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Abstract
Existing research studies on cross-sentence re-001
lation extraction in long-form multi-party con-002
versations aim to improve relation extraction003
without considering the explainability of such004
methods. This work addresses that gap by fo-005
cusing on extracting explanations that indicate006
that a relation exists while using only partially007
labeled explanations. We propose our model-008
agnostic framework, D-REX, a policy-guided009
semi-supervised algorithm that optimizes for010
explanation quality and relation extraction si-011
multaneously. We frame relation extraction as a012
re-ranking task and include relation- and entity-013
specific explanations as an intermediate step014
of the inference process. We find that human015
annotators are 4.2 times more likely to prefer016
D-REX’s explanations over a joint relation ex-017
traction and explanation model. Finally, our018
evaluations show that D-REX is simple yet ef-019
fective and improves relation extraction perfor-020
mance of strong baseline models by 1.2-4.7%.1021

1 Introduction022

Traditional relation extraction (RE) approaches dis-023

cover relations that exist between entities within024

a single sentence. Recently, several approaches025

have been proposed which focus on cross-sentence026

RE, the task of extracting relations between enti-027

ties that appear in separate sentences (Peng et al.,028

2017; Quirk and Poon, 2017; Han and Wang, 2020;029

Yao et al., 2019) as well as cross-sentence RE in030

dialogues (Yu et al., 2020; Chen et al., 2020; Xue031

et al., 2021; Qiu et al., 2021; Lee and Choi, 2021).032

A crucial step towards performing cross-033

sentence RE in multi-entity and multi-relation di-034

alogues is to understand the context surrounding035

relations and entities (e.g., who said what, and to036

whom). Figure 1 shows an example from the Di-037

alogRE dataset where a simple BERT-based model038

(Initial Predicted Relation in Figure 1) gets con-039

fused by multiple entities and relations existing in040

1Code, data and infrastructure will be made available

Figure 1: A sample dialogue between 2 speakers with
actual D-REX predictions. The model initially classifies
Speaker 2 and chandler, incorrectly, as girl/boyfriend.
After predicting the explanation "your friend", D-
REX correctly re-ranks the relation as friends.

the same dialogue (Yu et al., 2020). The model pre- 041

dicts the “girl/boyfriend” relation between Speaker 042

2 and Chandler, however, it is clear from the con- 043

text that the “girl/boyfriend” relation is referring to 044

a different pair of entities: Speaker 1 and Chandler. 045

One approach to encourage a model to learn the 046

context surrounding a relation is by requiring the 047

model to generate an explanation along with the 048

relation (Camburu et al., 2018). In addition to the 049

DialogRE dataset, Yu et al. (2020) introduces man- 050

ually annotated trigger words which they show play 051

a critical role in dialogue-based RE. They define 052

trigger words as “the smallest span of contiguous 053

text which clearly indicates the existence of the 054

given relation”. In the context of RE, these trigger 055

words can be used as potential explanations. 056

Our work aims to extract explanations that 057

clearly indicate a relation while also benefiting an 058

RE model by providing cross-sentence reasoning. 059

Our proposed approach, D-REX, makes use of mul- 060

tiple learning signals to train an explanation extrac- 061

tion model. First, D-REX utilizes trigger words as 062

a partial supervision signal. Additionally, we pro- 063

pose multiple reward functions used with a policy 064
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gradient, allowing the model to explore the expla-065

