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ABSTRACT

Value approximation using deep neural networks is at the heart of off-policy deep
reinforcement learning, and is often the primary module that provides learning
signals to the rest of the algorithm. While multi-layer perceptrons are univer-
sal function approximators, recent works in neural kernel regression suggest the
presence of a spectral bias, where fitting high-frequency components of the value
function requires exponentially more gradient update steps than the low-frequency
ones. In this work, we re-examine off-policy reinforcement learning through the
lens of kernel regression and propose to overcome such bias via a composite neu-
ral tangent kernel. With just a single line-change, our approach, the Fourier feature
networks (FFN) produce state-of-the-art performance on challenging continuous
control domains with only a fraction of the compute. Faster convergence and bet-
ter off-policy stability also make it possible to remove the target network without
suffering catastrophic divergences, which further reduces TD(0)’s bias to over-
estimate the value. Code and analysis available at https://geyang.github.io/ffn.

1 INTRODUCTION

At the heart of reinforcement learning is the question of how to attribute credits or blame to specific
actions that the agent took in the past. This is referred to as the credit assignment problem (Min-
sky, 1961). Correctly assigning credits requires reasoning over temporally-extended sequences of
observation and actions, so that trade-offs could be made, to choose a less desirable action at a cur-
rent step in exchange for higher rewards in the future. Temporal difference methods such as TD(λ)
and Watkins Q-learning (Sutton, 1988; Watkins, 1989) stitch together the immediate rewards local
to each state transition, to estimates the discounted sum of rewards over longer horizons. This is
an incremental method for dynamic programming (Watkins & Dayan, 1992) that successively im-
proves the value estimate at each step, which reduces the computation that is otherwise needed to
plan ahead at decision time.

A key tension in scaling TD learning to more challenging domains is that the state space (and action
spaces in continuous control problems) can be very large. In Neurogrammon (Tesauro, 1991), for
example, the complexity of the state space is on the scale of O(1020), which prevents one from
storing all state-action pairs in a table. Such constrain and the need to generalize to unseen board
arrangements prompted Tesauro (1991) to replace the look-up table with an artificial neural network
to great effect, achieving master-level play on backgammon.

Adopting neural networks as the value approximator in general, however, introduces two new is-
sues. First, the standard perceptron network does not offer explicit ways to specify how it gen-
eralizes, making it impossible to control the bias-variance trade-off to better align with the value
approximation task at hand (Canatar et al., 2021). Recent analysis indicates an “expressivity gap”
that causes the value approximator to underfit (Dong et al., 2020), further indicates that there exists
a misalignment between the model and the task, and that we are on the wrong side of the “double-
descent” phase transition (Canatar et al., 2021). Modern state-of-the-art off-policy algorithms also
tend to be bottlenecked by compute, making the convergence dynamics a key candidate for potential
improvements in both sample efficiency and asymptotic performance.

∗ Equal contribution, order determined by rolling a dice.

1

https://geyang.github.io/ffn


Published as a conference paper at ICLR 2022

A second, and older issue around neural function approximators is off-policy divergence (Sutton &
Barto, 2018), where the iterative Q learning procedure tends to “crash” when over-parameterized
function approximators are combined with value bootstrapping and off-policy samples (Bertsekas,
1995; Baird, 1995). A number of contributing causes have been investigated, and corresponding
practical techniques have been developed to address such issues. Riedmiller (2005a) employ expe-
rience replay (Lin, 1992) from a buffer of transition tuples to reduce the cross-talk between states
during gradient updates. To make the bootstrapped regression target more stationary and delay the
divergence, Mnih et al. (2015) introduced a target value network that changes at a slower speed.
Additional bias occurs in the TD(0) objective due to the “winner’s curse” (Thaler, 1988), which
motivated ensemble based variance-reduction techniques such as double Q-learning (Hasselt, 2010)
and bootstrapped Q-ensembles (Lee et al., 2021). In continuous control tasks, computing the value
target further require participation of the actor that is often sub-optimal. This introduces additional
variance in actor-critic methods that motivated delayed actor updates (Fujimoto et al., 2018), en-
tropy regularization (Haarnoja et al., 2018), and trusted region for the policy optimization (Neu-
mann et al., 2009; Abdolmaleki et al., 2018). None of these instabilities occur, however, under
the tabular case. Nor with many compact parameterization schemes such as decision trees (Ernst
et al., 2005), Gaussian kernels (Ormoneit & Sen, 2002; Smart & Kaelbling, 2000), or learned value
eigenbasis (Mahadevan & Maggioni, 2007), to name a few.

