Bayesian Quantile and Expectile Optimisation

Abstract

Bayesian optimisation (BO) is widely used to op-
timise stochastic black box functions. While most
BO approaches focus on optimising conditional ex-
pectations, many applications require risk-averse
strategies and alternative criteria accounting for
the distribution tails need to be considered. In
this paper, we propose new variational models for
Bayesian quantile and expectile regression that are
well-suited for heteroscedastic noise settings. Our
models consist of two latent Gaussian processes ac-
counting respectively for the conditional quantile
(or expectile) and the scale parameter of an asym-
metric likelihood functions. Furthermore, we pro-
pose two BO strategies based on entropy search
and Thompson sampling, that are tailored to such
models and that can accommodate large batches
of points. Contrary to existing BO approaches for
risk-averse optimisation, our strategies can directly
optimise for the quantile and expectile, without
requiring replicating observations or assuming a
parametric form for the noise. As illustrated in
the experimental section, the proposed approach
clearly outperforms the state of the art in the het-
eroscedastic, non-Gaussian case.

1 INTRODUCTION

Let @ X x € — IR be an unknown function,
where X C [0,1]” and © denotes a probability space
representing some uncontrolled variables. For any fixed
x € X, Y, = ¥(z,-) is a random variable of distribu-
tion IP,,. We assume here a classical black-box optimisation
framework: W is available only through (costly) pointwise
evaluations of Y,.. Typical examples may include stochastic
simulators in physics or biology (see[Skullerud| (1968) for
simulations of ion motion and|Székely Jr and Burrage|(2014)

for simulations of heterogeneous natural systems), but ¥
can also represent the performance of a machine learning
algorithm according to some hyperparameters (see Bergstral
et al.| (2011) for instance). In the latter case, the random-
ness can come from the use of minibatching in the training
procedure, the choice of a stochastic optimiser or the ran-
domness in the initialisation of the optimiser.

Let g(z) = p(IP,) be the objective function we want to
maximise, where p is a real-valued functional defined on
probability measures. The canonical choice for p is the ex-
pectation, which is sensible when the exposition to extreme
values is not a significant aspect of the decision. However,
in a large variety of fields such as agronomy, medicine or
finance, decision makers have an incentive to protect them-
selves against extreme events since they may lead to severe
consequences. To take these rare events into account, one
should consider alternative choices for p that can capture the
behaviour of the tails of IP,, such as the quantile (Rostek],
2010), conditional value-at-risk (CVaR, seeRockafellar et al.
(2000)) or expectile (Bellini and Di Bernardino} [2017). In
this paper we focus our interest on the modelling and optim-
isation of quantiles and expectiles.

Given an estimate of g based on available data, global op-
timisation algorithms define a policy that finds a trade-off
between exploration and intensification. More precisely, the
algorithm has to explore the input space in order to avoid
getting trapped in a local optimum, but it also has to con-
centrate its budget on input regions identified as having a
high potential. The latter results in accurate estimates of g
in the region of interest and allows the algorithm to return
an optimal input value with high precision.

In the context of Bayesian optimisation (BO), such trade-
offs have been initially studied by [Mockus et al.|(1978)) and
Jones et al.|(1998)) in a noise-free setting. Their framework
has latter been extended to optimisation of the conditional
expectation of a stochastic black box (see e.g. [Frazier et al.
(2009); |Srinivas et al.| (2009) or |Picheny et al.| (2013) for
a review). Recently, strategies optimising risk measures

Submitted to the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022). To be used for reviewing only.



have been proposed, In particular, Cakmak et al.| (2020)
proposed new algorithms to optimise for the quantile and
CVaR for a slightly different use case, where the space 2 is
actually controllable. Browne et al.|(2016) and Makarova
et al.| (2021) proposed algorithms to optimise quantiles and
CVaRs, but both rely on intensively repeating observations,
which hinders their efficiency in a relatively low budget
scenario.

Contributions The contributions of this paper are the
following: 1) We propose a new model based on two latent
Gaussian Processes (GPs) to estimate quantiles or expectiles
that is tailored to heteroscedastic noise. 2) We use Sparse
posterior and variational inference to support potentially
large datasets. 3) We propose a new Bayesian algorithm
suited to optimise conditional quantiles or expectiles in
a data efficient manner. Two batch-sequential acquisition
strategies are designed to find a good trade-off between
exploration and intensification. The ability of our algorithm
to optimise quantiles is illustrated on multiple test problems.