nation space and find explanations that benefit the066

re-ranking model. Including these reward functions067

allows D-REX to learn meaningful explanations on068

data with less than 40% supervised triggers.069

In order to predict relation- and entity-specific070

explanations in D-REX, we pose RE as a relation071

re-ranking task with explanation extraction as an072

intermediate step and show that this is not possible073

for a model trained to perform both tasks jointly.074

Our contributions are summarized as follows:075

• We propose D-REX, Dialogue Relation076

Extraction with eXplanations, a novel sys-077

tem trained by policy gradient and semi-078

supervision.079

• We show that D-REX outperforms a strong080

baseline in explanation quality, with human081

annotators preferring D-REX explanations082

over 90% of the time.083

• We demonstrate that by conditioning on D-084

REX extracted explanations, relation extrac-085

tion models can improve by 1.2-4.7%.086

2 Problem Formulation087

We follow the problem formulation of Yu et al.:088

let d = (s1 : u1, s2 : u2, . . . , sn : un) be a dia-089

logue where si and ui denote the speaker ID and090

the utterance from the ith turn, respectively. Let091

E ,R be the set of all entities in the dialogue and092

the set of all possible relations between entities,093

respectively. Each dialogue is associated with m094

relational triples <s, r, o> where s, o ∈ E are sub-095

ject and object entities in the given dialogue and096

r ∈ R is a relation held between the s and o. Each097

relational triple may or may not be associated with098

a trigger t. It is important to note that there is no099

restriction on the number of relations held between100

an entity pair; however, there is at most one trigger101

associated with a relational triple. In this work,102

we consider an explanation to be of high quality103

if it strongly indicates that a relation holds, and104

for this purpose we consider triggers to be short105

explanations, though not always optimal in quality.106

2.1 Relation Extraction (RE)107

Given a dialogue d, subject s, and object o, the108

goal of RE is to predict the relation(s) that hold109

between s and o. We also consider RE with addi-110

tional evidence in the form of a trigger or predicted111

explanation. Formally, this is the same as relation 112

extraction with an additional explanation, ex. 113

2.2 Explanation Extraction (EE) 114

We formulate EE as a span prediction problem. 115

Given a dialogue d consisting of n tokens T1 116

through Tn, and a relational triple <s, r, o>, the 117

goal of EE is to predict start and end positions, 118

i, j in the dialogue, such that the explanation 119

ex = [Ti, Ti+1, . . . , Tj ] indicates that r holds be- 120

tween s and o. 121

3 Baseline Models 122

We first introduce approaches for RE and EE based 123

on state-of-the-art language models. We then pro- 124

pose a multitask approach that performs both tasks 125

jointly. Our approaches use BERTbase (Devlin et al., 126

2019) and RoBERTabase (Liu et al., 2019b) pre- 127

trained models2, and follow their respective fine- 128

tuning protocols. 129

For all models, we maintain a single input for- 130

mat, which follows from Yu et al.. Formally, for 131

a dialogue d, subject s, object o, relation r, and 132

explanation ex, the input sequence to all mod- 133

els is [CLS]{r/ex[SEP]}s[SEP]o[SEP]d, where 134

{r/ex[SEP]} denotes that the relation or explana- 135

tion may be included depending on the task setting. 136

For RoBERTa models, we use the <s> and </s> 137

tokens rather than [CLS] and [SEP], respectively. 138

3.1 Relation Extraction (RE) 139

We follow the fine-tuning protocols of Devlin et al. 140

and Liu et al. for BERT and RoBERTa classifi- 141

cation models by using the output corresponding 142

to the first token C ∈ RH ([CLS] and <s>, re- 143

spectively) as a latent representation of the entire 144

input and train a classification matrix W ∈ RKxH , 145

where K is the number of relation types and H is 146

the dimension of the output representations from 147

the language model. For each relation ri, the prob- 148

ability of ri holding between s and o in d is cal- 149

culated as Pi = sigmoid(CW T
i ). We compute the 150

standard cross-entropy loss for each relation as 151

LRE = − 1

K

K∑
i=1

yi · log(Pi)+(1−yi) · log(1−Pi)

(1) 152

where yi denotes whether relation i holds. 153

2Pre-trained models obtained from
https://github.com/huggingface/transformers (Wolf et al.,
2020)

2



Figure 2: Overview of the D-REX system. The relation Ranking module ranks relations conditioned only on the
subject, object, and the dialogue. The EXplanation policy extracts supporting evidence for the ranked relations by
conditioning on individual relations in addition to the original input. The relation ReRanking module conditions its
rankings on supporting evidence from the explanation policy. In this hypothetical example, we see that relation
3 was originally ranked number 3 but had strong supporting evidence and was re-ranked in the number 1 spot.
Solid lines represent model inputs/outputs, and dotted lines represent learning signals. Reward functions, RRR and
RLOO, are detailed in equations 4 and 5, respectively.

3.2 Explanation Extraction (EE)154

For EE, we use the input described above, with a155

natural language phrasing of a relation appended156

to the beginning of the sequence. For example, if r157

is "per:positive_impression", then we concatenate158

"person positive impression" to the beginning.159

We follow the fine-tuning protocol of Devlin160

et al. for span prediction. We introduce start and161

end vectors, S,E ∈ RH . If Ti ∈ RH is the final162

hidden representation of token i, then we compute163

the probability of token i being the start of the164

predicted explanation as a dot product with the165

start vector, followed by a softmax over all words166

in the dialogue:167

PS
Ti

=
exp(S · Ti)∑
j exp(S · Tj)

(2)168

To predict the end token, we use the same formula169

and replace the start vector S with the end vector170

E. To compute the loss, we take the mean of the171

cross-entropy losses per token for the start and end172

vectors. Formally, let |d| be the number of tokens173

in dialogue d, then174

LEX = − 1

|d|

|d|∑
i(

ySi · log(PS
Ti
) + (1− ySi ) · log(1− PS

Ti
)
)

+
(
yEi · log(PE

Ti
) + (1− yEi ) · log(1− PE

Ti
)
)

(3)

