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ABSTRACT

Regularising the parameter matrices of neural networks is ubiquitous in training
deep models. Typical regularisation approaches suggest initialising weights using
small random values, and to penalise weights to promote sparsity. However, these
widely used techniques may be less effective in certain scenarios. Here, we study
the Koopman autoencoder model which includes an encoder, a Koopman operator
layer, and a decoder. These models have been designed and dedicated to tackle
physics-related problems with interpretable dynamics and an ability to incorporate
physics-related constraints. However, the majority of existing work employs
standard regularisation practices. In our work, we take a step toward augmenting
Koopman autoencoders with initialisation and penalty schemes tailored for physics-
related settings. Specifically, we propose the “eigeninit” initialisation scheme that
samples initial Koopman operators from specific eigenvalue distributions. In
addition, we suggest the “eigenloss” penalty scheme that penalises the eigenvalues
of the Koopman operator during training. We demonstrate the utility of these
schemes on two synthetic data sets: a driven pendulum and flow past a cylinder;
and two real-world problems: ocean surface temperatures and cyclone wind fields.
We find on these datasets that eigenloss and eigeninit improves the convergence rate
by a factor of 2 to 5, and that they reduce the cumulative long-term prediction error
by up to a factor of 2.5. Such a finding points to the utility of incorporating similar
schemes as an inductive bias in other physics-related deep learning approaches.

1 INTRODUCTION

Modern neural networks are often overparameterised, i.e., their number of learnable parameters is
significantly larger than the number of available training samples (Allen-Zhu et al., 2019a;b). To
guide optimisation through this immense parameter space, and to potentially improve performance
by avoiding overfitting, neural networks are trained with regularisation techniques (Goodfellow et al.,
2016). The importance of regularisation has been shown in the theory and practice of deep learning.
Prominent examples include the initialisation of parameter matrices (He et al., 2015; Hanin & Rolnick,
2018), and constraining the parameters’ norm via loss penalties (Hinton, 1987; Krogh & Hertz, 1991).
Initialising weights and penalising them with small random values and weight decay are arguably the
most common regularisation techniques employed in training deep models with stochastic gradient
descent algorithms. However, specific neural architectures, data domains, and learning problems may
require different initialisation and penalty schemes. In this paper, we empirically study the effect of
regularisation on physics-aware architectures.

The ground-breaking success of deep learning in solving complex tasks in vision and other domains
has inspired the physics community to develop deep models suited to deal with real-world problems
arising in the field (Willard et al., 2020; Karniadakis et al., 2021). In this context, we focus on
dynamical systems analysed and processed using Koopman-based approaches (Takeishi et al., 2017;
Lusch et al., 2018). Koopman theory (Koopman, 1931) proves that under certain assumptions,
nonlinear and finite-dimensional systems can be transformed to a linear (albeit infinite-dimensional)
representation via the Koopman operator. Using finite-dimensional approximations of this Koopman
operator is advantageous as they facilitate the analysis and understanding of dynamical systems by
utilising linear analysis tools. Despite the theoretical and practical advances that have significantly
improved Koopman-based learning methods, the majority of existing models still apply regularisation
practices designed for general neural networks. Our investigation aims to answer the research
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question: can one exploit properties of Koopman operators to improve regularisation and to promote
better overall performance?

The Koopman operator is a linear object with a complex spectrum, i.e., the associated eigenvalues are
complex-valued, when eigendecomposition exists. Lusch et al. (2018) model approximate Koopman
operators that admit a block diagonal structure, where each block learns a pair of complex-valued
conjugate eigenvalues. Similarly, Pan & Duraisamy (2020) propose a skew-symmetric tridiagonal
form to guarantee stable Koopman models. However, there has not been a systematic investigation that
evaluates the effect of initialisation and penalty regularisation schemes on the behavior of Koopman-
based neural networks. The overarching objective of this paper is to help bridge this gap. Key to our
regularisation schemes is the observation that spectral properties of linear Koopman operators follow
a typical structure, shared by many dynamical systems. Namely, Koopman eigenvalues of stable
dynamical systems are constrained in the unit circle of the complex plane (Mauroy & Mezić, 2016).