2 BAYESIAN METAMODELS OF RISK
MEASURES

For a given input point z, the quantile of order 7 € (0, 1) of
Y., can be defined as

¢-(z) = argmin E [l (Y, — q)], (D
qgeR

where [ is the pinball loss (Koenker and Bassett Jr,|1978))

1(§) = (T = Lg<o))§,

Similarly, Newey and Powell| (1987) introduced the ex-
pectile as the minimiser of an asymmetric quadratic loss:

¢eR. )

er(z) = argmin E[I(Y, — q)], 3)
geER

12(6) = |1 — L(eco)l€?,

We detail in the next section how these losses can be used to
get an estimate of the objective function g(x) using a dataset
D, = ((x1,y1) (@0, yn)) = (X, V) that does not
necessarily require replicates of observations at the same
input location.

¢ eR. )

2.1 QUANTILE AND EXPECTILE METAMODEL

Different metamodels have been proposed to estimate a
quantile function, such as artificial neural networks (Cannon)
2011}, random forest (Meinshausen,|2006)) or nonparametric
estimation in reproducing kernel Hilbert spaces (Takeuchi
et al.,|2006)). While the literature on expectile regression is
less extended, neural network (Jiang et al.l 2017} or SVM-
like approaches (Farooq and Steinwart, |2017) have been

developed as well. All the approaches cited above defined
an estimator of g as the function that minimises (optionally
with a regularisation term)

Relg] = %Zl(yi — g(x3)), 5

with [ = [ for the quantile estimation and [ = [ for the
expectile. This framework makes sense because asymptotic-
ally minimising (5) is equivalent to minimising (I or (3).

These approaches however share a common drawback: they
do not capture the uncertainty associated with each pre-
diction. This is a significant problem in our setting since
quantifying this uncertainty is of paramount importance to
define the exploration/intensification trade-off. This limita-
tion can be overcome by using a probabilistic model such
as

y = g(x) + e(z),

where g is either an unknown parametric function (Yu and
Moyeed, 2001)) or a Gaussian process (Boukouvalas et al.|
2012 |Abeywardana and Ramos|, [2015)), and where the dis-
tribution of € depends on the quantity to be estimated. For
modelling a quantile, € should follow an asymmetric Laplace
distribution:

pele) = D e (D)

For approximating an expectile, one can use the asymmetric
Gaussian distribution:

pele) = C(r,0) exp ( _ ) ) ©6)

202

2r(1 —7)
AT

In both cases, the associated likelihood is given by

with C(1,0) =

p(Vnlg) =[] pelyi — g(x:)). ©)
=1

Although the Bayesian quantile model presented above is
well known (Yu and Moyeed, 2001} [Boukouvalas et al.
2012; |Abeywardana and Ramos| [2015)), the Bayesian ex-
pectile model we just introduced is new to the best of
our knowledge. It is worth noting that the non-conjugacy
between the prior on g and the likelihood functions implies
that the posterior distribution of g given the data is not avail-
able in closed form. To overcome this, Boukouvalas et al.
(2012) use Expectation propagation whereas Abeywardanal
and Ramos| (2015) favours variational inference. The lat-
ter appears to be one of the most competitive approaches
on the benchmark presented in [Torossian et al.[(2019) so
we will embrace the variational inference framework in the
remaining of the paper.
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Figure 1: GP quantile model from|Abeywardana and Ramos|(2015) (left) and ours (right) on data with high heteroscedasticy.
The left model cannot compromise between very small observation variances around x = 4 and very large variances (z < 2),
largely overfits on half of the domain and returns overconfident confidence intervals. In contrast, our model captures both
the low and high variance regions, while returning well-calibrated confidence intervals.

One limitation of the aforementioned methods is that they
can result in overconfident predictions in heteroscedastic
settings, as illustrated in Figure[I] The main reason is that
they only use a single parameter o to capture the spread for
the likelihood function, which amounts to considering that
the noise amplitude does not change over the input space.
We believe this can be a severe limitation in the context of
quantile optimisation since the fluctuation of the quantile
value over the input space is likely to be dictated by the
noise distribution itself not being stationary.

To overcome this issue, we propose to build quantile and ex-
pectile models where the spread of the asymmetric Laplace
and Gaussian likelihoods varies across the input space. For
both distributions, this can be achieved by redefining o in
equations [7]and[6] as a function of the input parameters. In-
tuitively, a small value of o () means that there is a high
penalty for having an estimate of g(x) that is far away from
the data, whereas a large value of o(x) means that this pen-
alty is limited and thus leads to more regularity in the model
predictions. In practice, we choose a Gaussian prior for g
and a log-Gaussian prior for o,

g@) ~ GP(uy(x), kj(z,2")), @®)
logo(z) ~ GP(us(z),k§(z,2")). )

This model can be compared to the Heteroskedastic GP
model introduced by [Saul et al.| (2016)), but with a different
likelihood function so that the posterior mode corresponds
to a quantile or an expectile.