175

where ySi and yEi are the start and end labels. Be- 176

cause we want explanations extracted only from the 177

dialogue, if the start or end token with largest log- 178

likelihood occurs within the first l tokens, where l 179

is the length of [CLS]r[SEP]s[SEP]o[SEP], then 180

we consider there to be no predicted explanation. 181

3.3 Joint Relation and Explanation Model 182

The joint RE and EE model uses the standard input 183

from §3. It utilizes a BERT or RoBERTa backbone, 184

and has classification and span prediction layers 185

identical to those in the RE and EE models. Simi- 186

larly, the loss is computed as the weighted sum of 187

RE and EE losses: 188

LJ = αLRE + (1− α)LEX 189

where α is an adjustable weight. In practice, we 190

find that α = 0.5 works best. 191

Flaw of the joint model The disadvantage of the 192

joint model is this: supposing that an entity pair 193

has 2 relations, each explanation should be paired 194

with a single relation. However, by making predic- 195

tions jointly, there is no guaranteed mapping from 196

predicted explanations to predicted relations. One 197

method of solving this issue is to predict relations 198

and explanations in separate steps. It is possible to 199

first predict relations and then condition the expla- 200

nation prediction on each individual relation and 201

conversely. This idea forms the basis for D-REX. 202
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4 D-REX203

In this section, we introduce the D-REX system. We204

begin by introducing the models which make up the205

system. Next, we present the training and inference206

algorithms. Finally, we discuss the optimization207

objectives for each model in the system.208

4.1 Models209

The D-REX framework requires three components:210

an initial relation ranking model, an explanation211

model, and a relation re-ranking model, shown in212

Figure 2.213

Initial Ranking Model (R) In our algorithm and214

discussions, we use R to denote the initial ranking215

model. There are no restrictions on R, it can be any216

algorithm which ranks relations (e.g., deep neural217

network, rule-based, etc.) such as (Yu et al., 2020;218

Lee and Choi, 2021). However, if R needs to be219

trained, it must be done prior to D-REX training;220

D-REX will not make any updates to R.221

In our evaluations, we use the relation extraction222

model described in §3.1. The input to this model is223

(s,o,d) and the output is a ranking, R(s, o, d).224

Explanation Extraction Model (EX) In our al-225

gorithm and discussions, we use EX to denote the226

explanation model. In this paper we limit our ex-227

periments to extractive, as opposed to generative,228

explanation methods, however this is not a limi-229

tation of D-REX. The only limitation on the ex-230

planation model is that we require it to produce231

human-interpretable explanations. Thus, it is also232

possible to use generative models such as GPT-2233

(Radford et al., 2019) or graph-based methods such234

as (Yu and Ji, 2016; Xue et al., 2021) with adjust-235

ments to the formulation of the reward functions.236

In our evaluations, we use the model as de-237

scribed in §3.2. The input to EX is (r,s,o,d) and238

the output is an extracted phrase from d, denoted239

as EX(r, s, o, d).240

Relation Re-Ranking Model (RR) In our algo-241

rithm and discussions, we let RR denote the relation242

re-ranking model. In the D-REX training algorithm,243

RR is updated through gradient-based optimization244

methods, and must be able to condition its rank-245

ing on explanations produced by EX. In our experi-246

ments, we use the same model architecture as R and247

include an explanation as additional input to the248

model. The input to RR is (ex,s,o,d) and the output249

is a relation ranking, denoted as RR(ex, s, o, d).250

Algorithm 1: The proposed training algo-
rithm for D-REX

Input :Pre-trained ranking, explanation, and
re-ranking models: R, EX, RR
k: for number of relations to re-rank

Data: Dataset: D
for (s, r, o,t,d) in D do

Compute ranking loss: LR
RE(s, o, d)

rpred ← R(s,o,d)1:k
for i in rpred do

exi ← EX(rpredi , s, o, d)
Compute Re-ranking loss:
LRR

RE(exi, s, o, d) ; // Equation 1
Compute Re-Ranking Reward: RRR ;
// Equation 4

Compute Leave-one-out Reward: RLOO ;
// Equation 5

Compute policy gradient with rewards
RRR, RLOO ; // Equation 6

end
if t not empty then

Compute LEX ; // Equation 3
end
Update EX,RRparameters with calculated losses

end

4.2 D-REX Algorithm 251

The outline of this algorithm is shown in pseu- 252

docode in Algorithm 1. 253

Assuming that we have ranking, explanation, 254

and re-ranking models R, EX, RR, then given a sin- 255

gle datum (s, r, o, t, d), comprised of a subject, re- 256

lation, object, trigger(may be empty), and dialogue, 257

the D-REX algorithm operates as follows: The rank- 258

ing model takes as input (s, o, d) and computes the 259

probability of each relation from the predefined 260

relation types. Next, we take the top-k ranked 261

relations, rpred = R(s, o, d)1:k, and compute ex- 262

planations. For i = 1, ..., k, explanations are com- 263

puted as exi = EX(rpredi , s, o, d). Finally, for each 264

predicted explanation, the re-ranking model com- 265

putes k probabilities for each relation type, using 266

(exi, s, o, d) as the input to RR. The final proba- 267

bilities for each relation type are computed as the 268

mean across all k+1 predictions from R and RR. 269

4.3 Model optimization 270

We propose multiple optimization objectives to 271

train an EX model that extracts explanations mean- 272

ingful to humans and beneficial to the rela- 273

tion extraction performance while ensuring that 274

RR maintains high-quality predictions. 275

Explanation Model Optimization We train 276

EX with supervision on labeled samples, and a pol- 277

icy gradient for both labeled and unlabeled samples, 278

allowing for semi-supervision. For the policy gradi- 279
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ent, we introduce two reward functions: a relation280

