
Context-Aware Learning to Rank with Self-Attention
Anonymous Author(s)

ABSTRACT
In learning to rank, one is interested in optimising the global or-
dering of a list of items according to their utility for users. Popular
approaches learn a scoring function that scores items individually
(i.e. without the context of other items in the list) by optimising
a pointwise, pairwise or listwise loss. The list is then sorted in
the descending order of the scores. Possible interactions between
items present in the same list are taken into account in the train-
ing phase at the loss level. However, during inference, items are
scored individually, and possible interactions between them are
not considered. In this paper, we propose a context-aware neural
network model that learns item scores by applying a self-attention
mechanism. The relevance of a given item is thus determined in
the context of all other items present in the list, both in training
and in inference. Finally, we empirically demonstrate significant
performance gains of self-attention based neural architecture over
Multi-Layer Perceptron baselines. This effect is consistent across
popular pointwise, pairwise and listwise losses on datasets with
both implicit and explicit relevance feedback.

CCS CONCEPTS
• Information systems → Learning to rank; Information re-
trieval;

KEYWORDS
learning to rank, self-attention, context-aware ranking

ACM Reference Format:
Anonymous Author(s). 2019. Context-Aware Learning to Rank with Self-
Attention. In Proceedings of The Web Conference. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Learning to rank (LTR) is an important area of machine learning re-
search, lying at the core of many information retrieval (IR) systems.
It arises in numerous industrial applications like search engines,
recommender systems, question-answering systems, and others.

A typical machine learning solution to the LTR problem involves
learning a scoring function, which assigns real-valued scores to
each item of a given list, based on a dataset of item features and
human-curated or implicit (e.g. clickthrough logs) relevance labels.
Items are then sorted in the descending order of scores [19]. Perfor-
mance of the trained scoring function is usually evaluated using an

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
The Web Conference, April, 2020, Taipei, Taiwan
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IR metric like Mean Reciprocal Rank (MRR) [29], Normalised Dis-
counted Cumulative Gain (NDCG) [16] or Mean Average Precision
(MAP) [4].

In contrast to other classic machine learning problems like clas-
sification or regression, the main goal of a ranking algorithm is
to determine relative preference among a group of items. Scoring
items individually is a proxy of the actual learning to rank task.
Users’ preference for a given item on a list depends on other items
present in the same list: an otherwise preferable item might become
less relevant in the presence of other, more relevant items. Com-
mon learning to rank algorithms attempt to model such inter-item
dependencies at the loss level. That is, items in a list are still scored
individually, but the effect of their interactions on evaluation met-
rics is accounted for in the loss function, which usually takes a form
of a pairwise (RankNet [6], LambdaLoss [30]) or a listwise (ListNet
[9], ListMLE [31]) objective. For example, in LambdaMART [8] the
gradient of the pairwise loss is rescaled by the change in NDCG of
the list which would occur if a pair of items was swapped. Pointwise
objectives, on the other hand, do not take such dependencies into
account.

In this work, we propose a learnable, context-aware, self-attention
[27] based scoring function, which allows for modelling of inter-
item dependencies not only at the loss level but also in the computa-
tion of items’ scores. Self-attention is a mechanism first introduced
in the context of natural language processing. Unlike RNNs [14], it
does not process the input items sequentially but allows the model
to attend to different parts of the input regardless of their distance
from the currently processed item. We adapt the Transformer [27],
a popular self-attention based neural machine translation architec-
ture, to the ranking task. We demonstrate that the obtained ranking
model significantly improves performance over Multi-Layer Per-
ceptron (MLP) baselines across a range of pointwise, pairwise and
listwise ranking losses. Evaluation is conducted on MSLR-WEB30K
[24], the benchmark LTR dataset with multi-level relevance judge-
ments, as well as on clickthrough data coming from Allegro.pl, a
large-scale e-commerce search engine.

We provide an open-source Pytorch [22] implementation of our
self-attentive context-aware ranker available at url_removed.

