEACHER) 7.8% 13.6% 11.1% 3.6% 10.8% 3.2% 5.2%
DISTIL. 14.4% 19.1% 10.9% 4.7% 14.8% 4.4% 7.2%

Table 4: Negative flip rate (NFR) and negative flip impact (NFI) as assessed by human annotators
on WMT21 and using automatic gender translation accuracy evaluations on WinoMT.

Stability and regression metrics are averaged over (θ1, θ2) and (θ2, θ1) scores given that random
initialization changes are not directional model updates. Tables 3 and 4 show stability and regression
metrics respectively (regression results are discussed in the next section).

First we observe that a striking number of translations change when changing random initialization:
only 15% of outputs remain identical for en→de, and 8% and 2% remain identical for the lower-
resource en→ru and en→ja pairs respectively. Doubling the amount of training data (ALLDATA)
improves stability, but not by a large margin. Across all LPs tested, PLT improves stability relative
to the baseline models, and nearly doubles the percentage of segments translated identically. In-
terestingly, PLT also improves stability relative to the system trained on all available parallel data,
once again indicating that inertia effects do not simply stem from more data. This result is particu-
larly surprising for the PLT-δ(TEACHER) setting: unlike the baseline, the two models compared are
trained on different data on the target side, yet their outputs are more similar to each other than the
baseline outputs are to each other. This suggests that the high translation variability of the original
data (a.k.a. multiple modes in Gu et al., 2018) is an issue with auto-regressive MT as well, and that
pseudo-labeled data alleviates it even when created with different models.

Finally, we also find that distillation, where a new model is explicitly trained to mimic the previ-
ous model, increases stability between teacher and student, confirming earlier observations on text
classification Cai et al. (2022). However, this improvement is modest in our experiments.

5.1.3 NEGATIVE FLIPS

Next, we assess PLT in terms of negative flips (NFs) as described in Section 4. We evaluate regres-
sions in terms of overall quality (human evaluations on the WMT21 newstest set) and on a targeted
error category (gender translation accuracy). For human evaluations, we used two professional an-
notators who assigned scores on a scale of 1 to 6 with 0.2 increments, where 6 indicates a perfect
translation. A NF is defined as both annotators agreeing that there is a degradation. Since quality is
evaluated on a scale, and not as a binary score, the concept of NFI is ambiguous. We therefore com-
pute negative flip rate (NFR) alone. We evaluate on en→de,ja,ru due to availability of annotators.

For gender translation accuracy, which aggregates categorical measuremennts, we evaluate both
NFR and NFI. We use the WinoMT benchmark (Stanovsky et al., 2019), a gender accuracy bench-
mark with a reliable segment-level metric suitable for automatic measurements of negative flips.
The dataset consists of English source segments containing a profession whose gender is ambiguous
at the lexical level but disambiguated in the sentential context, along with an automatic morphology-
based classifier that evaluates the gender accuracy when translated. We evaluate on the two of our
LPs that are covered by WinoMT, en→de and en→ru.

Results are shown in Table 4. First, we observe that, like other NLP tasks, regressions are also
an issue for NMT: on WMT21, 15%-20% of the test set samples are judged as having degraded
in quality according to both human annotators. NFR is lower for the gender translation accuracy
task; however, these still amount to 10%-15% of the total number of errors, as measured by NFI.
Mirroring stability results, both PLT models have significantly fewer segment-level regressions than
baseline models. For quality, this is most pronounced for en→de,ru (∼50%-100% relative NFR
reduction). In contrast, the effect of distillation is not consistent across the LPs or the two test sets.
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Teacher PLT
LP Arch. BLEU BLEU Stability Const(GMEG) Rob(Missp) Const(Missp)

en→X

– – 25.12 62.20 77.57 0.861 65.77
20:1 24.08 25.54 72.67 79.93 0.855 69.72
20:2 25.12 26.12 74.10 80.72 0.861 70.38
20:4 25.63 26.27 73.68 80.87 0.854 70.05

X→en

– – 28.12 61.91 – 0.917 80.53
20:1 26.74 28.30 73.15 – 0.915 83.56
20:2 28.12 29.56 73.96 – 0.924 83.80
20:4 28.40 29.94 73.86 – 0.924 83.99

Table 5: PLT models using teachers of varying quality (averages over the three LPs in each direc-
tion). We find that teacher quality plays a large role in quality of PLT; however, weaker teachers can
surprisingly still improve student quality. In terms of inertia properties, these are preserved by both
weaker and stronger teachers. Note X→en averages for robustness and consistency to misspelling
include only de,ru→en.