re-ranking reward and a leave-one-out reward.281

Re-ranking Reward The purpose of the re-282

ranking reward is to ensure that EX predicts283

explanations which benefit RR. Formally, let284

LR
RE(s, o, d) be the loss for R, given the subject, ob-285

ject, and dialogue: s, o, d. And let LRR
RE(ex, s, o, d)286

be the loss of RR, given the explanation, subject,287

object, and dialogue: ex, s, o, d. Then we define288

the relation re-ranking reward as:289

RRR = LR
RE(s, o, d)− LRR

RE(ex, s, o, d) (4)290

Because R is stationary, EX maximizes this func-291

tion by minimizing LRR
RE . Of course, EX can only292

minimize LRR
RE through its predicted explanations.293

Leave-one-out Reward The purpose of the294

leave-one-out reward is to direct EX in finding295

phrases which are essential to correctly classify-296

ing the relation between an entity-pair. This reward297

function is inspired by previous works which make298

use of the leave-one-out idea for various explana-299

tion purposes (Shahbazi et al., 2020; Li et al., 2016).300

We can calculate the leave-one-out reward using301

either R or RR, and it is calculated by finding the302

difference between the standard relation extraction303

loss and the loss when an explanation has been304

masked. Formally, if d is the original dialogue and305

ex is the given explanation, let dmask(ex) be the306

dialogue with ex replaced by mask tokens. Then,307

the leave-one-out reward is defined as:308

RLOO = LRE(s, o, dmask(ex))− LRE(s, o, d)
(5)309

Because LRE is calculated using the same310

model for both the masked and unmasked loss,311

EX maximizes this reward function by maximizing312

the masked loss. Of course, the only interaction313

that EX has with the masked loss is through the314

explanation it predicts.315

Policy Gradient We view EX as an agent whose316

action space is the set of all continuous spans from317

the dialogue. In this view, the agent interacts with318

the environment by selecting two tokens, a start319

and end token and receives feedback in the form320

of the previously discussed reward functions. Let321

i, j be the start and end indices that the explanation322

model selects and Ti be the ith token, then ex =323

d[i : j] = [Ti, Ti+1, . . . , Tj ] and the probabilities324

of i, j being predicted are calculated as PS
Ti

and325

PE
Tj

according to equation 2.326

For both reward functions, we use a policy gradi-327

ent (Sutton and Barto, 2018) to update the weights328

of the explanation model and calculate the loss as 329

LEXPG
= −(log(PS

Ti
)+log(PE

Tj
))∗(RRR+RLOO)

(6) 330

Additionally, while training EX in the D- 331

REX algorithm, we make use of supervision when 332

available. In the case where supervision exists, we 333

calculate an additional loss, LEX , as defined in 334

equation 3. 335

Relation Extraction Re-ranking Model Op- 336

timization While training D-REX we train 337

RR with labeled relations as supervision and use 338

a cross-entropy loss, LRR
RE , calculated in the same 339

way as R in Equation 1. 340

5 Experimental Evaluation 341

In this section, we present an evaluation of D- 342

REX in comparison with baselines methods on the 343

relation extraction and explanation extraction tasks. 344

5.1 Experimental settings 345

For our experiments, we re-implement the BERTS 346

model from (Yu et al., 2020) as well as a new 347

version which replaces BERT with RoBERTa. In 348

our paper, we refer to these models as RBERT and 349

RRoBERTa. All models are implemented in PyTorch3 350

and Transformers(Wolf et al., 2020), trained us- 351

ing the AdamW optimizer (Loshchilov and Hutter, 352

2018). All experiments were repeated five times 353

and we report mean scores along with standard de- 354

viations. D-REX models use a top-k of five and are 355

initialized from the best performing models with 356

the same backbone. For example, D-REXBERT uses 357

two copies of RBERT (Yu et al., 2020) to initial- 358

ize the ranking and re-ranking models and EXBERT 359

to initialize the explanation model. When training 360

Joint, we do not calculate LEX for relational triples 361

without a labeled trigger. The full details of our 362

training settings are provided in Appendix B. 363

DialogRE Dataset We evaluate our models on 364

the DialogRE English V2 dataset4 which con- 365

tains dialogues from the Friends TV show (Yu 366

et al., 2020), details of which are in Table 1. D- 367

REX models are trained with trigger supervision on 368

less than 40% of the training data, and make no 369

use of dev or test set triggers. The learning signal 370

for the remaining triples comes entirely from our 371

rewards through a policy gradient. 372

3https://pytorch.org/
4Dataset collected from https://dataset.org/dialogre/ for

research purposes only
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DialogRE V2

Dial-
ogues

Rela-
tions

Relational
Triples

(train/dev/
test)

Triggers
(train/dev/

test)

1788 36 6290/1992/1921 2446/830/780

Table 1: Dataset details for DialogRE. With only 2446
labeled triggers in the training set, D-REX models learn
using only a policy gradient and no direct supervision
on the remaining 3844 triples.