Recent analysis on neural kernel regression (Neal, 1996; Jacot et al., 2018) uncovers a spectral-bias
in multilayer perceptron networks, whose convergence slows down exponentially on high-frequency
harmonics (Kawaguchi & Huang, 2019; Bietti & Mairal, 2019; Ronen et al., 2019). Although orig-
inally derived with shallow, infinitely-wide networks, such result has been extended to deeper net-
works at finite-width of any “reasonable” architecture via the tensor program (Yang, 2019; 2020;
Yang & Littwin, 2021; Yang & Salman, 2019). This spectral bias for the neural tangent kernel to
concentrate towards low-frequency bands produce unwanted generalization and cross-talks during
gradient descent. We identify this spectral bias as the key issue, and address both the expressivity gap
and off-policy divergence, by explicitly controlling the bias-variance trade-off via an a tunable, and
adaptive Gaussian mixture kernel (Rahimi & Recht, 2008; Yang et al., 2015). Our solution involves
changing just a single line of code, yet it achieves state-of-the-art sample efficiency and asymptotic
performance on challenging continuous control domains with just a fraction of the compute needed
by a vanilla perceptron network.

Our main contributions are twofold. First, we show that use of Fourier features enable faster conver-
gence on high frequency spectral components during value approximation, thereby improving the
sample efficiency of off-policy reinforcement learning. Second, we show that the improved neural
tangent kernel is more localized with much smaller off-diagonal cross-talk. Combined with faster
convergence, the improved off-policy stability enabled us to remove the target network on a few
domains without suffering catastrophic divergence.

2 A MOTIVATING EXAMPLE
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Figure 1: A Toy MDP with a simple for-
ward dynamics and complex value func-
tion, adapted from Dong et al. (2020).

We motivate through a toy MDP adapted from Dong et al.
(2020), and show that neural fitted Q iteration signifi-
cantly underfits the optimal value function. Despite of the
simple-looking reward and forward dynamics, the value
function is quite complex. Our spectral analysis in Sec-
tion 3.1 indicates that such complexity arises from the re-
cursive application of the Bellman operator.

Toy MDP Distribution Consider a class of toy Markov
decision processes M . The state space is defined on the
real-line as S = R[0,1). The reward is the identity func-
tion. The action space is a discrete set with two elements {0, 1}, each corresponds to a distinct
forward dynamics that is randomly sampled from the space of piece-wise linear functions with k
“kinks.” For all of the examples below, we use a fixed number k = 10, and uniformly sample the
value of each turning point in this dynamic function between 0 and 1. The result is a distributionM
that we can sample from

M ∼M = p(M). (1)
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Figure 2: Q-value approximation on the toy MDP. All baselines collected at 400 epochs unless
otherwise mentioned. (a) Fitted Q iteration using a 4-layer MLP with 400 hidden neurons. (b)
Supervised by the ground-truth value target, at 400 epochs. (c) using a larger network that is 3x
deeper (12-layers). (d) the same 4-layer network, but optimized longer, for 2000 epochs. (e) is a
4-layer FFN of the same size optimized for 400 epochs, without a target network.

A curious failure of neural fitted Q iteration When we apply standard neural fitted Q iteration
(FQI, see Riedmiller 2005b) to this toy problem using a simple four-layer multi-layer perceptron
(MLP) with 400 hidden units at each layer, we observe that the learned MLP value approximator,
produced in Figure 2a, significantly underfits in comparison to the ground-truth value function. One
hypothesis is that Q learning is to blame, and in fact prior work such as Kumar et al. 2021 has
argued that underfitting results from minimizing the TD (Temporal-Difference) error, because boot-
strapping resembles iteratively applying self-distillation (Mobahi et al., 2020), which is known to
lead to under-parameterization in the learned neural network features. To rule-out this hypothesis,
we can use the same MLP architecture, but this time directly regress towards the ground truth Q
function via supervised learning. Figure 2b shows that the under-fitting still persists under super-
vised learning, and increasing the depth to 12 layers (see Figure 2c) fails to fix the problem. This
shows an over-parameterized network alone is insufficient to reduce under-fitting. Finally, if we
increase the number of training iterations from 400 epochs used in these experiments to 2000, the
original four-layer MLP attains a good fit. This shows that solely focusing on the expressivity of the
neural network by making it bigger (Sinha et al., 2020) can be misguided, as the type of function
that can be approximated also depends on the available budget over the number of gradient updates.

3 BACKGROUND AND NOTATIONS

We consider an agent learning to act in a Markov decision process (MDP), parameterized via the
tuple 〈S,A,R, P, µ, γ〉 where S and A are the state and action spaces, P : S × A 7→ S is the
transition function, R : S × A 7→ R is the reward and µ(s) is the initial state distribution. We
consider an infinite horizon problem with the discount factor γ. The goal of the agent is to maximize
the expected future discounted return J = E [

∑∞
t=0 γ

tR(st, at)] by learning a policy π(a|s) that
maps a state s to a distribution over actions. The state-action value function (Q-function) is defined
as Qπ(s, a) = E [

∑∞
t=0 γ

tR(st, at)|(s0, a0) = (s, a)]. The optimal Q∗(s, a) is the fixed point of
the Bellman optimality operator B∗

B∗Q(s, a) = R(s, a) + γEs′∼P (s′|s,a)[max
a∗

Q(s′, a∗)]. (2)