Motivated by the theoretical observation that eigenvalues need to be within the unit circle, we propose
two novel regularisation techniques: random eigenvalue generation from known distributions to
initialise key weights in the network (“eigeninit”), and a loss penalty on the eigenvalues to limit
their expansion (“eigenloss”). Importantly, our regularisation schemes can be incorporated with
all Koopman-based approaches as a means to regularise the associated Koopman operator. We
evaluate our approach on several challenging physics-related datasets, and in comparison to several
state-of-the-art baselines. Our results indicate that our spectral schemes for initialisation and penalty
improve the performance of Koopman-based networks, leading to faster and smoother convergence
in the objective loss, as well as yielding models that generalise better in long-term prediction tests.
We hope that our study and results will help to widen the scope of problems for which Koopman
models are used.

2 RELATED WORK

Regularisation of neural networks is a fundamental research topic in machine learning. Common
regularisation techniques include dropout (Srivastava et al., 2014), batch normalisation (Ioffe &
Szegedy, 2015), and data augmentation (Perez & Wang, 2017). In what follows, we mainly discuss
parameter initialisation approaches and weight penalty methods.

Parameter initialisation. Proper initialisation of deep models is known to be crucial to their
successful training (Sutskever et al., 2013). Standard initialisation schemes for tanh(·) (Glorot &
Bengio, 2010) and ReLU (He et al., 2015) activations sample small random values for the weight
matrices of the network. These choices are backed by theoretical results showing that initial small
scale weights generalise better (Woodworth et al., 2020), and random initialisation converges to
local minimisers on differentiable losses (Lee et al., 2016). While guaranteed, convergence may
be exponentially slow (Du et al., 2017). Other approaches promote information flow using initial
orthogonal weight matrices (Saxe et al., 2014; Mishkin & Matas, 2016; Pennington et al., 2017).
Koopman-based approaches (Pan & Duraisamy, 2020) suggest to initialise the Koopman operator
using the dynamic mode decomposition (DMD) estimates (Schmid, 2010). Still, the general problem
of weight initialisation in neural networks remains an active research topic in practice (Arpit et al.,
2019), and theory (Hanin & Rolnick, 2018; Stöger & Soltanolkotabi, 2021).

Parameter loss penalties. Penalising the norms of weight matrices using L1 and L2 metrics is
a common practice in machine learning, collectively termed weight decay (Hinton, 1987). More
recently, Arjovsky et al. (2016) showed that recurrent neural networks can avoid the issue of exploding
gradients if their hidden-to-hidden matrices are parameterised to be unitary. Similarly, Yoshida &
Miyato (2017) introduce a regularisation scheme based on penalising the spectral norm of weight
matrices. Greydanus et al. (2019) assume the underlying system is measure-preserving, and their
network learns the Hamiltonian during training. Lusch et al. (2018) use block diagonal Koopman
operators to support continuous spectra. To promote stability, Erichson et al. (2019) employ Lyapunov-
based constraints, whereas Pan & Duraisamy (2020) guarantees that Koopman eigenvalues remain
in the unit circle via tridiagonal Koopman operators. In contrast, a soft penalty on the forward and
backward dynamics was introduced by Azencot et al. (2020), yielding stable Koopman systems and
state of the art performance.
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3 BACKGROUND

3.1 KOOPMAN OPERATOR THEORY

Suppose we have a discrete time dynamical system given by:

xk+1 = φ(xk) , k ∈ N0 . (1)

Let f : S → R (where S is the system’s state space) be a real-valued observable of the system. By
real-valued observable we mean a function of the state of the dynamical system, where an observed
data-variable is its range. The collection of all such observables forms a linear vector space. The
Koopman operator K is a linear transformation on this functional space:

Kf(x) = f ◦ φ(x) . (2)

Essentially, the Koopman operator may be viewed as a lifting of the dynamics from the state space
to the space of observables (Mezić, 2015), as shown in Fig. 1. Whilst the Koopman operator maps
between function spaces and is thus infinite dimensional, it has been shown empirically that finite-
dimensional approximations (U ) are generally quite expressive, where U is usually found through
dynamic mode decomposition or deep learning (Mauroy et al., 2020).

Nonlinear space Linear space

Encoding

Decoding

φ(xk)
Kf(xk)

Figure 1: Illustration of the data transformation that maps the high-dimensional states xk which
evolve on a nonlinear trajectory via φ to a new space where the dynamics are linear and given by K.