Evaluation Metrics We adopt separate evalua-373

tions for relation and explanation extraction.374

First, for relation extraction, we evaluate our375

models using F1 score, following Yu et al. (2020),376

and additionally calculate the mean reciprocal377

rank (MRR), which provides further insight into a378

model’s performance. For example, MRR is able to379

differentiate between a ground truth relation ranked380

2nd or 10th, while the F1 score does not. In the381

dialogRE dataset, multiple relations may hold be-382

tween a single pair of entities, so we use a variation383

of MRR which considers all ground truth relations,384

rather than just the highest-ranked ground truth385

relation.386

For explanation extraction, we focus mainly on387

manual evaluations, but also propose the Leave-388

One-Out metric, introduced in section 5.4 for an389

ablation study.390

5.2 Relation Extraction (RE) Evaluation391

In Table 2, we compare the baseline RE model392

RBERT with the methods presented in this paper.393

We also compare with three other methods which394

use similarly sized language models, but addition-395

ally utilize graph neural networks (GNN): GDP-396

Net(Xue et al., 2021), TUCORE-GCNBERT(Lee397

and Choi, 2021), and SocAoG(Qiu et al., 2021).398

First, we see that even though D-REX is de-399

signed to introduce human-understandable explana-400

tions, it still has modest improvements over RBERT,401

which focuses on RE, while Joint has no signifi-402

cant improvement. Next, we see a five point abso-403

lute improvement in F1 from the baseline model404

when using RoBERTa. The trend from BERT to405

RoBERTa is similar to results found by Lee and406

Choi (2021), where changing from a BERTbase407

model to RoBERTaLarge(not shown here) improved408

their model performance significantly. Addition-409

ally, we see a 3 point improvement from R to D-410

REX when using RoBERTa (compared to 0.7 for411

BERT), which we believe is due to the better per-412

Model F1(σ) MRR(σ)
RBERT 59.2(1.9) 74.8(1.3)
JointBERT 59.4(1.7) 74.0(0.9)
D-REXBERT 59.9(0.5) 75.4(0.1)
RRoBERTa 64.2(1.6) 77.9(1.0)
JointRoBERta 65.2(0.3) 78.3(0.3)
D-REXRoBERTa 67.2(0.3) 79.4(0.3)
*GDPNet 60.2(1.0) -
*TUCORE-GCNBERT 65.5(0.4) -
†SocAoG 69.1(0.5) -

Table 2: Relation extraction results on DialogRE V2.
RBERT is a replication of BERTS from Yu et al. (2020).
"*" denotes results taken from Lee and Choi (2021) and
"†" from Qiu et al. (2021)

forming ranking model, which allows for D-REX to 413

rely more on the input explanations. Finally, we 414

see that by using GNNs, and task-specific dialogue 415

representations, all three GNN-based methods can 416

improve over the general BERT-based methods. 417

5.3 Explanation Extraction (EE) Evaluation 418

Automatic Evaluation Although the aim of this 419

paper is not trigger prediction, for completeness 420

and reproducibility, we include results on the test 421

set of triggers in Appendix A. 422

Human Evaluation To better understand how 423

our model performs in extracting explanations and 424

what challenges still exist, we perform two analy- 425

ses; a comparative and an absolute analysis. We 426

consider two sets of data for evaluation: samples 427

for the DialogRE test set where No Labeled trig- 428

ger exists (NL) and samples where the predicted 429

explanation Differs from the Labeled trigger (DL). 430

5.3.1 Comparative Analysis 431

In Table 3, we show the results for pairwise 432

comparisons of explanations predicted by D- 433

REXRoBERTa against 3 baselines: random strings of 434

1-4 words, predictions from JointRoBERTa, and la- 435

beled triggers. For each comparison, we employ 3 436

crowd-workers5, who were given the full dialogue, 437

a natural language statement corresponding to a 438

relational triple, and the two proposed explanations 439

highlighted in the dialogue6. The crowd-workers 440

were asked to specify which of the highlighted ex- 441

planations was most indicative of the relation, or 442

they could be equal. For each comparison we use a 443

5Amazon Mechanical Turk workers were paid $0.35 per
HIT, where a HIT includes 3 comparisons. We estimate an
average HIT completion time of ~1.5 minutes, averaging ~$14
per hour. We only accept workers from AUS, CA, and USA.