The rest of the paper is organised as follows. In Section 2 we
review related work. In Section 3 we formulate the problem solved
in this work. In Section 4 we describe our self-attentive ranking
model. Experimental results and their discussion are presented in
Section 5. In Section 6 we conduct an ablation study of various
hyperparameters of our model. Finally, a summary of our work is
given in Section 7.

2 RELATEDWORK
Learning to rank has been extensively studied and there is a plethora
of resources available on classic pointwise, pairwise and listwise
approaches. We refer the reader to [19] for the overview of the most
popular methods.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The Web Conference, April, 2020, Taipei, Taiwan Anon.

What the majority of LTR methods have in common is that their
scoring functions score items individually. Inter-item dependencies
are (if at all) taken into account at the loss level only. Previous
attempts at modelling context of other items in a list in the scoring
function include:

• a pairwise scoring function [12] and Groupwise Scoring
Function (GSF) [2], which incorporates the former work as
its special case. However, the proposed GSF method simply
concatenates feature vectors of multiple items and passes
them through an MLP. To desensitize the model to the order
of concatenated items, Monte-Carlo sampling is used, which
yields an unscalable algorithm,

• a seq2slate model [5] uses an RNN combined with a variant
of Pointer Networks [28] in an encoder-decoder type archi-
tecture to both encode items in a context-aware fashion and
then produce the optimal list by selecting items one-by-one.
Authors evaluate their approach only on clickthrough data
(both real and simulated from WEB30K). A similar, simpler
approach known as Deep Listwise Context Model (DLCM)
was proposed in [1]: an RNN is used to encode a set of items
for re-ranking, followed by a single decoding step with at-
tention,

• in [15], authors attempt to capture inter-item dependencies
by adding so-called delta features which represent how dif-
ferent given item is from items surrounding it in the list. It
can be seen as a simplified version of a local self-attention
mechanism. Authors evaluate their approach on proprietary
search logs only,

• authors of [17] formulate the problem of re-ranking of a list
of items as that of a whole-list generation. They introduce
ListCVAE, a variant of Conditional Variational Auto-Encoder
[25] which learns the joint distribution of items in a list con-
ditioned on users’ relevance feedback and uses it to directly
generate a ranked list of items. Authors claim NDCG unfairly
favours greedy ranking methods and thus do not use that
metric in their evaluation,

• similarly to our approach, Pei et al. [23] use the self-attention
mechanism to model inter-item dependencies. Their ap-
proach, however, was not evaluated on a standard WEB30K
dataset and the only loss functions considered was ListNet.

Our proposed solution to the problem of context-aware ranking
makes use of the self-attention mechanism. It was first introduced
as intra-attention in [11] and received more attention after the
introduction of the Transformer architecture [27]. Our model can
be seen as a special case of the encoder part of the Transformer.

We compare the proposed approach with those of the afore-
mentioned methods which provided an evaluation on WEB30K in
terms of NDCG@5. These include GSF of [2] and DLCM of [1]. We
outperform both competing methods.

3 PROBLEM FORMULATION
In this section, we formulate problem at hand in learning to rank
setting. Let X be the training set. It consists of pairs (x,y) of a list
x of df -dimensional real-valued vectors xi together with a list y
of their relevance labels yi (multi-level or binary). Note that lists
x in the training set may be of varying length. The goal is to find

a scoring function f which maximises an IR metric of choice (e.g.
NDCG) on the test set. Since IR metrics are rank based (thus, non-
differentiable), the scoring function f is trained to minimise the
average of a surrogate loss l over the training data.