3.2 KOOPMAN AUTOENCODERS

Pioneered by several groups (Takeishi et al., 2017; Lusch et al., 2018), the Koopman autoencoder
(KAE) is a deep neural network designed to solve physics-related problems. Primarily, KAEs are
based on an autoencoder architecture (Hinton & Zemel, 1993) which has a “bottleneck” structure
including an encoder ψ which learns a low-dimensional representation of the input signal, and a
decoder ω which recovers the original signal from the low-dimensional code. Koopman autoencoders
extend these family of autoencoder models by introducing a Koopman operator module in-between
ψ and ω whose purpose is to produce a finite-dimensional approximation of the Koopman operator.
The Koopman module U is essentially a linear layer (with no bias) aiming at advancing latent codes
forward in time. Put together, the KAE architecture can be described by the following equations,

yk := ψ(xk) , x̃k := ω(yk) , ŷk+1 := Uyk , x̂k+1 := ω(ŷk+1) , (3)

where xk is the input signal, x̃k is its reconstruction, and x̂k+1 is the reconstruction of the latent code
obtained with the Koopman matrix U . The model is trained with a reconstruction loss MSE(xk, x̃k),
and a prediction loss MSE(xk, x̂k), where MSE is the mean squared error. Several existing methods
adopt this general framework which we illustrate in Fig. 2, and they further generalize it to promote
stability (Pan & Duraisamy, 2020; Azencot et al., 2020), to incorporate control (Han et al., 2021),
and to other settings (Morton et al., 2018; Li et al., 2020; Yeung et al., 2019; Otto & Rowley, 2019;
Iwata & Kawahara, 2020).
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Input xk Output x̂k+1

ψ ω

U

yk ŷk+1

Figure 2: Diagram of Koopman autoencoder architecture.

3.3 SPECTRAL ANALYSIS OF KOOPMAN OPERATORS

We briefly mentioned above that one of the main advantages to working with Koopman-based
approaches, and KAE in particular, is the linearity of the Koopman matrix U . Specifically, we can
harness tools from linear analysis and spectral approaches to study the underlying dynamics (Strogatz,
2018). For instance, the eigendecomposition of U to eigenvectors and eigenvalues is instrumental to
a qualitative characterisation of the behavior of the system. We call (vj , λj) an eigenvector-value pair
of the Koopman matrix if they satisfy: Uvj = λjvj where λj ∈ C. The effect of the eigenvalues on
the behavior of the system can be realized by considering the long-term evolution of inputs. Denote
by V the eigenvectors in columns, and Λ the diagonal matrix with the eigenvalues along its main
diagonal, then we can advance the latent code yk by

ŷk+l = U lyk = V ΛlV −1yk , (4)

Thus, advancing yk forward in time from time k to time k + l amounts to simply multiplying yk
with powers of U . Eq. 4 also shows that every eigenvector vj is scaled by its associated λlj , and
therefore, the modulus of |λj | determines its long-term behavior. We identify three qualitatively
different evolution profiles, determined by the modulus of eigenvalues: if |λj | < 1 then its associated
eigenvector diminishes with time (i.e. l → ∞), if |λj | > 1, then vj explodes when l → ∞, and
if |λj | = 1 then the norm of vj does not change, and thus it is stable for any l. In this way, the
eigenvalues of the Koopman matrix encode the “memory” of an evolution rule. Finally, we recall a
classical result relating the powers of a matrix and its long-term behavior (Stewart, 2001).

Theorem 1 Let A be a square matrix. Then

lim
l→∞

Al = 0 ⇐⇒ ρ(A) < 1 ,

where ρ(A) is the spectral radius of A (the absolute value of the largest eigenvalue). On the other
hand, if ρ(A) > 1, liml→∞ |Al| = ∞, where | · | is any matrix norm.

Our regularisation schemes described in Sec. 4 are based on the above theorem and identification of
dynamical modes—vanishing, exploding and stable.
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Figure 3: Eigenvalue distribution of various initialisation schemes for a 4×4 operator with six layers.
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4 METHODS

Our discussion in Sec. 3 suggests that repeated applications of the approximated Koopman operator
U will yield a system that converges to zero if the spectral radius of U is less than one. Similarly,
long-term evolution of an initial input x0 will diverge if ρ(U) > 1. This analysis motivates us to
design initialisation and penalty schemes for which the spectral radius of U is ρ(U) ≤ 1.