5.2 TEACHER QUALITY

In previous sections, we found that quality and model inertia improved when using PLT regardless of
the source of the data. In this section, we examine another dimension which distinguishes different
flavors of PLT, namely teacher quality. Stronger teachers (teachers with larger capacity than the
student) are more common in KD applications whereas identical teacher and student models are the
norm in self-training/forward-translation. Specifically, we vary the base 20:2 teacher architecture
by decreasing the number of decoder layers to 1 (weaker teacher) and increasing it to 4 (stronger
teacher). We keep the student architecture identical at 20:2 layers and fix the source of pseudo-
labeled data to the training set (referred to as PLT(TRAIN) in earlier sections).

Results are given in Table 5. Interestingly, we find that teacher quality does not play a large role in
model stability. There are small improvements in stability and robustness when stronger teachers
are used, but gains are roughly in range for all teacher models considered, even for weak teachers.
Stronger teachers, however, are responsible for better performing student models. Most surprisingly,
we found quality improvements over the baseline even when the teacher is of worse quality than the
baseline model. This corroborates other work suggesting that the mechanism behind PLT is not
simply that of compressing better performing (sets of) models (Furlanello et al., 2018; Hahn &
Choi, 2019; Yuan et al., 2020).

6 DISTRIBUTION SIMPLIFICATION

The previous section showed that PLT increases both quality and model inertia under different mono-
lingual data and teacher quality settings, which typically distinguish the different types of PLT com-
monly used in MT such as forward translation and SKD. We hypothesize that the increased inertia
observed is correlated with a distribution simplification mechanism: PLT leads to simpler training
data, resulting in models that are less brittle. We test this by comparing PLT with other techniques
used to improve quality and smoothness, but that may not have a distribution simplification effect.
Below, we fix the source of pseudo-label data to the training data and test:

• BT: Back-translation, a commonly used semi-supervised method that adds parallel data obtained
through translation of target data with a reverse-direction MT model.

• BPE-DROPOUT: A regularization method that has been shown to improve robustness to noise
(Provilkov et al., 2020). We used a dropout rate of 0.1 as recommended by the authors.

• PLT(SAMPLE): A variant of PLT where we vary the decoding strategy and perform sampling de-
coding which leads to more complex data and weaker student models (Zhou et al., 2020). Specif-
ically, we sampled the top-8 hypotheses.

In previous work, Zhou et al. (2020) proposed a conditional entropy measure of training data com-
plexity and showed that non-autoregressive translation performance is dependent on simpler training
data distributions, such as those obtained with SKD. Here, we use the same entropy-based measure.
For each setting, we (1) compute an alignment model on the training data using fast align (Dyer
et al., 2013), (2) use it to align a sample of the training corpus, and (3) compute the entropy of the
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LP Setting C(d) ↓ BLEU Stability Const(GMEG) Rob(Missp) Const(Missp)

en→X

BASELINE 3.74 25.12 62.20 77.57 0.861 65.77
BT 3.64 25.96 65.36 77.16 0.845 64.83
BPE-DROPOUT 3.90 24.82 61.70 78.69 0.912 71.86
PLT(SAMPLE) 3.56 25.96 71.97 80.41 0.858 69.87
PLT(TRAIN) 3.54 26.12 74.10 80.73 0.861 70.38

X→en

BASELINE 3.12 28.12 61.91 – 0.917 80.53
BT 3.01 28.88 64.91 – 0.907 80.00
BPE-DROPOUT 3.41 28.19 61.73 – 0.942 84.96
PLT(SAMPLE) 2.98 29.41 72.69 – 0.917 83.70
PLT(TRAIN) 2.94 29.56 73.96 – 0.924 83.80