L(f) =
1
|X |

∑
(x ,y)∈X

l((x,y), f),

while controlling for overfitting (e.g. by using dropout [26] in the
neural network based scoring function f or adding L1 or L2 penalty
term [20] to the loss function l). Thus, two crucial choices one
needs to make when proposing a learning to rank algorithm are
that of a scoring function f and loss function l . As discussed earlier,
typically, f scores elements xi ∈ x individually to produce scores
f (xi), which are then input to loss function l together with ground
truth labelsyi . In subsequent sections, we describe our construction
of context-aware scoring function f which is able to model interac-
tions between items xi in a list x . Our model is generic enough to
be applicable with any of standard pointwise, pairwise or listwise
loss. We thus experiment with a variety of popular ranking losses l .

4 SELF-ATTENTIVE RANKER
In this section, we describe the architecture of our self-attention
based ranking model. We modify the Transformer architecture to
work in the ranking setting and obtain a scoring function which,
when scoring a single item, takes into account all other items
present in the same list.

4.1 Self-Attention Mechanism
The key component of our model is the self-attention mechanism
introduced in [27]. The attention mechanism can be described as
taking the query vector and pairs of key and value vectors as input
and producing a vector output. The output of the attention mech-
anism for a given query is a weighted sum of the value vectors,
where weights represent how relevant to the query is the key of the
corresponding value vector. Self-attention is a variant of attention
in which query, key and value vectors are all the same - in our
case, they are vector representations of items in the list. The goal
of the self-attention mechanism is to compute a new, higher-level
representation for each item in a list, by taking a weighted sum over
all items in a list according to weights representing the relevance
of these items to the query item.

There are many ways in which one may compute the rele-
vance of key vectors to query vectors. We use the variant of self-
attention known as Scaled Dot-Product Attention. Suppose Q is a
dmodel-dimensional matrix representing all items (queries) in the
list. LetK andV be the keys and values matrices, respectively. Then

Attention(Q,K,V) = softmax(
QKT√
dmodel

)V .

The scaling factor of 1√
dmodel

is added to avoid small gradients in

the softmax operation for large values of dmodel.

4.2 Multi-Headed Self-Attention
As described in [27], it is beneficial to perform the self-attention
operation multiple times and concatenate the outputs. To avoid
growing the size of the resulting output vector, matricesQ ,K andV

Context-Aware Learning to Rank with Self-Attention The Web Conference, April, 2020, Taipei, Taiwan

are first linearly projected H times to dq , dk and dv dimensional
spaces, respectively. Usually, dq = dk = dv = dmodel/H . Each
of H computations of linear projection of Q , K , V , followed by
self-attention mechanism is referred to as a single attention head.
Note that each head has its own learnable projection matrices. The
outputs of each head are concatenated and once again linearly
projected, usually to the vector space of the same dimension as that
of input matrix Q . Similarly to the Transformer, our model also
uses multiple attention heads.

4.3 Positional Encodings
Transformer architecture was designed to solve a neural machine
translation (NMT) task. In NMT, the order of input tokens should
be taken into account. Unlike RNNs, self-attention based encoder
has no way of discerning the order of input tokens. Authors of the
original Transformer paper proposed to solve the problem by using
either fixed or learnable positional encodings.

The ranking problem can be viewed as either ordering a set of
(unordered) items or as re-ranking, where the input list has already
been sorted according to a weak ranking model. In the former case,
the use of positional encodings is not needed. In the latter, they may
boost model’s performance. We experiment with both ranking and
re-ranking settings and when positional encodings are used, we
test the fixed encodings variant 1. Details can be found in Section 5.

4.4 Model Architecture
We adapt the Transformer model to the ranking setting as follows.
Items on a list are treated as tokens and item features as input token
embeddings. We denote the length of an input list as l and the
number of features as df . Each item is first passed through a shared
fully connected layer of size df c . Next, hidden representations are
passed through an encoder part of Transformer architecture with
N encoder blocks,H heads and hidden dimension dh . Recall that an
encoder block in the Transformer consists of a multi-head attention
layer with a skip-connection [13] to the input, followed by layer
normalisation [3], time-distributed feed-forward layer and another
skip connection followed by layer normalisation. Dropout is applied
before performing summation in residual blocks. Finally, after N
encoder blocks, a fully-connected layer shared across all items in the
list is used to compute a score for each item. The model can be seen
as an encoder part of the Transformer with extra linear projection
on the input. By using self-attention in the encoder, we ensure that
in the computation of a score of a given item, hidden representation
of all other items were accounted for. Obtained scores, together
with ground truth labels, can provide input to any ranking loss of
choice. If the loss is a differentiable function of scores (and thus,
of model’s parameters), one can use SGD to optimise it. We thus
obtain a general, context-aware model for scoring items on a list
that can readily be used with any differentiable ranking loss.