The fitted Q iteration family of algorithms (Ernst et al., 2003; Riedmiller, 2005a) iteratively finds
the optimal Q∗ by recursively applying the gradient update

θ′ = θ − η∇θE(s,a,s′)∼D

∥∥∥∥Qθ(s, a)− B∗Qθ(s, a)

∥∥∥∥2
2

. (3)

Letting X = Qθ(s, a)− B∗Qθ(s, a) and apply the chain-rule. The update 3 becomes

θ′ = θ − 2ηE(s,a,s′)∼D

[
X∇θQθ(s, a)

]
(4)

We can approximate the updated Q in function form through its first-order Taylor expansion
Qθ′(s, a) ≈ Qθ(s, a)− 2η E(s′,a′)∼D

[
K(s, a; s′, a′)X

]
(5)

where the bilinear form K(s, a; s′, a′) = ∇θQθ(s, a)T∇θQθ(s′, a′) is the neural tangent kernel
(NTK, see Jacot et al. 2018 and Section 4). In the tabular case, this procedure can be simplified
as producing a sequence {Q0, Q1, Q2, . . . } using the iterative rule, Qi+1 = B∗(Qi) starting with
Q0(s, a) = R(s, a). The ith item in the sequence, Qi, is the optimal Q function of a derived
MDP with a shorter horizon H = i. Therefore each application of the Bellman optimality operator
effectively extends the horizon by one time-step, starting with the 1-step reward R(s, a).
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3.1 SPECTRAL SIGNATURE OF THE TOY MDP
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Figure 3: Value function spectra over
(a) longer time-horizon and (b) larger
discount factor γ. Higher frequency
component noticeably grows in decibel
when the unroll horizon increases.

The Bellman optimality operator imprints a non-trivial
spectrum to the resulting Qi as it is applied recursively
during fitted Q iteration. We present the evolving spectra
marginalized overM in Figure 3. As the effective hori-
zon increases, the value function attains a larger weight
in the higher-frequency part of the spectrum, which cor-
responds to less correlation between the value at near-
by states. In a second experiment, we fix the horizon
to 200 while increasing the discount factor from 0.1 all
the way up to 0.99. We observe a similar increase in the
higher frequency components, at a longer effective recur-
sion depth. In other words, the complexity of the value
function comes from the repeated application of the Bell-
man optimality operator in a process that is not dissimilar
to an “infinity mirror.” The spectrum of the Bellman op-
erator gets folded into the resulting Q function upon each
iteration step. Although our analysis focuses on the state
space, the same effect can be intuitively extrapolated to
the joint state-action space.

3.2 KERNEL VIEW ON OFF-POLICY DIVERGENCE

Following the formulation of convergence in Dayan (1992); Tsitsiklis (1994); Jaakkola et al. (1994):

Definition: Consider a complete metric space S with the norm ‖ · ‖. An automorphism f on S is
a contraction if ∀a, b ∼ S, ‖f(a) − f(b)‖ ≤ γ‖a − b‖. Here γ ∈ [0, 1) is called the contraction
modulus. When γ = 1, f is a nonexpansion.

Banach fixed-point theorem. Let S be non-empty with a contraction mapping f . Then f admits a
unique fixed-point x∗ ∈ S s.t. f(x∗) = x∗. Furthermore, ∀x0 ∈ S, x∗ is the limit of the sequence
given by xi+1 = f(xi). a.k.a x∗ = lim

i→∞
xi.

Without lost of generality, we can discretize the state and action space S and A. The NTK becomes
the gram matrix K ∈ R|S||A|×|S||A|. Transition data are sampled from a distribution ρ(s, a).
Theorem. (Achiam et al., 2019) Let indices i, j refer to state-action pairs. Suppose that K, η and ρ
satisfy the conditions:

∀i, 2ηKiiρi < 1, (6)

∀i, (1 + γ)
∑
j 6=i

|Kij |ρj ≤ (1− γ)Kiiρi, (7)

Then, Equation 5 induces a contraction on Qθ in the sup norm, with fixedpoint Qθ∗ and the TD loss
optimization converges with enough optimization steps.

For relatively large γ (for instance, γ ∈ (0.99, 0.999)), the above theorem implies that small off-
diagonal terms in the NTK matrix are sufficient conditions for convergence.