Table 6: Performance and model inertia with PLT versus other methods (averages over the three LPs
in each direction). Stability to model updates is computed w.r.t. to random seed variation in student
models. X→en averages for robustness and consistency to misspellings involve de,ru→en.

aligned data, leading to: C(d) = − 1
|Vx|

∑
x∈Vx

Ey|xalign
log(y|x), where y is the sequence of train-

ing data tokens and xalign the sequence of source side tokens that y tokens are aligned to. Lower
entropy indicates that the data is explained by a simpler word-to-word translation model that uses
similar word translations irrespective of context.

Results are shown in Table 6. First, we observe that the complexity scores confirm the results
reported by Zhou et al. (2020), with smaller-scale differences due to the fact that we mix both
original data and pseudo-labeled data. BPE-DROPOUT performs best on smoothness w.r.t. synthetic
noise: it outperforms all methods by a large margin on robustness, and by a smaller margin on
consistency. This is not the case on data with natural noise (GMEG), where the increased consistency
effect is smaller w.r.t. the BASELINE model. With respect to the other metrics, BPE-DROPOUT
has no effect on quality (BLEU) and a minor negative effect on stability across re-training. BPE-
DROPOUT is not only the only method that lowers stability, but also the only method that increases
the complexity of the data when compared to the baseline.

BT shows a data simplification effect, mirrored by increased stability when re-training. However,
BT has a detrimental effect on robustness and consistency metrics. These results indicate that while
back-translation and forward translation are typically seen as very similar methods, they in fact have
different properties. PLT(SAMPLE) performs very similarly to PLT(TRAIN): when compared with
PLT(TRAIN), it leads to slightly more complex data, and slightly worse quality and inertia scores
across the board. Finally, PLT(TRAIN) shows the lowest complexity scores and the highest stability.

While these results show that stability and complexity correlate, not all methods that simplify the
data improve smoothness; conversely, smoothness to synthetic noise can be improved significantly
with complementary methods such as BPE-DROPOUT. Finally, our results corroborate Niu et al.
(2020) that synthetic noise and natural noise are different in nature and not all methods are equally
effective on both types of noise.

7 CONCLUSION

This paper focuses on pseudo-label training, a technique common to a number of methods for boost-
ing neural machine translation performance. We find that in addition to well-studied gains in generic
translation quality, this method induces several desirable stability-related properties, which we group
under the term inertia. We empirically show that these improvements are not tied to the use of unla-
beled data (as in self-training) or the use of stronger teacher models (knowledge distillation) but are a
consequence of the use pseudo-labeled data itself. Finally, we compare with other methods designed
to improve robustness in NMT and observe that the effect on stability over re-training is observed
only for those methods that simplify the training data. In future work, we plan to further investigate
the interplay between PLT and different formulations of NMT (auto- vs. non-autoregressive MT) as
well as potential negative side effects such as bias amplification (Renduchintala et al., 2021).
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Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Yvette
Graham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz,
Mathias Müller, Santanu Pal, Matt Post, and Marcos Zampieri. Findings of the 2019 con-
ference on machine translation (WMT19). In Proceedings of the Fourth Conference on Ma-
chine Translation (Volume 2: Shared Task Papers, Day 1), pp. 1–61, Florence, Italy, Au-
gust 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-5301. URL
https://aclanthology.org/W19-5301.

Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural machine
translation. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=BJ8vJebC-.

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. CoRR,
abs/1206.5533, 2012. URL http://arxiv.org/abs/1206.5533.
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Courtney Napoles, Maria Nădejde, and Joel Tetreault. Enabling robust grammatical error cor-
rection in new domains: Data sets, metrics, and analyses. Transactions of the Association
for Computational Linguistics, 7:551–566, 2019. doi: 10.1162/tacl a 00282. URL https:
//aclanthology.org/Q19-1032.