4.1 EIGENVALUE INITIALISATION OF LEARNABLE PARAMETERS

Initialising a deep neural network of any architecture is critical to its training and model performance.
In what follows, we empirically evaluate the eigenvalue distribution of parameter matrices as attained
by three of the most common initialisation schemes: Xavier (Glorot & Bengio, 2010), He (He et al.,
2015), and a random Gaussian initialisation. All three sample from normal distributions with zero
mean, a specified variance in the Gaussian case and a scaled variance in the other two. We find
that the average magnitude of eigenvalues are on the order of 10−4 for Xavier and He, whilst they
are on the order of 10−1 for a Gaussian initialisation (Fig. 3). Overall, these initialisations produce
Koopman matrices whose eigenvalues span a distribution with an extremely low variance, and thus,
such initialisations may negatively affect training in cases where the optimal Koopman matrix consists
of eigenvalues with modulus |λj | ≈ 1.

Using initial small random values for the parameter weights of deep neural networks is motivated by
theoretical results which show that such initialisations converge to local minima on differentiable loss
functions when solved with stochastic gradient descent (Lee et al., 2016). However, convergence may
be extremely slow (Du et al., 2017). Can we improve convergence speed and model generalisation by
developing initialisation schemes tailored to Koopman autoencoder architectures? Typical Koopman-
based approaches utilise one of the three initialisation schemes above (see e.g., Azencot et al. (2020));
however, these choices are agnostic to the structure of the Koopman operator layer. Other techniques
employ a DMD-based initialisation (see for instance, Pan & Duraisamy (2020)), which may be an
unrealistic choice for highly-nonlinear and high-dimensional dynamical systems (Zhang et al., 2017).
Inspired by the discussion in Sec. 3, we would like to exploit the unique role of the approximate
Koopman operator U as an evolution matrix and its special structure.

Therefore, we choose to focus on eigenvalue-based initialisation rather than element-wise initialisation
whose effect on the eigenvalues is indirect, and in practice leads to eigenvalues with low magnitude
distribution. Namely, we propose initialisation schemes that directly control the eigenvalues of
the Koopman matrix U and their distribution. To this end, we propose the following eigenvalue
initialisation method (termed “eigeninit”): we start with an element-wise sampling from a Gaussian
distribution to produce U0. Then, we compute the eigendecomposition of U0 = V ΛV −1, where V
is a matrix with the eigenvectors vj organized in its columns, and Λ is a diagonal matrix with the
eigenvalues λj along its main diagonal. We modify Λ by sampling from a pre-defined distribution
D. In particular each eigenvalue λj , is replaced with λ̃j ∼ D. The initial Koopman matrix U is
defined via U := Re(V Λ̃V −1), where Λ̃ is a diagonal matrix with λ̃j along its main diagonal, and
Re(A) yields the real value component of each matrix element A. All other weights in the network
are initialised according to the He initialisation as we utilise ReLU activation layers (He et al., 2015).

Taking into consideration the above discussion, a natural question arises: what distributions D should
we sample from? Thm. 1 suggests one should focus on parameter matrices U initialised such that
their spectral radius satisfies ρ(U) ≤ 1. On the other hand, existing works on recurrent neural
networks (Arjovsky et al., 2016) advocate the use of orthogonal weights for which ρ(U) = 1 as all
eigenvalues are positioned on the unit circle. In what follows, we prefer the former option, i.e., U
matrices with ρ(U) ≤ 1 since orthogonal and unitary matrices are less expressive (Kerg et al., 2019).
In particular, ρ(U) ≤ 1 allows U to immediately capture any dissipative dynamics in a system. In
practice, we sample the eigenvalues of U from one of the following distributions:

• D(gaussianEigen) := N (0, σ) ,

• D(doubleGaussianEigen) := [N (−1, σ) +N (1, σ)] + i [N (−1, σ) +N (1, σ)] ,

• D(uniformEigen) := U(−σ, σ) + iU(−σ, σ) ,

• D(unitPerturb) := U(−ϵ+ 1, ϵ+ 1)eiU(0,2π) ,
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where N (µ, σ) is the normal distribution with mean µ and standard deviation σ, and U(a, b) is the
uniform distribution on the segment [a, b].