4 SPECTRAL-BIAS AND NEURAL KERNEL REGRESSION

Consider a simple regression problem where we want to learn a function f(ξ; θ) ∈ R. ξ is a sample
from the dataset. To understand how the output of the network changes w.r.t small perturbations to
the parameters, we can Taylor expand around θ

f(ξ; θ + δθ)− f(ξ; θ) ≈ 〈∇θf(ξ; θ), δθ〉. (8)

During stochastic gradient descent using a training sample ξ̂ with a loss function L, the parameter
update is given by the product between the loss derivative L′ ◦ f(ξ̂) and the neural tangent kernel
K (Jacot et al., 2018)

δθ = −ηL′(f(ξ̂))K(ξ, ξ̂) where K(ξ, ξ̂) = 〈∇θf(ξ; θ),∇θf(ξ̂; θ)〉. (9)

4
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In the infinite-limit with over-parameterized networks, the function remains close to initialization
during training (Chizat et al., 2019). The learning dynamics in this “lazy” regime, under an L2

regression loss behaves as a minimum norm least-square solution

ft − f∗ = e−ηKt(ξ,ξ̂)(f0 − f∗), (10)

where ft is the function under training at time t and f0 is the neural network at initialization. Replac-
ing K with the Gramian matrix K between all pairs of the training data, we can re-write Equation 4
in its spectral form K = OΛOT where each entry in the diagonal matrix Λ is the eigenvalue λi > 0
for the basis function Oi in the orthogonal matrix O. Using the identity eA = OeΛOT , we can
decompose the learning dynamics in Equation 4 into

OT (ft − f∗) = e−ηΛtOT (f0 − f∗). (11)

The key observation is that the convergence rate on the component Oi, ηλi, depends exponentially
on its eigenvalue λi. a.k.a the absolute error

|OTi (ft − f∗)| = e−ηλit|OTi (f0 − f∗)| (12)

Multiple work (Rahaman et al., 2019; Shah et al., 2020; Yang & Salman, 2019; Huh et al., 2021) have
shown that the NTK spectrum (λi) of a regular ReLU network decays rapidly at higher frequency. In
particular, Bietti & Mairal (2019) provided a bound of Ω(k−d−1) for the kth spherical harmonics1.
Such results have been extended to finite-width networks of arbitrary architecture and depth via the
tensor programs (Yang, 2019; 2020).
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Figure 4: NTK comparison between (a) MLP with ReLU
activation, (b) MLP with tanh activation, and (c) Fourier fea-
ture networks (Ours). The MLP NTK in (a,b) both contain
large off-diagonal elements. This shows the addressing by
the gradient vectors is not specific, causing divergence.

The Gramian matrix form of the NTK
also offers an intuitive way to in-
spect state-aliasing during gradient
descent. This is because the off-
diagonal entries corresponds to the
similarity between gradient vectors
for different state-action pairs. The
kernel of an multi-layer perceptron is
not stationary when the input is not
restricted to a hypersphere as in Lee
et al. (2017). We can, however, com-
pute K of popular network architec-
tures over R[0,1), shown in Figure 4.
The spectral-bias of the NTK of both
ReLU networks and hyperbolic tan-
gent networks produce large off-diagonal elements in the input space due to such bias, causing
instability.

5 OVERCOMING THE SPECTRAL-BIAS OF NEURAL VALUE APPROXIMATION

Our basic idea is the following: To correct the spectral-bias of the perceptron network, we can
constructing a composite kernel where a random map z : Rd 7→ RD first “lifts” the input into a
randomized harmonics basis. This explicit kernel lifting trick was introduced by Rahimi & Recht
(2007) and it allowed the authors to fit complex datasets using a linear kernel. The mixing brings
high-frequency input signals down to a lower and more acceptable band for the perceptron network.
Data also appears more sparse in the higher-dimensional spectral basis, further simplifies learning.
To emulate arbitrary shift-invariant kernel K, Rahimi & Recht (2007) offered a procedure that sam-
ple directly from the nominal distribution given by K’s spectrum

k(x, y) = 〈φ(ξ), φ(ξ̂)〉 ≈ z(ξ)Tz(ξ̂) where z(ξ) =
∑
i

wie
2πki and wi ∼ F (K). (13)

We choose to initialize FFN by sampling the weights from an isotropic multivariate Gaussian with a
tunable cutoff frequency b. We modify the normalization scheme from Rahimi & Recht (2007) and

1the input is restricted to a sphere. This bound is loose, and for a tighter bound refer to Cao et al. (2019).
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Figure 5: FFN provide direct control over gen-
eralization. (a) The kernel spectra. Peak in
the center is due to windowing effect. Higher
band-limit leads to flatter spectra. (b) The cross-
section of the kernel at different band-limit.

Algorithm Learned Fourier Features (LFF)

class LFF(nn.Linear):

def init (self, inp, out, b scale):

super(). init (inp, out)

init.normal (self.weight, std=b scale/inp)

init.uniform (self.bias, −1.0, 1.0)

def forward(self, x):

x = np.pi * super().forward(x)

return torch.sin(x)

divide b with the input dimension d, s.t. similar bandwidth values could be applied across a wide
variety of reinforcement learning problems with drastically different state and action space dimen-
sions. We slightly abuse the notion by using bj as the bias parameters, and b (without subscript) for
the bandwidth

RFF(x)j = sin(
d∑
i=1

wi,jx
i + bj) where wi,j ∼ N (0, πb/d) and bj ∼ U(−π, π). (14)

To attain better performance, Rahimi & Recht (2008) learns a weighted sum of these random kitchen
sink features, whereas Yang et al. (2015) adapts the sampled spectral mixture itself through gradient
descent. Using modern deep learning tool chain, we can view the entire network including the
random Fourier features as a learnable kernel. For small neural networks with limited expressivity,
we found that enabling gradient updates on the RFF parameters is important for performance. We
refer to this adaptive variant as the learned Fourier features (LFF), and the shallow MLP with an
adaptive Fourier feature expansion as the Fourier feature networks (FFN).