2.2 INFERENCE PROCEDURE

Although one can obtain a reasonable estimate of a mean
value using only a handful of samples, inferring quantiles or
expectiles tends to require a much larger number of observa-
tions, since they require information associated to the tails

of the distribution. The inference procedure for the proposed
probabilistic model must thus be able to cope with relatively
large datasets, with a number of observations in the order of
a few thousands to a tens of thousands data points.

A well established method that supports both large datasets
and non-conjugate likelihoods is the Sparse Variational GP
framework (Titsiasl [2009; Hensman et al., [2013). It con-
sists in approximating the intractable or computationally
expensive posterior distribution p(g, o|),,) by a distribution
p(9,0|9(Z)=uy,0(Z)=u,), where Z € XN and uy, u,
are /NV-dimensional random variables:

ug ~ N (uglpg, Sg) and uy, ~ N (uqs|ps, Sy ).

The parameters Z, (g, Sg, fo, So, are referred to as
the variational parameters. The Z’s are often called indu-
cing points. Intuitively, u4 are random variables that act as
pseudo-observations at the inducing point locations.

The variational parameters can be optimised jointly with the
model parameters (e.g. mean function coefficients or kernel
hyperparameters) such that Kullback-Leibler divergence
between the approximate and the true posterior is as small
as possible. In practice, this is achieved by maximising the
Evidence Lower Bound (ELBO):

Z / log p(yilgi, 0:) p(g:)p(0:)dgido
i=1

— X1 (p(uq)llp(uq)) — Kl ((uo)llp(us)),

where p(g;) and p(o;) are shorthands for the variational
posterior distributions at x;:

B(g:) = / P(9(22)|9(Z) = ug)plug)du,

= N(gi|Kxi,ugK1:g1,ugUga Ky, o + Qg)7



where Qg = K:ci,ugKil (Sg —

Ug,Ug

—1
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This proposed inference scheme is similar to the one used
in Saul et al.| (2016), with the notable difference that non
differentiability of the pinball loss at the origin implies
that we need to resort to using a first order optimizer such
as ADAM (Kingma and Ba, 2014)) that can handle non-
differentiability of the objective function.

3 BAYESIAN OPTIMISATION

Classical BO algorithms work as follow. First, a posterior
distribution on g is inferred from an initial set of experi-
ments D,, (typically obtained using a space-filling design).
Then the next input point to evaluate is chosen as the max-
imiser of an acquisition function o, : X — R, computed
from the posterior. The objective function is sampled at the
chosen input and the posterior on g is updated. These steps
are repeated until the budget is exhausted. The efficiency
of such strategies depends on how informative the g pos-
terior is but also on the exploration/exploitation trade-off
provided by the acquisition function. Many acquisition func-
tions have been designed to control this trade off, among
them the Expected improvement (EI, Jones et al., |1998),
upper confidence bound (UCB, |Srinivas et al.,2009)), know-
ledge gradient (KG, Frazier et al.,2009) and Entropy search
(PES, Hernandez-Lobato et al.,[2014)).

In the case of quantiles and expectiles, adding points one
at a time is impractical since many points are typically ne-
cessary to modify significantly the g posterior. Hence, we
focus here on batch-BO strategies, for which the acquisition
recommends a batch of B > 1 points instead of a single
one. The above-mentioned acquisition functions have been
extended to handle batches: see for instance Marmin et al.
(2015) for EI, (Wu and Frazier, [2016) for KG or|Desautels
et al.| (2014) for UCB. However, none actually fit our set-
tings for two main reasons. First, most parallel acquisitions
make use of explicit update equations for the GP moments
and assume access to a Gaussian posterior for observations,
neither of which are available for our model. Secondly, most
are designed for small batches (say, B < 5) and become
numerically intractable for the larger batches (say, B > 50)
that are more in line with the data volumes necessary for
quantiles and expectiles estimation.

We propose in the following the first acquisition functions
that can be applied to our quantile GP surrogate model, one
based on Thompson sampling and one on entropy search.

3.1 THOMPSON SAMPLING

Thompson sampling (TS) is becoming increasingly popu-
lar in BO, in particular because of its embarrassingly par-
allel nature allowing full scalability with the batch size
(Hernandez-Lobato et al., 2017; Kandasamy et al.| [2018;

Vakili et al., [2021)).

Given the posterior on g, an intuitive approach is to sample
W according to the probability that x is the location of the
maximum of g. Despite this distribution usually being in-
tractable, one may achieve the same result by sampling a
trajectory from the posterior of g and then selecting the input
that corresponds to its maximiser. Such approach directly
extends to batches of inputs, by drawing several trajectories
and selecting all the maximisers.