12

https://aclanthology.org/D17-1215
https://aclanthology.org/D19-5506
https://openreview.net/forum?id=KpfasTaLUpq
https://aclanthology.org/D16-1139
https://aclanthology.org/D19-5632
https://aclanthology.org/P18-1007
https://aclanthology.org/P18-1007
http://arxiv.org/abs/1906.11943
http://arxiv.org/abs/1906.11943
https://arxiv.org/abs/1909.10447
https://aclanthology.org/2020.acl-main.532
https://aclanthology.org/2020.acl-main.532
https://aclanthology.org/W17-4710
https://aclanthology.org/W17-4710
https://aclanthology.org/2020.lrec-1.443
https://aclanthology.org/Q19-1032
https://aclanthology.org/Q19-1032


Under review as a conference paper at ICLR 2023

Xing Niu, Prashant Mathur, Georgiana Dinu, and Yaser Al-Onaizan. Evaluating robustness to
input perturbations for neural machine translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp. 8538–8544, Online, July 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.755. URL https:
//aclanthology.org/2020.acl-main.755.

Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation
as a defense to adversarial perturbations against deep neural networks. CoRR, abs/1511.04508,
2015. URL http://dblp.uni-trier.de/db/journals/corr/corr1511.html#
PapernotMWJS15.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002.
Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//aclanthology.org/P02-1040.

Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Con-
ference on Machine Translation: Research Papers, pp. 186–191, Brussels, Belgium, Octo-
ber 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-6319. URL
https://aclanthology.org/W18-6319.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pp. 157–163, Valencia, Spain, April 2017. Association for Computational
Linguistics. URL https://aclanthology.org/E17-2025.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita. BPE-dropout: Simple and effective sub-
word regularization. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 1882–1892, Online, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.170. URL https://aclanthology.org/2020.
acl-main.170.

R. Pryzant, Y. Chung, D. Jurafsky, and D. Britz. JESC: Japanese-English Subtitle Corpus. Language
Resources and Evaluation Conference (LREC), 2018.

Nils Reimers and Iryna Gurevych. Reporting score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. In EMNLP, 2017.

Adithya Renduchintala, Denise Diaz, Kenneth Heafield, Xian Li, and Mona Diab. Gender bias
amplification during speed-quality optimization in neural machine translation. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language Processing (Volume 2: Short Papers). As-
sociation for Computational Linguistics, 2021. doi: 10.18653/v1/2021.acl-short.15. URL
https://doi.org/10.18653%2Fv1%2F2021.acl-short.15.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong, and Francisco Guzmán. WikiMa-
trix: Mining 135M parallel sentences in 1620 language pairs from Wikipedia. In Proceedings
of the 16th Conference of the European Chapter of the Association for Computational Linguis-
tics: Main Volume, pp. 1351–1361, Online, April 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.eacl-main.115. URL https://aclanthology.org/2021.
eacl-main.115.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 86–96, Berlin, Germany, Au-
gust 2016a. Association for Computational Linguistics. doi: 10.18653/v1/P16-1009. URL
https://aclanthology.org/P16-1009.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, August

13

https://aclanthology.org/2020.acl-main.755
https://aclanthology.org/2020.acl-main.755
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#PapernotMWJS15
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#PapernotMWJS15
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://aclanthology.org/W18-6319
https://aclanthology.org/E17-2025
https://aclanthology.org/2020.acl-main.170
https://aclanthology.org/2020.acl-main.170
https://doi.org/10.18653%2Fv1%2F2021.acl-short.15
https://aclanthology.org/2021.eacl-main.115
https://aclanthology.org/2021.eacl-main.115
https://aclanthology.org/P16-1009


Under review as a conference paper at ICLR 2023

2016b. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https:
//aclanthology.org/P16-1162.

Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano Soatto. Towards backward-compatible rep-
resentation learning. In CVPR, pp. 6367–6376. IEEE, 2020. ISBN 978-1-7281-7168-5. URL
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2020.html#ShenXXS20.

Gabriel Stanovsky, Noah A. Smith, and Luke Zettlemoyer. Evaluating gender bias in machine
translation. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin-
guistics, pp. 1679–1684, Florence, Italy, July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1164. URL https://aclanthology.org/P19-1164.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In International Conference on
Learning Representations, 2014. URL http://arxiv.org/abs/1312.6199.