Improved NTK produce faster convergence The improved composite kernel leads to faster con-
vergence by having a flat kernel spectrum all the way up to the band-limit. we can compute the
kernel spectrum numerically and inspect the improvement in the higher frequencies (see Figure 5).
By tuning the band-limit, we can make explicit bias-variance trade-offs and control the way the
network generalizes. On the toy domain used to motivate this work FFN achieves a perfect fit with
just 400 optimization epochs whereas the MLP baseline requires at least two thousand (see Fig-
ure 2e). The gain is even more prominent on more challenging environments in the results section
(Quadruped run, see Figure 8). Optimization overhead is a key bottleneck in off-policy learning,
therefore faster convergence also translates into better sample efficiency, and faster wallclock time.
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Figure 6: Removing the target network further reduces bias.
(a) Comparison of the learned Q function (for action II). (b)
FFN with a target network still contains an offset, whereas
removing the target network eliminates such bias.

Improving Off-policy Stability
“cross-talks” between the gradients
of near-by states is key factor in off-
policy divergence. Such “cross-talk”
manifest as similarity between gradi-
ent vectors, the measure of which is
captured by the Gram matrix of the
NTK. The Fourier feature network
kernel is both localized (Figure 4c)
and tunable 5), offering direct control
over the bias-variance trade-off. The
improved learning stability allows
us to remove the target network on a
number of domains while retaining
substantial performance.

The Mountain Car environment (Moore, 1990; Sutton, 2000) has a simple, two-dimensional state
space that can be directly visualized to show the learned value function. We compare the value
estimate from three baselines In Figure 7: the ground-truth value estimate acquired using tabular
value iteration; one obtained from a 4-layer ReLU network using fitted Q iteration; and one from
the same network, but using a 16 dimensional Fourier features on the input. All networks use 400
latent neurons and are optimized for 2000 epochs.
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(a) 4-layer MLP (b) 12-layer MLP (c) MLP + tanh (d) 4-layer FFN (e) Tabular

Figure 7: Visualizing the value for action 0 in Mountain Car. (a) shows the action-conditioned value
estimate from a 4 layer perceptron network. (b) is from an 8-layer network (c) is a 4-layer network
using the hyperbolic-tangent activation, which is commonly used in deep reinforcement learning.
(d) is from a 4-layer FFN. (e) the ground-truth produced by running value iteration using a value
table. The two axis corresponds to position and velocity of the car.

6 EXPERIMENTS

Setup We scale the use of FFN to high-dimensional continuous control tasks in state DMC do-
mains (Tassa et al., 2020). We use soft actor critic (SAC) (Haarnoja et al., 2018) as our RL algorithm.
We build off the pytorch SAC codebase (Yarats & Kostrikov, 2020). We derive the FFN from a MLP
by replacing its first layer with a LFF layer. To use FFN with SAC, we replace the 3-layer MLP in
the actor and the critic with a 3-layer FFN.

Results We present the result with SAC on 4 DMC domains in Figure 10. It shows that FFN im-
prove over MLP in complex environments while matching its performance in simpler environments.
We leave the complete results with SAC and DDPG in Appendix A.3. We also present ablations and
hyperparameter sensitivity analysis in Appendix A.4. As described in section 5, the benefit of FFN
in RL comes from its ability to estimate the value function of the task with fewer gradient updates,
thereby improving the sample efficiency of the RL algorithm. We empirically verify this observation
in Figure 11 where FFN reduces the value estimation error with more sample efficiency than a MLP.
We leave the complete results on 8 DMC domains in the Appendix A.3.

6.1 FASTER CONVERGENCE VIA FOURIER FEATURE NETWORKS

We hypothesize FFN achieves faster convergence in neural value approximation due to its better
initialization obtained by sampling from a wide space of frequency and phase. If this is indeed the
case, then FFN’s parameters should undergo less change from the training of an RL agent compared
to MLP’s parameters. Let Wt and Bt refer to the concatenated weight matrices (in vector form)
and the concatenated bias vectors respectively, from different layers of critic of an RL agent after
training on t environment frames (steps). Figure 12 shows evolution of ‖Wt −W0‖ and ‖Bt −B0‖
for MLP and FFN during training of SAC agents for Walker-run and Quadruped-run. We leave the
complete results on 8 DMC domains in the Appendix A.3.