The main drawback of GP-based TS is the cost of sampling a
trajectory, which can only be done exactly at a finite number
of input locations at a cubic cost in the number of locations.
An alternative is to rely on a finite rank approximation of
the kernel, but this has been found to have an undesirable
effect known as variance starvation (Wang et al.,[2018]).

Wilson et al.|(2020) showed that pairing sparse GP models
with the so-called decoupled sampling formulation avoids
the variance starvation issue. | Vakili et al.|(2021)) then demon-
strated that such an approach delivered excellent empirical
performance on high noise, large budget, large batch scen-
arios, while enjoying the same theoretical guarantees as
the vanilla TS approach. Here, we build upon [Vakili et al.
(2021)), and apply their algorithm to the variational posterior
of g to obtain draws directly from the quantile or expectile
model. The posterior over o, which controls the observation
noise, is not used during the TS algorithm.

The procedure for generating quantile samples from the vari-
ational posterior of g can be summarised as follows: First,
a continuous sample from the prior of g is generated using
Random Fourier Features (see supplementary material [B).
Second we sample from the inducing variables u,. Third,
we compute the mean function m(z) of a GPR model that
interpolates the dataset {Z,u, — s(Z)}. Finally, the pos-
terior sample is obtained by correcting the prior samples
with the mean function v(z) = s(x) + m(x).

3.2 INFORMATION-THEORETIC QUANTILE
OPTIMISATION WITH GIBBON

Another particularly intuitive search strategy for BO is to
choose the evaluations that will maximally reduce the uncer-
tainty in the minimiser of the objective, an approach known
as max-value (or min-value) entropy search (MES, Wang
and Jegelka, 2017). For quantile optimisation, MES corres-
ponds to reducing uncertainty in the minimal quantile value
g* = minger g(x). Following the arguments of [Wang and
Jegelkal (2017), a meaningful measure of uncertainty reduc-
tion in this context is taken as the gain in mutual information
between a set of candidate evaluations and g* (see/Cover and
Thomas, |2012} for an introduction to information theory).
Principled information-theoretic optimisation then corres-
ponds to finding batches of B input points {x;}2 | that



maximise

an({z:} 1) = MI(g%; {ya, } 21 [ Dr),  (10)

where ¥, are not-yet-observed evaluations of the batch that
are estimated with the GP surrogate model.

Although calculating the acquisition function (I0) is chal-
lenging, there exist effective approximation strategies for
GP models with conjugate likelihoods (Moss et al., 2020b;
Takeno et al.l [2020). In the remaining of this section we
show that the approach used in General-purpose Informa-
tion Based Bayesian-OptimisatioN (GIBBON |Moss et al.|
2021)) can be adapted to support asymmetric Laplace or
Gaussian likelihood so that information-theoretic acquisi-
tion functions can be used for our quantile and expectile
models.

Following the derivations of Moss et al.|(2021), the applica-
tion of three well-known information-theoretic inequalities
provides the following lower-bound for the mutual informa-

tion (TO):
MI(g": {02} 201D = H({ye, } 2 D)
9 Yz pi=11n) 2 Yz fi=11n

B
1 *
- 5 Z Eg*|’D,L [IOg(Zﬂ-evar(yzi |g aDn))] ) (1 1)
i=1

where H(A) = —IE 4 [log p(A)] denotes differential entropy.
Although calculating the expectation in the second term of
(TT) is intractable (i.e. no closed-form expression exists
for p(¢g*|Dy,)), we follow another approximation common
among information-theoretic acquisition functions and ap-
proximate the integral using Monte-Carlo over a set of M
sampled minimum values. In particular, we use the Gum-
bel sampler proposed by [Wang and Jegelkal (2017)), which
provides a cheap set of samples M,, = {g7, .., g}, } from
p(g"|Dn).

When calculating the original GIBBON acquisition func-
tion, all the terms in the lower bound @ are tractable,
i.e. the conjugancy of their Gaussian likelihood means that
H({y., }2.,|D,) is just the differential entropy of a mul-
tivariate Gaussian which, alongside each Var(y,,|g*, Dy,),
has a closed-form expression (See |[Moss et al.| (2021) for
details). Consequently, this lower bound itself is used as a
closed-form approximation to the mutual information. How-
ever, in our quantile setting, we no longer have expressions
for the first term of — the joint differential entropy of
B-dimensional asymmetric Laplace variables with a com-
plex correlation structure given by our two latent GPs.