Xu Tan, Yi Ren, Di He, Tao Qin, and Tie-Yan Liu. Multilingual neural machine translation with
knowledge distillation. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=S1gUsoR9YX.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Shuo Wang, Zhaopeng Tu, Zhixing Tan, Shuming Shi, Maosong Sun, and Yang Liu. On the
language coverage bias for neural machine translation. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, pp. 4778–4790, Online, August 2021. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.422. URL https:
//aclanthology.org/2021.findings-acl.422.

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training
with deep networks on unlabeled data. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=rC8sJ4i6kaH.

Yuqing Xie, Yi-An Lai, Yuanjun Xiong, Yi Zhang, and Stefano Soatto. Regression bugs are in
your model! measuring, reducing and analyzing regressions in NLP model updates. In Proceed-
ings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
6589–6602, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.acl-long.515. URL https://aclanthology.org/2021.acl-long.515.

Weijia Xu, Shuming Ma, Dongdong Zhang, and Marine Carpuat. How does distilled data complexity
impact the quality and confidence of non-autoregressive machine translation? In Findings of the
Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 4392–4400, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.385. URL
https://aclanthology.org/2021.findings-acl.385.

Sijie Yan, Yuanjun Xiong, Kaustav Kundu, Shuo Yang, Siqi Deng, Meng Wang, Wei Xia, and Ste-
fano Soatto. Positive-congruent training: Towards regression-free model updates. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14299–
14308, June 2021.

Li Yuan, Francis E. H. Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge dis-
tillation via label smoothing regularization. In 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 3902–
3910. IEEE, 2020. ISBN 978-1-7281-7168-5. doi: 10.1109/CVPR42600.2020.00396. URL
https://doi.org/10.1109/CVPR42600.2020.00396.

Jiajun Zhang and Chengqing Zong. Exploiting source-side monolingual data in neural machine
translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pp. 1535–1545, Austin, Texas, November 2016. Association for Computational Lin-
guistics. doi: 10.18653/v1/D16-1160. URL https://aclanthology.org/D16-1160.

14

https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2020.html#ShenXXS20
https://aclanthology.org/P19-1164
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=S1gUsoR9YX
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2021.findings-acl.422
https://aclanthology.org/2021.findings-acl.422
https://openreview.net/forum?id=rC8sJ4i6kaH
https://aclanthology.org/2021.acl-long.515
https://aclanthology.org/2021.findings-acl.385
https://doi.org/10.1109/CVPR42600.2020.00396
https://aclanthology.org/D16-1160


Under review as a conference paper at ICLR 2023

Chunting Zhou, Jiatao Gu, and Graham Neubig. Understanding knowledge distillation in non-
autoregressive machine translation. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=BygFVAEKDH.

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno Pouliquen. The United Nations parallel
corpus v1.0. In Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC’16), pp. 3530–3534, Portorož, Slovenia, May 2016. European Language Re-
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A TRAINING PARAMETERS

All models used in our experiments utilized the following set of hyperparameters. Training and
development data was tokenized using the Sacremoses tokenizer.4 Words were segmented using
BPE (Sennrich et al., 2016b) with 32K operations. Source and target subwords shared the same
vocabulary. Training segments longer than 95 tokens were removed.

The source embeddings, target embeddings, and the output layer’s weight matrix are tied (Press &
Wolf, 2017). Training is done on 8 GPUs with Sockeye 3’s large batch training. It has an effec-
tive batch size of 327,680 tokens, a learning rate of 0.00113 with 2000 warmup steps and a reduce
rate of 0.9, a checkpoint interval of 125 steps, and learning rate reduction after 8 checkpoints with-
out improvement. After an extended plateau of 60 checkpoints, the 8 checkpoints with the lowest
validation perplexity are averaged to produce the final model parameters.