Since FFN estimates value function with fewer gradient updates, can we reduce the update frequency
during training of an RL agent while still matching the performance of MLP? Figure 8 shows that we
can reduce the update frequency by a factor 4 and 6 in Walker-walk and Quadruped-run using FFN
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Figure 8: Learning curve showing the improved
NTK needing only a fraction of the compute to
match the performance by the original MLP on
both Walker-run and Quadruped-run.
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Figure 9: Learning curve showing increasing the
optimization ratio improve MLP performance on
Walker-run, but on Quadruped-run it leads to
over-fitting, and degrades performance.
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Figure 10: Learning curve with FFN applied to SAC on the DeepMind control suite. Domains are
ordered by input dimension, showing an overall trend where domains with higher state dimension
benefits more from Fourier features. We use a (Fourier) feature-input ratio of 40 : 1.
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Figure 11: Value estimation error with FFN applied to SAC on the DeepMind control suite. FFN is
more sample efficient in reducing value estimation error, thereby improving the sample efficiency
of SAC. The divergence is especially prominet at the begining of learning when the data is sparse.
FFN reduces the variance in these regimes by making more appropriate bias-variance trade-off.

while matching the performance of MLP. Thus, FFN can help achieve compute efficiency in RL.
Conversely, can we improve the performance of MLP by increasing the update frequency? Figure 9
shows that increasing the update frequency can help MLP get closer to FFN in terms of performance
in Walker-walk. However, this isn’t reliable as it can also lead to overfitting in actor and hurt MLP’s
performance, as seen in Quadruped-run.

6.2 FOURIER FEATURES IMPROVE OFF-POLICY STABILITY

We now analyze if use of FFN removes the need for a target network. Target (value) network (Mnih
et al., 2013) is a past instantiation of value function which gets updated at a slower rate and is used
for calculating targets during bellman update. Given MLPs often take many gradient updates to fit
to a target, the slow changing target network stabilizes the training of the value function. However,
since FFN requires fewer gradient updates to fit to a target, we hypothesize that there will be less of
a need for a target network. Figure 13 shows performance of both MLP and FFN without a target
network. While MLP completely fails in all environments, FFN either matches its performance with
target networks or suffers small degradation in most environments except Hopper-hop. We leave the
complete results on 8 DMC domains in the Appendix A.3.

7 IMPROVING THE CONVOLUTION KERNEL
In a standard convolution neural network, the filter in the first layer suffers the same spectral bias in
the RGB color-space as the state and action space above. We can in principle extend our spectral-
bias fix to convolution networks by replacing the first layer with a 1 × 1 convolutional layer and a
sinusoidal non-linearity. In this experiment, we use the same initialization scheme as those described
in Equation 14. Our experiment is conducted with the DrQv2 implementation (Yarats et al., 2021),
where we replace the CNN in both the actor and the critic with this Fourier-CNN (F-CNN) archi-
tecture. We present the results in Figure 14. While F-CNN’s performance is within the variance of
CNN’s performance, its variance is much lower. Such technique has also been used by Kingma et al.
(2021) to improve image generation with diffusion models. For more detailed theoretical overview
of the CNN NTK, one can refer to Arora et al. (2019) and Li et al. (2019).

8 DISCUSSION
The inspiration of this work comes from our realization that techniques used by the graphics com-
munity (Tancik et al., 2020; Sitzmann et al., 2020; Mildenhall et al., 2020) to learn high-fidelity
continuous neural representations represent a new way to explicitly control generalization in neural
networks. We refer to Achiam et al. (2019)’s pioneering work for the theoretical setup on off-policy
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Figure 12: Weight and bias changes in FFN and MLP during training, using SAC. While FFN’s bias
parameters undergo less change than MLP’s bias parameters, the results are mixed when it comes to
weight parameters on the Quadruped environment.
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Figure 13: Learning curves showing that FFN improves learning stability to the extent that learning
can happen on some domains even without the target network. On the contrary, MLP consistently
fails without a target value network. FFN has consistently less variance than the MLP.

divergence, which predates many of the recent analysis on spectral-bias in neural networks, and
the (re-)introduction of the random Fourier features as a solution to correct it. Function regular-
ization through gradient conditioning is an alternative to re-parameterizing the network. A recent
effort could be found in Piché et al. (2021). A key benefit of reparameterizing the network is speed.
We can managed to reduce the walltime by 32% on the challenging Quadruped environment, by
reducing the replay ratio to 1/6.