6Example HIT included in Appendix 4
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D-REXRoBERTa vs. Win(%) Tie(%) Lose(%)
Random (NL) 79.9 10.4 9.8

JointRoBERTa (NL) 38.5 52.3 9.2
Ground truth (DL) 12.1 44.3 43.7

Table 3: Human evaluator preferences on explana-
tion extraction methods. NL and DL are samples where
No Labeled trigger exists, and where the predicted ex-
planation Differs from the Label, respectively. Results
presented are percentages of preference.

Not
Indic-
ative

Incorrect
Entity
Pair

Incorrect
Relation

Indic-
ative

NL 29 19 18 34
DL 19 13 7 61

Table 4: Explanation error analysis on 100 samples
where No Labeled trigger exists (NL) and 100 where
the predicted explanation Differs from the Label (DL).

majority vote, and if there was a three-way tie we444

consider the explanations to be equal. We compare445

D-REX with random strings and the joint model on446

174 samples from NL, as well as 174 samples from447

DL.448

In Table 3 we see that for NL, D-REX produces449

explanations which were 4.2 times more likely to450

be outright preferred by crowd-workers than the451

joint model, suggesting that our reward functions452

properly guided the explanation policy to learn453

meaningful explanations on unlabeled data. Sur-454

prisingly, we found that on over 12% of samples455

with labeled triggers, evaluators outright preferred456

D-REX explanations over the ground truth trigger,457

suggesting that D-REX indeed finds some explana-458

tions which are better than the ground truth trigger.459

In Appendix D, we include 2 examples compar-460

ing explanations from D-REX and Joint.461

5.3.2 Absolute Analysis462

To better understand the quality of D-REX’s expla-463

nations, we randomly sample 100 from both NL464

and DL for a fine-grained analysis. We classify the465

explanations into 4 categories: not indicative, incor-466

rect entity-pair, incorrect relation, and indicative.467

"Indicative" and "Not indicative" have the obvious468

meanings, "Incorrect entity-pair" means that an ex-469

planation actually explains the correct relation, but470

between the incorrect entity-pair, and "Incorrect471

relation" means that the explanation indicates a472

relation different from the desired relation.473

Table 4 shows the results. Interestingly, we see in474

the NL set, that errors were equally likely to come475

from either an explanation indicating the relation476

Model F1 Leave-one-out(↓)
D-REXRoBERTa (Full) 67.2 83.9

- reranking reward 66.0 84.9
- LOO reward 67.1 85.4

Table 5: Ablation study on reward functions. Leave-
One-Out metric (LOO) measures how salient a predicted
explanation is in determining a relation and is further
defined and motivated in §5.4. Smaller LOO is better.

for an incorrect entity-pair as for the incorrect re- 477

lation altogether. This is in contrast to the DL set, 478

where D-REX was nearly half as likely to predict 479

an explanation for an incorrect relation as it was 480

for an incorrect entity-pair. 481

Additionally, in our fine-grained analysis, we 482

also considered whether a relational triple was 483

identifiable from the context alone and found that 484

nearly 20% of the 200 samples had ambiguities 485

which could not be resolved without outside knowl- 486

edge. This suggests that there is likely a maximum 487

achievable relation extraction score on the Dialo- 488

gRE dataset under the current setting. 489

5.4 Ablation Study 490

To assess the benefit of each proposed reward in- 491

dividually, we perform an ablation study on the 492

reward functions. In order to study explanation 493

quality automatically, we introduce a new metric 494

for explanation quality; the Leave-One-Out metric. 495

The Leave-One-Out (LOO) metric has a theoreti- 496

cal basis in the works of Li et al. (2016) and Ribeiro 497

et al. (2016), where Li et al. (2016) use word era- 498

sure to determine a "word importance score". Here 499

we define LOO formally. For a relation extraction 500

model R, an explanation extraction model EX, and 501

a dataset D, LOO is calculated as 502

LOO(R,EX,D) =
F1R(DMASK(EX))