Parameters for standard training:

'learning_rate_scheduler_type': 'inv-sqrt-decay', 'keep_last_params':
10, 'update_interval': 16, 'transformer_model_size': (512, 512),
'transformer_postprocess': ('dr', 'dr'), 'learning_rate_warmup': 2000,
'transformer_dropout_act': (0.1, 0.1),
'transformer_feed_forward_num_hidden': (2048, 2048),
'max_num_checkpoint_not_improved': 60, 'weight_init_xavier_factor_type':
'avg', 'optimized_metric': 'perplexity', 'cache_strategy': 'best',
'num_layers': (20, 2), 'use_cpu': False,
'checkpoint_improvement_threshold': 0.001, 'device_ids': [-1],
'learning_rate_reduce_num_not_improved': 8, 'initial_learning_rate':
0.06325, 'seed': 1, 'cache_metric': 'perplexity',
'gradient_clipping_type': 'abs', 'cache_last_best_params': 8,
'weight_init_scale': 3.0, 'dtype': 'float32', 'decode_and_evaluate':
500, 'max_seconds': 1036800, 'amp': True, 'keep_initializations': True,
'transformer_dropout_prepost': (0.1, 0.1),
'transformer_attention_heads': (8, 8), 'weight_tying_type':
'src_trg_softmax', 'learning_rate_reduce_factor': 0.9, 'loss':
'cross-entropy', 'horovod': True, 'num_embed': (512, 512),
'embed_dropout': (0.0, 0.0), 'transformer_preprocess': ('n', 'n'),
'encoder': 'transformer', 'loglevel_secondary_workers': 'ERROR',
'label_smoothing': 0.1, 'batch_size': 2500, 'learning_rate_t_scale':
1.0, 'batch_type': 'max-word', 'optimizer': 'adam',
'transformer_dropout_attention': (0.1, 0.1), 'decoder':
'ssru_transformer', 'min_num_epochs': 1, 'checkpoint_interval': 500,
'transformer_positional_embedding_type': 'fixed', 'lock_dir': '/data',
'gradient_clipping_threshold': -1.0, 'weight_init': 'xavier',
'no_hybridization': False, 'batch_sentences_multiple_of': 8,
'transformer_activation_type': ('relu', 'relu')

B DATASET

We trained enen↔de models on Paracrawl v9 (Bañón et al., 2020), WikiMatrix (Schwenk et al.,
2021), WikiTitles (Bojar et al., 2018), and news commentary datasets (Barrault et al., 2019). For

4https://github.com/alvations/sacremoses
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en↔ru we additionally added the UN v1.0 dataset (Ziemski et al., 2016). For en↔ja we used
JParaCrawl (Morishita et al., 2020) instead of ParaCrawl v9 and additionally added the Japanese-
English subtitles dataset (Pryzant et al., 2018).

LP Datasets # parallel
en↔de Paracrawl v9, WikiMatrix, WikiTitles, news commentary 286 M
en↔ja JParacrawl v2, WikiMatrix, WikiTitles, news commentary, Japanese-English subtitles 17.2 M
en↔ru Paracrawl, WikiMatrix WikiTitles, news commenatry, UN v1.0 34 M

Table 7: We trained our models on a subset of datasets from the WMT21 news task. Specifically,
we used Paracrawl v9 (Bañón et al., 2020), WikiMatrix (Schwenk et al., 2021), WikiTitles (Bojar
et al., 2018), news commentary, UN v1.0 dataset (Ziemski et al., 2016), JParaCrawl (Morishita et al.,
2020) and the Japanese-English subtitles datasets (Pryzant et al., 2018).

LP Years # parallel
en↔de 2017-2020 9k
en↔ja 2020 2k
en↔ru 2017-2020 9k

Table 8: We used the WMT news test datasets from previous years as our development set.