To build an information-theoretic acquisition function suit-
able for our quantile model, we must apply an additional
approximation. In particular, by using a moment-matching
approximation, we can replace the intractable joint differ-
ential entropy with the differential entropy of a multivariate
Gaussian of the same covariance, leading to our propose

Quantile GIBBON (Q-GIBBON) acquisition function

B
- 1 1 *
QQGIBBON _ 51081C1 = 57 > logVilg®),

g*eEM, 1=1

where |C| is the determinant of the B x B predictive
covariance matrix with elements C; ; = Cov(ys,,¥Ye,)
and V(g*) denotes the conditional variances Vj(g*) =
Var(y.,|g*, Dy). Crucially, all the terms of Q-GIBBON
have closed-form expressions (see appendix [A] for a de-
rivation of C' and V' from our quantile GP).

Although applying an additional moment-matching approx-
imation means that Q-GIBBON is no longer a lower bound
on the true mutual information, we found that it provides
very efficient optimisation (see Section ). In fact, we tried
much more expensive but unbiased Monte-Carlo approx-
imations which did not result in noticeable difference in
performance.

In practice, directly searching for the set of B points that
maximise aQ9BBON i5 a very challenging task, due to the
dimensionality (B x D) and multimodality of the acquisition
function. However, the Q-GIBBON formulation makes it
particularly well-suited for a greedy approach, where we
first optimise Q-GIBBON for B = 1, then optimise for
B = 2 while fixing the first point to the previously found
value, etc. until B points are found.

4 EXPERIMENTS

We now evaluate our proposed model and acquisition func-
tions on a set of synthetic tasks and two real-world optimisa-
tion problems. All that follows could equivalently be applied
to expectiles, experiments are focused on quantile optim-
isation to streamline the exposition. The results presented
in this section can be replicated using the code available at
www.github.com/obfuscated-url.

4.1 ALGORITHM BASELINES

To our knowledge, there is no other existing BO algorithm
dedicated to optimising quantiles in our considered setting.
The most similar algorithms are those of (Cakmak et al.
(2020) and |[Makarova et al. (2021). However, |(Cakmak et al.
(2020) requires precise control over the noise generation
process, while|Makarova et al.[(2021)) seek to find solutions
with low levels of observation noise but do not provide a
method for optimising a specific quantile level.

We can, however, apply standard BO methods to perform
quantile optimisation if direct observations of the quantiles
are available. This is achievable by using repeated obser-
vations, which allows computing a (pointwise) empirical
quantile. As direct observations are available, a standard GP



Regression model (GPR) can be used to provide a posterior
on g (Plumlee and Tuo, |2014)). One can also bootstrap the
repeated observations to obtain variance estimates of the em-
pirical quantiles, to improve further the model by accounting
for varying observation noise. Next, a BO procedure can be
defined based on any classical acquisition function. Here
we choose the vanilla EI one. With this strategy, each batch
consists of a single point in the input space, repeated a
number of times. In the following experiments we use this
baseline (denoted GPR-EI) to compare with our two pro-
posed methods using TS and Q-GIBBON over a quantile
GP.

4.2 IMPLEMENTATION

All models are built using the gpf lux library (Dutordoir
et al.||2021), and the BO procedure is done using t rieste
(Berkeley et al.|[2022). All models use a Matern 5/2 kernel,
and all acquisition functions (or GP samples in the case of
TS) are optimised using a multi-start BFGS scheme.

Our quantile model requires a design choice for the inducing
points placement, these are reinitialised for each model fit.
We follow the findings of |Vakili et al.| (2021) and use the
centroids of a k-means procedure on the data points, which
tends to concentrate the inducing points near the optimal
areas as more data is collected by BO. Our implementa-
tion of decoupled Thompson sampling uses 1000 random
Fourier features (see supplementary material for detailed
expressions). To sample minimum values for Q-GIBBON
we use the Gumbel sampler of [Wang and Jegelka) (2017)
with 10,000 x D random initial points.

4.3 SYNTHETIC PROBLEMS

Problem description We generated a set of synthetic
problems based on the Generalised Lambda Distribution
(GLD, Freimer et al.,|1988), a highly flexible four-parameter
probability distribution function designed to approximate
several well-known parametric distributions. The four para-
meters define the location, scale, left and right shape of the
distribution, respectively. By varying the value of each para-
meter as a function of x, one can create a black-box with
high noise, heteroscedasticity and non-Gaussianity:

Y, ~ GLD(\(2), ..., A(2))). (12)

To generate a large set of problems with varying dimension-
ality while controlling the multimodality of the problem at
hand, we used GP random draws for the A;’s. See appendix
for a full description. Figure 2] shows examples of marginal
distributions (for different = values) for one such problem.