4.2 EIGENVALUE REGULARISATION OF LEARNABLE PARAMETERS

While proper initialisation of weights is crucial for a neural network to start optimisation from a
successful trajectory that generalises well (Stöger & Soltanolkotabi, 2021), we note that without an
additional mechanism that penalises non-preferable solutions, optimisation may become stuck on
inferior local minima. In our setting, this means that the resulting Koopman matrix may settle on a
spectrum for which many eigenvalues tend to zero, or worse, some eigenvalues may land outside the
unit circle, and thus be associated with diverging eigenvectors. Thus, we are driven to penalise the
eigenvalues of U to steer away from problematic distributions. Any penalty technique and moreover
any regularisation method largely aims to reduce the variance in the model at the cost of increased
bias. That is, we wish to sacrifice a certain level of performance on the training set in order to achieve
better generalisability across different distributions of data.

Similarly to our initialisation scheme which directly affects the eigenvalues of U (Sec. 4.1), we
propose a penalty method (termed “eigenloss”) which constrains the spectrum of the approximate
Koopman operator: we augment the reconstruction and prediction loss components of the Koopman
autoencoder (Sec. 3) with a new and novel loss term ϵλ whose role is to penalise eigenvalues of
U which are too distant from a certain value or distribution. While we could have used the same
ansatz as in Sec. 4.1, promoting the spectral radius of U to satisfy ρ(U) ≤ 1, we find that in
practice, encouraging the eigenvalues to be close or on the unit circle yields better models in terms of
convergence and generalisability features. Thus, we consider two penalisation schemes:

• unit circle mean absolute error: ϵλ(MAE) :=
∑

j ||λj | − 1|21 ,

• unit circle mean squared error: ϵλ(MSE) :=
∑

j ||λj | − 1|22 ,

where λj is an eigenvalue ofU . That is, we require the modulus of the eigenvalues to be approximately
one, under the metrics MAE or MSE. Importantly, backpropagation through the eigenvalues of a
matrix is numerically stable if there are no repeating eigenvalues.

The choice of eigenvalue penalty imposes different soft biases on the Koopman approximation U .
Based on the domain-knowledge of the relevant dynamical system, one can tune the above penalties
better. For instance, if the underlying system is measure-preserving, we can weight ϵλ more strongly
with respect to the reconstruction and prediction losses. In contrast, if the dynamics are dissipative,
we can use a weaker weight.

5 EXPERIMENTS

The empirical results for eigeninit and eigenloss are demonstrated in various experiments. Both were
implemented in Pytorch (Paszke et al., 2019).

5.1 DATASETS

Datasets were chosen as a combination of synthetic and real-world data, varying in complexity and
including varying amounts of dissipation and measure preservation. Our initial dataset was a driven
frictionless pendulum governed by:

d2x

dt2
+ ω2

0x = f0 sin(ωt), (5)

where ω0 the characteristic frequency of the pendulum, and f0 and ω the amplitude and frequency
of the forcing. Here, we use ω0 = 3.13, f0 = 1, and ω = 1. To generate a dataset we produced
solutions of Eq. 5 with a variety of initial conditions (x ∈ [−π, π] and dx/dt ∈ [−1, 1]).

We also applied our techniques to cyclone wind fields, flow over a cylinder and sea surface tempera-
tures. The cyclone prediction dataset was extracted from the ERA5 Re-Analysis dataset provided by
ECMWF using the International Best-Tracks Archive for Climate Stewardship (IBTrACS). Prediction
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Table 1: Minimum validation loss and final cumulative test prediction error for benchmark data sets.
See bold for minimum.

Validation Loss
Dataset None Consistency Init Loss Both Consistency & Best
Pendulum 98.8 77.1 80.8 81.1 83.8 79.0
Fluid 0.33 0.18 0.23 0.20 0.22 0.33
Ocean (× 10) 0.28 0.28 0.21 0.29 0.18 0.29
Cyclone 17.7 15.7 17.0 16.0 16.2 15.6

Cumulative Test Error
Pendulum 27.0 16.6 14.7 27.0 17.6 18.6
Fluid 1.82 0.95 0.91 0.81 1.17 1.11
Ocean 3.16 2.77 1.51 2.80 1.23 1.41
Cyclone 186 201 168 148 178 174

sequences were sub-sampled from the u component of wind at the pressure level of 650 hPa in a
20◦ × 20◦ sliding window around the cyclone. The sea surface temperature benchmark was taken
from Azencot et al. (2020). It is a subset of the NOAA OI SST V2 High Resolution Dataset over the
gulf of Mexico with a spatial resolution of 100× 100 spanning a time horizon of 1305 days. Finally,
the fluids dataset modeled flow over a cylinder and was produced by Kutz et al. (2016). We took the
u-component of the flow vector field.