C DETAILED RESULTS

We present detailed results here for each of the individual language pairs evaluated in our experi-
ments. We note that misspelling evaluation is not available for ja→en and that GMEG is not avail-
able for X→en evaluations.
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Misspellings GMEG
LP Setting Teacher Student (Original + PL) C(d) BLEU Stability Rob Const Const

en→de

All Data – 286M + 0 3.9 27.82 77.45 0.88±0.01 73.9±0.9 83.1
Baseline – 143M + 0 3.8 27.62 77.95 0.88±0.01 73.1±0.9 82.8
PLT(Train) 143M 143M + 143M (Train) 3.8 27.88 82.03 0.87±0.01 76.5±0.8 85.1
PLT(UL) 143M 143M + 143M (UL) 3.8 28.08 82.89 0.86±0.01 76.8±0.8 85.3

de→en

All Data – 286M + 0 3.7 32.34 73.32 0.89±0.01 77.4±1.0 –
Baseline – 143M + 0 3.5 32.38 72.48 0.89±0.01 76.9±1.0 –
PLT(Train) 143M 143M + 143M (Train) 3.5 32.97 86.34 0.88±0.01 80.0±0.8 –
PLT(UL) 143M 143M + 143M (UL) 3.5 32.51 86.27 0.88±0.01 80.2±0.9 –

en→ru

All Data – 34M + 0 3.6 25.72 63.45 0.84±0.02 66.4±1.1 79.3
Baseline – 17M + 0 3.7 25.08 60.48 0.84±0.02 64.9±1.0 78.4
PLT(UL) 17M 17M + 17M (UL) 3.4 25.89 72.93 0.85±0.02 70.1±1.0 82.2
PLT(Train) 17M 17M + 17M (Train) 3.4 26.12 72.66 0.85±0.01 70.2±1.0 81.5

ru→en

All Data – 34M + 0 2.6 36.42 69.78 0.95±0.01 85.6±0.8 –
Baseline – 17M + 0 2.6 36.27 67.01 0.95±0.01 84.2±0.9 –
PLT(UL) 17M 17M + 17M (UL) 2.3 36.87 77.11 0.97±0.01 87.0±0.7 –
PLT(Train) 17M 17M + 17M (Train) 2.3 37.02 77.97 0.97±0.01 87.6±0.7 –

en→ja

All Data – 17.2M + 0 3.7 23.71 54.56 0.85±0.02 59.3±1.1 72.6
Baseline – 8.6M + 0 3.7 22.66 53.64 0.86±0.02 59.3±1.1 71.5
PLT(UL) 8.6M 8.6M + 8.6M (UL) 3.2 24.56 65.12 0.86±0.01 64.5±1.1 75.9
PLT(Train) 8.6M 8.6M + 8.6M (Train) 3.3 24.31 66.75 0.86±0.01 64.5±1.1 75.9

ja→en

All Data – 17.2M + 0 3.3 17.28 44.73 – – –
Baseline – 8.6M + 0 3.2 15.70 40.78 – – –
PLT(UL) 8.6M 8.6M + 8.6M (UL) 2.9 19.00 56.89 – – –
PLT(Train) 8.6M 8.6M + 8.6M (Train) 2.9 18.67 57.63 – – –

Table 9: Experiments showing the training set complexity (C(d)), BLEU scores on the WMT21
news test set, stability and robustness and consistency to synthetic misspellings added to the test
set, on a grammatical error corpus (GMEG). Here, we report results where the teacher and student
share the same architecture and we define stability as the harmonic mean of BLEU scores between
two different models trained with different random initializations while keeping teacher models the
same. Robustness measures changes in translation quality w.r.t input variations, while Consistency
measures translation changes alone.

Teacher PLT
LP Arch. BLEU C(d) BLEU Stability Const(GMEG) Rob(Missp) Const(Missp)

en→de

– – 3.78 27.62 72.48 82.80 0.877 73.10
20:1 26.82 3.78 27.35 81.47 84.76 0.873 76.16
20:2 27.62 3.79 27.88 82.03 85.08 0.873 76.46
20:4 28.38 3.79 28.10 82.06 85.42 0.868 76.38

de→en

– – 3.51 32.38 77.95 – 0.888 76.90
20:1 31.68 3.49 32.03 85.73 – 0.881 79.74
20:2 32.38 3.49 32.97 86.34 – 0.882 80.01
20:4 32.52 3.50 33.18 86.88 – 0.889 80.29

en→ru

– – 3.75 25.08 60.48 78.40 0.840 64.90
20:1 24.06 3.45 26.05 72.26 81.41 0.844 70.17
20:2 25.08 3.46 26.18 72.66 81.48 0.852 70.21
20:4 25.62 3.46 26.57 73.05 81.35 0.835 69.75