We consider two input space dimensions: D = 3 and 6 and
two quantile levels, 7 = 0.75 and 0.95. We use as an ini-
tial budget 50D observations, uniformly distributed across

-5 0 5 -5 0 5 -5 0 5

Figure 2: Examples of marginal distributions for one GLD-
based problem at three different locations of the input space.

the input space and a total budget of 250D observations,
acquired in batches of either B = 10 or 50 points. Each
strategy is run on 50 different problems. We report here the
simple regret in Figure |3} averaged over the 50 problems,
with confidence intervals.

Results In almost all cases, our approaches largely outper-
form the GPR baseline, the exception being on the simpler
problem (small dimension and batch size) for which the
GPR baseline is comparable to TS (GIBBON being substan-
tially better for the 0.75 quantile). Comparing acquisition
strategies, GIBBON clearly outperforms TS for D = 3. In
dimension 6, both approaches are roughly comparable.

44 LUNAR LANDER

Problem description The Lunar Lander problem is a pop-
ular benchmark for noisy BO (Moss et al.,|2020a; Eriksson:
et al., 2019). In this well-known reinforcement learning
task, we must control three engines (left, main and right) to
successfully land a rocket. The learning environment and a
hard-coded PID controller is provided in the OpenAl gymﬂ
We seek to optimise 6 thresholds present in the description
of the controller to provide the largest expected reward:
finding those thresholds defines the BO task. Our RL en-
vironment is exactly as provided by OpenAl. We lose 0.3
points per second of fuel use and 100 if we crash. We gain
10 points each time a leg makes contact with the ground,
100 points for any successful landing, and 200 points for
a successful landing in the specified landing zone. Each
individual run of the environment allows the testing of a
controller on a specific random seed.

This problem is particularly well-suited for a quantile ap-
proach, since reward is stochastic, highly non-Gaussian, and
the landing problem is a clear case for which one would
want guarantees against risk.

Results For this problem, we ran each algorithm 10 times
(starting from different initial conditions), with batches of
B = 25 points 300 initial observations and 1500 in total.
We aim to maximise the 10% quantile of the reward. Due
to the high cost of calculating the true quantiles of the lunar

Ynttps://gym.openai.com/
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Figure 3: The mean and 95% confidence intervals of regret on synthetic problems in dimension 3 (top) and 6 (bottom), for
two quantile levels (7 = 0.75,0.95) and medium (B = 10, left) and large (B = 50, right) batch sizes.

lander experiment (i.e. they must be calculated empirically
across a large collection of runs), we only report the reward
quantile obtained after half and all the iterations (see Table
[I) and only run one of our two proposed acquisition func-
tions. We choose TS over GIBBON as our synthetic GLD
experiments suggest that TS outperforms Q-GIBBON on
problems with larger (i.e. 6) dimensions. We can see that
TS largely outperforms the baseline, as it seems to robustly
identify a much better solution.

750 obs 1500 obs
GPR-EI 94.6 (106.1) 159.5(110.9)
TS 204.3 (53.8) 255.2 (8.0)

Table 1: Mean and standard deviation over 10 runs for the
10% quantile of the reward on the lunar lander problem.

4.5 LASER TUNING

Problem Description For our final experiment, we test
our quantile optimisation in a real-world setting inspired by
the Free-Electron Laser (FEL) tuning example of Mclntire
et al.|(2016). This is a challenging 16-dimensional optimisa-
tion task where we must configure the strengths of magnets
manipulating the shape of the FEL’s electron beam, seeking

to build a powerful and stable beam suitable for use in sci-
entific experiments. Due to the high levels of observation
noise in this problem and as stability of the resulting beam
is of critical importance for conducting reliable experiments,
it is clearly beneficial to encode a level of risk-adversity into
the optimisation. Therefore, there are clear advantages for
using quantile optimisation for FEL calibration.

As we do not have access to the FEL directly, we follow
Mclntire et al.|(2016) and use their 4, 074 observed X-ray
pulse energy measurements to build Gaussian process sur-
rogate model from which we can simulate pulse energy
at any new magnet configuration. To simulate the effect
of observation noise, [Mclntire et al.| (2016) add additional
Gaussian perturbations to the simulated values. However,
we found that the noise in this system was actually skew
Gaussian and varied in scale and skew across the search
space. Consequently, we simulate observation noise from a
skew Gaussian distribution with location, scale and shape
parameters also modelled with additional GPs (i.e. a setup
similar to our GLD examples). As many of the 4, 074 energy
measurements are evaluated at very similar input locations,
rounding these inputs to four decimal places provides us
with many repeated evaluations, allowing the empirical es-
timation of each parameter of the skew Gaussian distribution
at each of these inputs. The location, scale and shape GPs
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Figure 4: The mean and 95% confidence intervals of best 0.3 quantile found across 10 repetitions of the FEL tuning task.

are then determined to predict the parameters of the skew
Gaussian noise distributions for any candidate magnet con-
figuration.