5.2 TEST AND VALIDATION PREDICTION ERROR WITH DATASETS

One can see the application of different schemes (including their combination) and the influence of
these on the prediction test loss across given prediction horizons and validation loss in Fig. 4. To
choose the library members employed in prediction, we completed 5 training runs with all candidates
on all data sets. The results of this testing can be seen in sections A and B of the appendix. Schemes
with the best validation loss were used to generate Fig. 4. In addition, the state of the art consistency
architecture presented by Azencot et al. (2020) is shown as an additional baseline and an architecture
to which our schemes are applied. The particular schemes applied to the consistency architecture were
chosen by a two-stage selection process: first employing the best dataset eigenloss or eigeninit and
then taking the lead performer out of these. For a summary of results see Tab. 1. Of particular note is
that all of our schemes outperform the standard KAE and do so by up to a factor of 2.5 in cumulative
test error. Additionally, our initialisation schemes increased convergence rates by factors of 2 to 5
(see Appendix D for a summary). Regarding the consistency benchmark, our best candidate in each
dataset outperforms it. In addition, for the two real-world datasets, augmentation of the consistent
KAE with eigenloss or eigeninit improves its performance and rate of convergence, suggesting the
potential for enhancing previous SOTA architectures with our techniques.

5.3 PAIRED T-TESTS

To show that the reduced loss driven by eigeninit and eigenloss was general across datasets, we used
paired t-tests between methods on different datasets. These t-tests compared the significance of the
difference in (1) validation loss over averaged training runs; (2) cumulative test error over a certain
time-horizon; and (3) final validation loss at the end of training, between the selected method and the
control. Each row in Tab. 2 shows the p-value for the difference between the listed method and the
control (Gaussian elementwise initialisation with no eigenloss). For the difference in final validation
loss, we use the adjusted t-test proposed by Nadeau & Bengio (1999), which corrects the variance
estimate using the size of the training and validation sets. The p-values from these paired t-tests
comparing final validation losses (at epoch 50, for 20 different seeds of models) to the control model
are also shown in Tab. 2. All models with both eigeninit and eigenloss have significantly lower final
validation loss than the control.

5.4 INVESTIGATING EIGENVALUE EVOLUTION

Although we have demonstrated the utility of our initialisation and regularisation schemes, we have
yet to investigate the evolution of eigenvalues within the networks themselves. We can plot a heatmap
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Figure 4: Averaged prediction horizon test loss and training validation loss for selected library
members of eigeninit and eigenloss. Models are trained on the longest prediction horizon shown in
the test loss graphs.

Table 2: Paired t-tests comparing our methods to control (Gaussian elementwise initialisation with no
eigenloss). Each entry is the p-value for the difference between specified model and the control for
the selected metric. Significant results (α = 0.05) are shown in bold.

Val. loss (all epochs) Test error Final val. loss
Dataset Init Loss Both Init Loss Both Init Loss Both
Ocean 0.014 0.617 0.009 0.0 0.001 0.0 0.022 0.302 0.017
Fluid 0.0 0.0 0.074 0.041 0.028 0.042 0.0 0.168 0.0
Cyclone 0.401 0.083 0.126 0.0 0.0 0.077 0.1 0.02 0.0
Pendulum 0.0 0.049 0.002 0.0 0.486 0.0 0.04 0.001 0.001

of eigenvalue magnitudes of the Koopman operator during training (Fig. 5). By doing so, we see
that the control network has increasing eigenvalues even though there is no bias towards this and that
using the unit circle MSE penalty promotes this tendency. Alternatively, with initialisation close to
the unit circle, the eigenvalues tend towards the different eigenvalue classes mentioned in Sec. 3.3.
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Figure 5: Change in eigenvalue magnitudes over time.

Interestingly, there is an evident asymmetric distribution of eigenvalues around one in the Eigeninit
and Both plots, showing how the Koopman only requires a handful of eigenvalues with magnitude
greater than one to account for noise. Other eigenvalues lie on or within the unit circle, representing
conserved or dissipative aspects of the system.