ru→en

– – 2.62 36.27 67.01 – 0.947 84.20
20:1 34.52 2.37 36.33 76.86 – 0.950 87.38
20:2 36.27 2.38 37.03 77.97 – 0.967 87.59
20:4 35.64 2.39 37.01 77.31 – 0.960 87.69

en→ja

– – 3.69 22.66 53.64 71.50 0.860 59.30
20:1 21.37 3.34 23.22 64.30 73.63 0.847 62.82
20:2 22.66 3.36 24.31 66.75 75.59 0.856 64.48
20:4 22.89 3.36 24.14 65.91 75.83 0.860 64.03

ja→en

– – 3.22 15.70 40.78 – – –
20:1 14.01 2.94 16.55 56.87 – – –
20:2 15.70 2.96 18.67 57.63 – – –
20:4 17.04 2.96 19.65 57.37 – – –

Table 10: PLT models using teachers with varying quality. We find that teacher quality plays a large
role in quality of PLT, however weaker teachers can surprisingly still improve quality. In terms of
inertia properties, these are preserved by both weaker and stronger teachers.
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LP Setting C(d) Bleu Stability GMEG Rob(Missp) Const(Missp)

en→de

Baseline 3.78 27.62 72.48 82.8 0.88±0.01 73.1±0.9
BPE dropout 3.94 27.34 71.70 84.2 0.90±0.01 76.7±0.9
PLT(Sample) 3.80 27.65 80.88 84.7 0.88±0.01 76.4±0.8
BT 3.76 27.38 75.30 81.9 0.86±0.01 71.3±0.9
PLT 3.79 27.88 82.89 85.1 0.87±0.01 76.5±0.8

de→en

Baseline 3.51 32.38 77.95 – 0.89±0.01 76.9±1.0
BPE dropout 3.64 32.98 77.41 – 0.91±0.01 81.6±0.9
PLT(Sample) 3.51 32.66 85.11 – 0.88±0.01 80.0±0.9
BT 3.48 32.50 80.06 – 0.87±0.01 75.7±1.0
PLT 3.49 32.97 86.27 – 0.88±0.01 80.0±0.8

en→ja

Baseline 3.69 22.66 53.64 71.5 0.87±0.02 59.3±1.1
BPE dropout 3.83 22.44 54.49 72.5 0.93±0.02 67.5±0.9
PLT(Sample) 3.38 24.19 63.93 75.4 0.86±0.02 63.5±1.1
BT 3.54 24.19 56.74 71.4 0.84±0.02 58.4±1.1
PLT 3.36 24.31 66.75 75.6 0.86±0.01 64.5±1.1

ja→en

Baseline 3.22 15.70 40.78 – – –
BPE dropout 3.30 16.93 42.19 – – –
PLT(Sample) 2.99 18.51 57.03 – – –
BT 3.08 18.12 44.96 – – –
PLT 2.96 18.67 57.63 – – –

en→ru

Baseline 3.75 25.08 60.48 78.4 0.84±0.02 64.9±1.0
BPE dropout 3.00 24.68 58.90 79.4 0.91±0.01 71.5±1.0
PLT(Sample) 3.51 26.03 71.11 81.1 0.84±0.01 69.7±1.0
BT 3.62 26.31 64.05 78.2 0.83±0.02 64.9±1.0
PLT 3.46 26.18 72.66 81.5 0.85±0.01 70.2±1.0

ru→en

Baseline 2.62 36.27 67.01 – 0.95±0.01 84.2±0.9
BPE dropout 2.76 34.64 65.58 – 0.97±0.01 88.3±0.7
PLT(Sample) 2.45 37.06 75.94 – 0.96±0.01 87.4±0.7
BT 2.45 36.02 69.72 – 0.95±0.01 84.3±0.8
PLT 2.38 37.02 77.97 – 0.97±0.01 87.6±0.7

Table 11: Performance and model inertia with PLT versus other common techniques in NMT. Sta-
bility to model updates is computed w.r.t. to random seed variation.
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