Fourier features for reinforcement learning dates back as early as Konidaris et al. (2011). While
this manuscript was under review, a few similar publication and preprints came out, all developed
independently. Li & Pathak (2021) focuses on the smoothing effect that Fourier feature networks
have on rejecting excessive noise. Our finding is that vanilla perceptron networks are on the biased-
side of the bias-variance trade-off. In other words, the main issue in off-policy learning with neural
function approximators is that the network underfits real signal, as opposed to being overfit to ran-
dom noises. The rank of the neural representation describes the portion of the linear space occupied
by the largest eigenvalues of the kernel regardless of the spatial frequency of those corresponding
eigenfunctions. Therefore lower rank does not correspond to smoother functions. We additionally
find that maintaining a Fourier feature to input feature ratio (D/d > 40) is critical to the expressive-
ness of the network, which allowed us to scale up to Quadruped without needing to concatenating
the raw input as a crutch. Brellmann et al. (2022) is a concurrent submission to ours that delightfully
includes the random tile encoding scheme from Rahimi & Recht (2007), and on-policy algorithm,
PPO. Our intuition is that policy gradient needs to be considered a life-long learning problem, and
locality in the policy model could speed up learning by eliminating the need to repeatedly sample
areas the policy has experienced. We are excited about these efforts from the community, and urge
the reader to visit them for diverse treatments and broader perspectives.
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Figure 14: Control from pixels learning curve on the DeepMind control suite using Fourier-CNN
(F-CNN) and DrQv2. We use a feature-input ratio of 40 : 1. Performance with the F-CNN has much
lower variance and is consistently at the top of the confidence range of the vanilla CNN.
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A APPENDIX

A.1 COMPARING VARIOUS FOURIER FEATURES

Using Fourier features to correct the spectral-bias is a general technique that goes beyond a particular
parameterization. Hence we present comparison between

• vanilla MLP is a stack of t linear layers with ReLU activation

MLP(x) = f t ◦ ReLU ◦ · · · f2 ◦ ReLU ◦ f1(x)

• Fourier features network (FFN) (Ours) uses sine activation with random phase-shift, to replace
the first layer of the network with learned Fourier features

LFF(x) = sin(Wx+ c), Wi,j ∼ N (0, πb/d), ci ∼ U(−π, π)

so that the Fourier features network (FFN) is

FFN(x) = f t ◦ ReLU ◦ · · · f2 ◦ LFF(x)

• RFF (Tancik et al., 2020) that uses sine and cosine pairs concatenated together

RFFTancik(x) = [sin(2πWx), cos(2πWx)], Wi,j ∼ N (0, σ2)

• SIREN network (Sitzmann et al., 2020) that stacks learned Fourier layers through our the entire
network, using the Sitzmann initialization according to

lff(x) = sin(Wx+ c), Wi,j ∼ U(−
√

6/
√
n,
√

6/
√
n), ci ∼ U(−π, π)

where the t-layer network
SIREN(x) = lfft ◦ · · · lff2 ◦ lff1(x).

It is critical to note what each layer has a distinct bandwidth scaling parameter. Hence instead of
a single scaling hyperparameter b for the random matrices, Siren has a set {bi} that each need to
be tuned.

All the above Fourier feature variants are equivalent and should produce similar results when band-
width is tuned properly.

A.2 TOY MDP EXPERIMENT DETAILS

Offline Data Generation We divided the 1-dimensional state space into 1000 discrete bins and
used the midpoints of the bins as initial states. We then took both the actions from these initial states
to get corresponding next states. We used the dataset of these transitions (2000 total transitions) as
our offline dataset.

Optimization details We use 4-layer MLP with ReLU Activation, with 400 latent neurons. We
use Adam optimization with a learning rate of 1e-4, and optimize for 400 epochs. We use gradient
descent with a batch size of 200. For a deeper network, we use a 12-layer MLP, with 400 latent
neurons but keep other optimization hyperparameters fixed. To show that longer training period
help MLPs evade the spectral bias, we use a 4-layer MLP, with 400 latent neurons and train it for
2000 epochs. All the optimization hyperparameters are kept the same.

A.3 RESULTS ON DMC DOMAINS

DMC domains We list the 8 DMC domains along with their observation space dimension and
action space dimension in Table 1. We also list the optimal bandwidth b used by FFN for each of
these envs.

Results with SAC and DDPG We scale up use of FFN to 8 DMC domains by replacing the MLP
in the actor and the critic of a SAC agent with FFN. Figure 15 shows learning curve of FFN and
MLP with SAC as the RL algorithm on 8 DMC domains. To show that FFN also works with other
RL algorithms, we replace the MLP in the actor and the critic of a DDPG agent with FFN. Figure 16
show learning curve of FFN and MLP with DDPG as the RL algorithm on 8 DMC domains.
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Table 1: DMC domains in increasing order of state space and action space dimensionality

Name Observation space Action space Bandwidth b

Acrobot-swingup Box(6,) Box(1,) 0.003
Finger-turn-hard Box(12,) Box(2,) 0.001
Hopper-hop Box(15,) Box(4,) 0.003
Cheetah-run Box(17,) Box(6,) 0.001
Walker-run Box(24,) Box(6,) 0.001
Humanoid-run Box(67,) Box(21,) 0.001
Quadruped-walk Box(78,) Box(12,) 0.0003
Quadruped-run Box(78,) Box(12,) 0.0001
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Figure 15: Learning curve with FFN applied to SAC on the DeepMind control suite. Domains are
ordered by input dimension, showing an overall trend where domains with higher state dimension
benefits more from Fourier features. We use a (fourier) feature-input ratio of 40 : 1.