6 DISCUSSION

In this research we have asked whether an initial and ongoing bias on the eigenvalues of Koopman
autoencoders would improve their accuracy and convergence. We tested this via empirical analysis
on the field’s existing benchmarks and through the introduction of a new one (cyclone wind fields). It
seems clear that certain well developed biases do in fact have great utility for training these networks.
In particular, our schemes outperform state of the art baseline models which do not use them. In
addition, they can augment one such baseline introduced by Azencot et al. (2020), and improve its
performance on real-world datasets.

These techniques are important because they marry together the two purposes of dynamical systems
modelling: prediction and explanation. Whilst deep autoencoders have frequently been used for
predicting complex dynamical systems, they are often criticised because they lack explainability.
Koopman autoencoders are a front-running scheme to address this. However, inserting a Koopman
approximation between the encoder and decoder introduces a bottleneck in the network and reduces
its capacity for learning.

Because the linear dynamics are so useful in understanding the system, we want to be able to keep this
interpretability whilst providing necessary forecasting capacity. The results above demonstrate that
this is possible by exploiting the spectral properties of the Koopman approximation U . Specifically,
we have shown that Koopman autoencoders using our eigeninit and eigenloss techniques (i) converge
faster; (ii) reach a lower validation loss level; (iii) achieve better results across multiple prediction
horizons than state of the art baseline networks; and (iv) can productively augment other inductive
biases on the Koopman approximate.

These techniques will be of practical help for those using Koopman methods in dynamical systems.
It is likely that the schemes presented here can be extended in many ways, particularly by devising
better initialisation and regularisation candidates and tuning them to the nature of the problem. One
such extension is presented in Appendix C, namely an algorithm for hyperparameter search.
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REPRODUCIBILITY STATEMENT

In order to ensure reproducible results, we have provided an anonymised source code in Supplemental
materials with a synthetic pendulum dataset, along with the scripts used for data processing and
pipelining in this case. The Koopman autoencoder with all combinations of our techniques is
included as a model, as well as other previous SOTA baselines for comparison. Further, the training
script used is included. Using these models and data, training runs were performed several times
and averaged. Additionally, other techniques (such as paired t-tests) were undertaken in Sec. 5,
proving the significance of improvements over a large number of training runs. In particular, this
showed significant improvements in several metrics, namely validation loss over entire training runs,
cumulative prediction error on the test set, and final validation loss. Other datasets are available upon
request from the referenced author. The full source code will be released upon conclusion of Open
Review.
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A VALIDATION LOSS FOR VARYING SCHEMES ON NON-PENDULUM DATA
SETS

Figure 6: Average validation losses for data sets excluding the pendulum with different penalty and
initialisation schemes
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B VALIDATION LOSS FOR VARYING SCHEMES ON PENDULUM DATA SETS
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Figure 7: Average validation losses for pendulum data sets with different time horizons and penalty
and initialisation schemes
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C HYPERPARAMETER SEARCH

(a) Validation loss after 5 epochs (b) Eigenvalue initialisation standard deviation finder

Figure 8: Hyperparameter search

One can see in Fig. 8a, the bounds of gaussianEigen have a large effect on performance after
5 epochs. To complete a hyper parameter search, we draw on empirical techniques used in deep
learning practice. In particular, we adapt the learning rate finder described by Smith (2017). Here,
we apply the same idea to the standard deviation of the Gaussian eigenvalue initialisation. We use a
variety of different standard deviations for the distribution and calculate an appropriate point on the
downward loss slope to use as the standard deviation for sampling. The benefit of this is that it is
quick to run and may dramatically improve the model performance, particularly over shorter numbers
of epochs. By comparing the performance of the valley algorithm in Fig. 8b to the validation loss in
Fig. 8a, we can see that it appropriately identifies the minimum and thus might be a useful starting
point for hyper parameter search.
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D CONVERGENCE STATISTICS

The convergence of solutions also improves with eigeninit and eigenloss. One can see this in Tab. 3
where the approximate epoch of convergence is noted for different data sets and schemes. One can
check the validity of this epoch by inspecting Fig. 4.

Table 3: Epoch of model convergence for benchmark data sets and best library candidates. See bold
for minimum and Best Scheme and Control for the ratio of the best convergence to the control KAE.

Dataset Regular KAE Eigeninit Eigenloss Both Best scheme and control
Ocean 18 13 13 8 2.25
Fluid 50 30 45 10 5.00
Cyclone 50 40 50 20 2.50
Pendulum 50 35 60 25 2.00
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