F1R(D)
503

where F1R(D) is the F1 score of R on D and 504

DMASK(EX) is the dataset where explanations pre- 505

dicted by EX are replaced by mask tokens. The 506

LOO metric calculates how essential the predicted 507

explanations are to the ability of the relation extrac- 508

tion model. 509

To show that LOO is an appropriate measure 510

of explanation quality, we compute the Pearson 511

correlation coefficient between token F1 score and 512

LOO scores for models on labeled triggers, found 513

in Table 6. With 6 models trained on 5 random 514

seeds each, we have 30 data points and a correlation 515

coefficient of −87.4 with p = 2.4 ∗ 10−8. Because 516

7



we calculate the coefficient with respect to human-517

annotated triggers, this suggests that a low LOO518

correlates with explanations that humans would519

determine as indicative of the given relation.520

For our experiments, we always calculate LOO521

using the baseline model, RBERT. From the re-522

sults in Table 5, we see that both reward functions523

benefit the final results. Compared with RRoBERTa,524

D-REXRoBERTa gains 3 F1 points, but without the525

reranking reward, the model only gains 1.8 F1 score526

or 60% of the total possible improvement. This per-527

formance loss demonstrates that the reranking re-528

ward is critical to attaining the best score in relation529

extraction. Similarly, without the leave-one-out re-530

ward, the model’s explanation quality, measured in531

LOO, is 1.5 points, or nearly 10% worse, demon-532

strating that the leave-one-out reward is beneficial533

in guiding the model to salient explanations.534

6 Limitations and Future Work535

Firstly, this study focuses on learning explanations536

as well as relations in dialogue and DialogRE is the537

only currently available dataset with annotations538

for both tasks. A limitation of this study is the small539

scale at which we were able to test the methods. A540

future direction would be to learn explanations on a541

different RE dataset and use the pre-trained model542

in D-REX, however it would be non-trivial for a543

model to transfer explanations learned on a wildly544

different domain. Additionally, it is theoretically545

possible to train D-REX with no labeled triggers546

at all, however, we were unsuccessful and in Ap-547

pendix C we discuss these and additional negative548

results.549

This study focuses on relations and entities550

found in multi-party conversations, and while there551

are similarities between the dialogue domain, med-552

ical literature, and wikipedia (e.g., multi-entity,553

multi-relation), it is not clear whether the methods554

from this paper can transfer to other such domains.555

We plan to investigate how well the proposed meth-556

ods transfer to relations and entities in other do-557

mains such as news and web text (Zhang et al.,558

2017) and for other types of semantic relations as559

in Hendrickx et al. (2010) or Yao et al. (2019).560

In this work, we do not focus on improving state-561

of-the-art trigger prediction. However, we recog-562

nize that trigger annotation is labor-intensive, and563

a possible use of D-REX would be to use predicted564

labels as a form of weak supervision for a system565

whose goal is to improve on trigger prediction.566

7 Related Work 567

Recently, there have been numerous information 568

extraction tasks proposed which involve dialogues, 569

including character identification (Zhou and Choi, 570

2018), visual coreference resolution (Yu et al., 571

2019), emotion detection (Zahiri and Choi, 2018). 572

New settings for relation extraction have also 573

been proposed, such as web text (Ormándi et al., 574

2021) and, in many ways similar to dialogue, doc- 575

ument text (Yao et al., 2019). There have also 576

been methods developed to include explanations in 577

similar natural language understanding tasks (Cam- 578

buru et al., 2018; Kumar and Talukdar, 2020; Liu 579

et al., 2019a; Lei et al., 2016). There have even 580

been methods developed which, similarly to our re- 581

ranking, make use of an explanation as additional 582

information (Hancock et al., 2018). 583

The work by Shahbazi et al. is aligned with our 584

study. They also focus on relation extraction with 585

explanations; however, their method is based on 586

distant supervision from bags of sentences contain- 587

ing an entity-pair. Due to the cross-sentence nature 588

of relations in dialogue, their method is not appli- 589

cable here, although we draw inspiration from their 590

work. They explain their model by considering the 591

salience of a sentence to their model’s prediction, 592

similarly to our leave-one-out reward. 593

Also relevant to our work is that by Bronstein 594

et al.. Their work focuses on the task of semi- 595

supervised event trigger labeling, which is very 596

similar to our semi-supervised prediction of rela- 597

tion explanations. In their work, they use only a 598

small seed set of triggers and use a similarity-based 599

classifier to label triggers for unseen event types. 600

Finally, there have been multiple recent works 601

in dialogue RE which perform quite well by using 602

graph neural networks (Xue et al., 2021; Qiu et al., 603

2021; Lee and Choi, 2021). However, they focus 604

only on RE and not on explaining the relations. 605

8 Conclusion 606

In this work, we demonstrated that not only is it 607

possible to extract relation explanations from multi- 608

party dialogues, but these explanations can in turn 609

be used to improve a relation extraction model. 610

We formulated purpose-driven reward functions for 611

training the explanation model and demonstrated 612

their importance in learning high quality explana- 613

tions. Our proposed approach, D-REX, is powered 614

by a very simple reformulation of the traditional 615

relation extraction task into a re-ranking task. 616
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9 Ethical and Social Considerations617