Value approximation error FFN improves over MLP both in sample efficiency and the overall
performance because of its ability to fit value functions with less gradient updates. Figure 17 shows
that FFN reduces value approximation error with more sample efficiency than MLP.

Measuring weight and bias change in FFN and MLP We hypothesize that FFN fits value func-
tions with more sample efficiency than MLP because of its better initialization due to sampling from
a wide space of frequency and phase. If this is indeed the case, the weights and biases of FFN should
undergo less change than that of an MLP during training of an RL agent. LetWt refer to the concate-
nated weight matrices (in vector form) from different layers of critic of an RL agent after training on
t environment frames (steps). Similarly, let Bt refer to the concatenated bias vectors from different
layers of critic of an RL agent after training on t environment frames. Figure 18 shows evolution of
‖Wt−W0‖ for MLP and FFN during training of SAC agents. Similarly, Figure 19 shows evolution
of ‖Bt − B0‖ for MLP and FFN during training of SAC agents.

Removing the target network Since FFN is able to fit value function with less gradient updates,
there is less of a need for a target network. Figure 20 shows performance of both MLP and FFN
without a target network. While MLP completely fails in all environments, FFN either matches its
performance with target networks or suffers small degradation in most environments. However, there
are some environments (Hopper-hop, Humanoid-run, Acrobat-swingup) where FFN completely fails
without target network.

Architectural Details for state DMC domains For MLP baseline, we parameterize the actor and
the critic with 3 layer MLP. For our method, we replace the 3 layer MLP in the actor and the critic
with a 3 layer FFN. If d is the input dimension, both MLP and FFN have [40 × d, 1024, 1024]
as hidden dimension for each of their layers. Note that d = observation dimension for actor and
d = observation dimension + actor dimension for critic.
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Figure 16: Learning curve with FFN applied to DDPG on the DeepMind control suite. Domains are
ordered by input dimension. The over trend agrees with results on soft actor-critic, where domains
with higher state dimension benefits more from random Fourier features. The same feature-input
ratio of 1 : 40 is applied.
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Figure 17: Value estimation error with FFN applied to SAC on the DeepMind control suite. FFN is
more sample efficient in reducing value estimation error, thereby improving the sample efficiency of
SAC.

Architectural Details for image DMC domains For CNN baseline, we parameterize the actor
and the critic with CNN model borrowed from DrQv2 (Yarats et al., 2021). For our method, we
derive conv FFN from the CNN model (taken from DrQv2) by replacing the first convolutional layer
with a 1x1 convolutional layer having sin activation and using the initialization scheme described in
Equation 14.

A.4 ABLATIONS AND HYPERPARAMETER SENSITIVITY ANALYSIS

Sensitivity to bandwidth b Since FFN introduces a bandwidth hyperparameter b, it is natural
to ask how the choice of b affects FFN’s performance. Figure 21 shows that FFN’s performance
does vary with choice of b. Furthermore, the best performing value of b differs with environment.
This difference arises from the fact that the optimal value function for different environments have
different spectral bias and hence requires different bandwidth b for FFN.

Sensitivity to (Fourier) feature-input ratio In addition to the bandwidth b, we need to choose the
Fourier dimension for FFN. We maintained the feature-input ratio (i.e. Dd ) to be 40. But can we get
away with a lower feature-input ratio? Figure 22 shows that it is important to maintain feature-input
ratio to be at least 40 and any reduction in the feature-input ratio hurts the performance of FFN.

FFN on actor vs FFN on critic In our experiments, we used FFN with both actor and critic. We
analyze how removing FFN from either actor or critic affects the performance of RL agent. Figure 23
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Figure 18: Weight change in FFN and MLP during training of RL agents with SAC on the DeepMind
control suite. The results are mixed and FFN’s weight parameters undergo less change than MLP’s
weight parameters only in some environments.
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Figure 19: Bias change in FFN and MLP during training of RL agents with SAC on the DeepMind
control suite. Given FFN’s bias parameters have better initialization, they undergo less change than
MLP’s bias parameters.

shows that using FFN only critic doesn’t affect the performance of the RL agent. However, using
FFN with only actor brings down the performance of the RL agent to that using MLP for both actor
and critic.
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Figure 20: Since FFN require fewer gradients for value function estimation, its performance doesn’t
degrade as much when target value networks are removed. On the contrary, MLP completely fails
when target value networks are removed.
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Figure 21: Learning curve with FFN for different values of B on Walker-run and Quadruped-run.
We use SAC as the RL algorithm. We observe that different B values lead to different performances
and hence, we must choose the B value carefully for each environment.
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Figure 22: Learning curve with
different Fourier dimension ratio
on Quadruped-run. Lowering the
ratio decreases the performance.
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Figure 23: Using FFN for critic is as good as using FFN for
both actor and critic. However, using learned FFN only for
actor is similar to the MLP baseline. This indicates the gain
mainly comes from better value approximation.
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