Results  Figure[|shows the performance of each algorithm
over 10 repetitions, seeking to maximise the 30% quantile
of pulse energy. The models are initialised with 400 data
points randomly chosen from the full dataset, and a further
1,200 points are collected with BO in batches of 100 points.
Our algorithms based on quantile GP models substantially
outperform the replicate-based GPR baseline. In fact, by
using TS with a quantile GP, we are able to find solutions
very close to the optimal value (4.8). We hypothesise that the
relatively poor performance of our Q-GIBBON acquisition
function is due to the high dimension of this problem. The
Gumbel sampler used by Q-GIBBON for sampling minimal-
values is based on random sampling and so its performance
likely degrades as the input dimension increases. Since the
performance of information-theoretic BO is sensitive to
the quality of these samples (Moss et al,|2021), extending
information-theoretic BO to high dimensional problems like
FEL tuning remains an open question.

4.6 CONCLUDING COMMENTS

We have presented a new setting to estimate quantiles and ex-
pectiles of stochastic black box functions that is well suited
to heteroscedastic cases. We then used the proposed model
to create two BO algorithms designed for the optimisation
of conditional quantiles and expectiles without repetitions
in the experimental design. These algorithms outperform
the state of the art on several test problems with different
dimensions, quantile orders, budgets and batch sizes.

Overall, our experiments clearly show that the performance
gap between our approaches and the GPR-EI baseline in-
creases with the batch size and problem dimension. Since
GPR-EI relies on repetitions, it is much more limited in

terms of exploration, while our approaches can evaluate B
unique points at each BO iteration. Hence, our approach is
much less sensitive to the curse of dimensionality.

Experiments also show that for low-dimensional, smaller
batches, Q-GIBBON is the best alternative, while with in-
creasing dimension and batch size, the simpler Thompson
sampling seems to perform best. Depending on the avail-
able hardware, the parallel nature of TS might also provide
substantial advantages in terms of wall-clock time.
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A SUPPLEMENTARY MATERIAL:
CALCULATION OF Q-GIBBON

We derive here the analytical form of our proposed Q-
GIBBON acquisition function. For simplicity, we focus on
the quantile setting, but the expectile case only requires a
straightforward modification of the following derivation.

Recall that Q-GIBBON is defined as

Q-GIBBON _

Qp

B
o S D leeVily),

g*eM,, i=1

1
510g|C\ -

where |C] is the determinant of the B x B predictive co-
variance matrix with elements C; ; = CoV(Yx,, ¥z, |Dn)
and V(g*) denotes the conditional variances V;(g*)
Var(y.,|g*, D). Therefore, calculating Q-GIBBON boils
down to being able to calculate V;(¢g*) and C; ; across any
candidate batch of points (i.e. for all ¢, j € {1, .., B}). We
now derive closed-form expressions for V;(g*) and C; ;.

A.1 REQUIRED PREDICTIVE QUANTITIES

For ease of notation, we will consider just a single pair
of input values of z; and x5 and show how to calculate
Vi(g*) and C 2. Denote the quantiles, scales and (noisy)
observations at these two location as g1 = g(x1)|Dp,
g2 = 9(x2)| Dy, 01 = 0(21)|Dp, 02 = 0(22)|Dn, Y1 =
y(21)|Dy, and y2 = y(x2)| Dy, respectively. Then, from our
underlying GP models we can extract our current beliefs
about these random variables:

()~ ~[03) (5 &)l
os(o AW
(o) ~ [(08)- (S0 ok )]

For closed form expressions of pf, o7, ... see any GP text-
book, e.g. Rasmussen| (2003).

Before deriving expressions for V4 (¢*) and C} o, it is con-
venient to write the conditional mean and variance of our
noisy observations y; and ys. Following [Yu and Moyeed
(2001), we have

1-27
E = —_— 13
[y1lg1, 01] g1+7_(1_7_)01, 13)
1—2r+27%
Var(yl‘gla 01) = 7_2(1 — 7_)2 015 (14)

with similar expressions for the moments of y3|g2, o2
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A.2 CALCULATING THE CONDITIONAL
VARIANCE V

We now have all the quantities required to calculate
Vi(g*) = Var(y|g*). Recall that g* denotes the maximal
value obtained by the quantile (i.e. g(z)). First, we use the
law of total variance to decompose V; into two terms:

Vl :Vargl,a\g* (E[yl |glv 01, g*D

+Eg1,a|g* [VaI(y1|gl,01,g*)] . (15)
Note that conditioning on g1, 0, g* is equivalent to condi-
tioning on g1, o only, as knowing that g* = min g(z) does
not provide additional information over knowing g; itself.
Therefore, we can insert our expressions for the moments of
the asymmetric Laplace and into which, after
simple manipulation provides:

3(1—27)" + 1 au7+(07)?)
272(1 —71)2

(1=27)° ougt(op)?,
212(1 —1)?