The methods proposed in this work on their own618

are not nefarious, however, proposed explanations619

should not be blindly accepted as fact. For the same620

reasons that language models may have ethical and621

social risks, so may our algorithm which is built on622

top of such language models. While we test only623

on TV show dialogues, were this technology to be624

put to use in non-scripted, real life conversations,625

there would need to be very thorough analysis of626

any ethical risks that the proposed explanations627

may have.628
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model token F1(σ) EM(σ) LOO(σ)
EXBERT 62.1(3.1) 54.1(1.9) 82.2(0.4)
JointBERT 43(1.3) 38.6(1.4) 89.0(1.0)
D-REXBERT 50.5(1.1) 45.7(1.7) 84.4(1.6)
EXRoBERTa 66.5(2.2) 58.4(2.0) 82.2(0.4)
JointRoBERTa 49(0.7) 47(0.7) 86.2(0.8)
D-REXRoBERTa 57.2(2.1) 51.6(1.6) 83.9(0.4))

Table 6: Trigger prediction results. Leave-One-Out
metric (LOO) measures how salient a predicted expla-
nation is in determining a relation and is further defined
in §5.4. Smaller LOO is better.

A Trigger prediction810

In Table 6, we compare our methods for supervised811

explanation extraction with D-REX. Interestingly,812

we find that the joint model achieves the lowest813

F1 score for both the BERT and RoBERTa mod-814

els. JointBERT scores nearly 20 points below its815

counterpart BERT model, while the JointRoBERTa816

model cuts that difference to just over 15 points817

below its RoBERTa counterpart. On the other hand,818

D-REX maintains a token F1 score within 10 points819

of its counterpart even though it has been trained820

to generalize beyond the labeled triggers.821

B Hyperparameters822

All models are trained using the AdamW optimizer823

(Loshchilov and Hutter, 2017) with a learning rate824

of 3e-5 and batch sizes of 30. To determine the best825

learning rate, R and EX models were trained using826

learning rates in {3e-6, 1e-5, 3e-5, 1e-4}. The best827

learning rate, 3e-5, was determined by performance828

on a held out validation dataset. Baseline models829

(R, EX, and Joint) are trained for at most 30 epochs830

and we use validation-based early stopping to de-831

termine which model to test. D-REX models are832

trained for at most 30 additional epochs with the833

best model determined based on relation extraction834

F1 scores computed on validation data. We found835

the best validation result to always occur within836

the first 30 epochs. All experiments were repeated837

five times and we report the mean score along with838

standard deviation. To train the joint model, we839

do not calculate LEX for relational triples which840

do not have a labeled trigger and we select α from841

{0.25,0.5,0.75} and set α to 0.5 based on validation842

performance.843

C Negative Results844

We ran a small scale experiment (1 random seed) to845

test how few labeled triggers EX requires in order846

to learn meaningful explanations. The full Dialo- 847

gRE dataset contains 40% labeled triggers in the 848

training set (results in main paper text), and we 849

additionally tested using 5, 10, and 20% labels. 850

However, in the small tests we ran, we found that 851

at 20% labeled triggers, the model mostly predicts 852

no explanations. At 10% and fewer labeled trig- 853

gers, the model converges to the trivial solution 854

in the explanation space which is to never predict 855

anything. 856

We believe that this issue is due, in part, to 857

two challenges: the search space over all possi- 858

ble start/end tokens is larges well, and the policy 859

gradient has a high variance. Although these results 860

may seem discouraging, we believe this challenge 861

can be overcome in the future by using algorithms 862

which reduce variance in the policy gradient and 863

by initializing EX with a model pre-trained in span 864

extraction. 865

D Explanation Comparison 866

Figure 3 shows two samples comparing explana- 867

tions from D-REX and Joint. In both examples, 868

even though there was no labelled trigger, each 869

model was able to predict an explanation which 870

correlates with the relation. Specifically, "engage- 871

ment ring" and "got married" are related to the 872

girl/boyfriend relation, and "in" and "mean in" can 873

be associated with the visited_by relation. How- 874

ever, the bottom example shows that Joint did 875

not consider the context surrounding it’s expla- 876

nation. The conversation is about food, and the 877

visited_by relation is not relevant. On the other 878

hand, D-REX finds the phrase "you’re mean in", 879

where "you’re" refers to speaker3, and "in" refers 880

to "England". This is clearly an explanation which 881

indicates the correct relation between the correct 882

entities. 883

E Crowd-Worker Sample 884

In Figure 4, we show a sample HIT that was pro- 885

vided to crowd-workers. Each crowd-worker was 886

shown three examples. The layour is as follows: 887

the top always asks the worker to decide which of 888

the highlighted texts is a better indication of the 889

relation. Next, a natural language interpretation of 890

the relational triple is given, in this case, "Speaker 2 891

and Speaker 1 are (or were) lovers". Then, we show 892

the entire dialogue along with highlighted spans of 893

text for each explanation. Finally, at the bottom, we 894

always provide the user with three choices: yellow 895
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Figure 3: Two examples comparing predicted explanations from D-REX (underlined) and Joint (bold).

Figure 4: A sample HIT that was presented to crowd-workers for the comparative study of explanations.

is better, equal, or orange is better, where the user896

is only allowed to select one option.897
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