Vl(g*) = Vargllg* (91) +

+ (16)
All that remains for the calculation of V' (g*); is an expres-
sion for Varg, |4+ (g1). Fortunately, as shown by Wang and
Jegelkal (2017)), g|g* is simply an upper truncated Gaussian
variable. Therefore, using the well-known expression for
the variance of a truncated Gaussian, we have

$(vg+) $(vg+)
Var,, 1, (g 092(1+ I yge — 14 ;
nlo- (91) = (o7) W (vg+) ! P (vg+)
a7
where v, = £ *;g“ 1 ,and ¢ and W are the probability density
1

functions and cumulative density functions of a standard
Gaussian variable, respectively.

Finally, inserting (I7) into (I6) yields a closed form expres-
sion for V3 (g*).

A.3 CALCULATING THE PREDICTIVE
COVARIANCE C

Just like when calculating the conditional variance V7, we
begin our decomposition of Cq 2 = Cov(yi,y2) by apply-
ing the law of total variance to get the following two term
expansion:

01,2 :Covgl,g2,01,ag (E [y1|917 01] 7]E [y?; 92, O—QD

+ By, g2.01,00 [COV(Y1, Y2|91, g2, 01,02)] . (18)
Now, as y1|g1,01 and y2|ga, 0o are independent (all that
remains after this conditioning is observation noise), the
second term of (I8) is in fact zero (at least for unique
and x9).



To calculate the first term of (I8), we insert the expression
for the first moment of y|g, o (i.e. Equation ) which,
after recalling the independence of g and o, yields

C1,2 = Covg, g, (91, g2)

(1—27)2
mcovtflﬁz (01,02).

19)
Finally, we can extract Cov(g;,g2) and Cov(oy,09)
from our underlying GP models as X{, and
et 13 +0-5(07+03) (X712 — 1) (using the formulae
for the covariance of joint log Gaussian variables). Inserting
these two covariances into (I9) provides a closed-from
expression for C 5.

B SUPPLEMENTARY MATERIAL: RFF

FOR MATERN KERNELS

We present in this section how to use RFFs to generate
samples from d-dimensional Matern kernels with regularity
v, variance o2 and lengthscales 6 € RE. First of all, we start
from the spectral density of a Matérn kernel:

(2y/7)

(14wl Aw)s+v’

(£+v)

r
s(w) = o?|A|Y/?
(w) = o A2 =2

where A = diag(0y,--- ,64) is the diagonal matrix con-
taining the length scale hyperparameters. Using the change
of variable A’ = 2v x A and introducing rescaling factor
o?(v/27)?, one can recognise here the probability density
function of the multivariate t-distribution:

(¢ +v) 1

(I/)7Td/2]/d/2 (1 + QITWTAU})%+V .

— A1/2
p(w) = AV 5

As a consequence, prior samples can be generated by com-
puting

g(z) = m/z(\/iﬂ)d/mzwi cos(w] z + b;)

where w; ~ N (0,1), w; ~ p, b; ~U(0,27), and m is the
number of features.

C SUPPLEMENTARY MATERIAL:
DESCRIPTION OF THE GLD
SYNTHETIC CASE

Several formulations of the GLD exist, we use here the para-
meterisation of [Freimer et al.| (1988)). The GLD is defined
by its quantile function:

Q(u) =X+ M (T1 — TQ) , (20)
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with:
A .
7= ) e #0
log(u) ifAe =0
—u A3 _ .
7 — (1;% if A3 # 0
log(l1—w) ifA3=0

Here, the only constraint for the parameter values is A\; > 0.

To define an experiment, each )\; is a realisation of a GP,
except for \; for which we use a softplus transform to ensure
positivity:

Aj(z) ~ GP(0,k(-,-)),
p(Mi(x) ~ GP(0,k(-,-)),

with ¢~ (w) = log(1 + e™). All GPs have a Matern 5/2
kernel k with unit variance. We add to Ag(z) a small quad-
ratic mean function to avoid having the optimum located
on the edges of the domain. We use a lengthscale of 0.5 in
dimension 3 and 1.0 in dimension 6. These settings ensure
that the 6-dimensional test cases do not have too many local
optima.

J €40,2,3},
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