5 EXPERIMENTS
5.1 Datasets
Learning to rank datasets come in two flavours: they can have either
multi-level or binary relevance labels. Usually, multi-level relevance

1We found learnable positional encodings to yield similar results.

labels are human-curated, whereas binary labels are derived from
clickthrough logs and are considered implicit feedback. We evaluate
our context-aware ranker on both types of data.

For the first type, we use the popular WEB30K dataset, which
consists of more than 30,000 queries together with lists of associated
search results. Every search result is encoded as a 136-dimensional
real-valued vector and has associated with it a relevance label on
the scale from 0 (irrelevant) to 4 (most relevant). We standardise
the features before inputting them into a learning algorithm. The
dataset comes partitioned into five folds with roughly the same
number of queries per fold. We perform 5-fold cross-validation by
training our models on three folds, validating on one and testing
on the final fold. All results reported are averages across five folds
together with the standard deviation of results. Since lists in the
dataset are of unequal length, we pad or subsample to equal length
for training, but use full length (i.e. pad to maximum length present
in the dataset) for validation and testing.

For a dataset with binary labels, we use clickthrough logs of
Allegro.pl, a large scale e-commerce search engine. The search
engine already has a rankingmodel deployed, which is trained using
XGBoost [10] with rank:pairwise loss. We thus treat learning
on this dataset as a re-ranking problem and use fixed positional
encodings in context-aware scoring functions. This lets the models
leverage items’ positions returned by the base ranker. The search
logs consist of 1M lists, each of length at most 60. Nearly all lists
(95%) have only one relevant item with label 1; remaining items
were not clicked and are deemed irrelevant (label 0). Each item in a
list is represented by a 45-dimensional, real-valued vector. We do
not perform cross-validation on this set, but we use the usual train,
validation and test splits of the data.

5.2 Loss Functions
To evaluate the performance of the proposed context-aware ranking
model, we use several popular ranking losses. Pointwise losses used
are RMSE of predicted scores and ordinal loss [21] (with minor
modification to make it suitable for ranking). For pairwise losses,
we use NDCGLoss 2++ (one of the losses of LambdaLoss framework)
and its special cases, RankNet and LambdaRank [7]. Listwise losses
used consist of ListNet and ListMLE.

Below, we briefly describe all of the losses used. For a more
thorough treatment, please refer to the original papers. Throughout,
X denotes the training set, x denotes an input list of items, s = f (x)
is a vector of scores obtained via the ranking function f and y is
the vector of ground truth relevancy labels.

5.2.1 Pointwise RMSE. The simplest baseline is a pointwise loss,
in which no interaction between items is taken into account. We
use RMSE loss:

l(s,y) =

√∑
i
(yi − si)2

In practice, we used sigmoid activation function on the outputs
of the scoring function f and rescaled them by multiplying by
maximum relevance value (e.g. 4 for WEB30K).

The Web Conference, April, 2020, Taipei, Taiwan Anon.

Table 1: NDCG@5 test results on WEB30K

Loss Self-attention MLP
Ordinal loss 49.25±0.34 45.72±0.43
NDCGLoss 2++ 48.59±0.28 46.04±0.46
LambdaRank 48.26±0.35 45.66±0.39
ListNet 48.21±0.30 44.69±0.43
RMSE 47.23±0.52 45.13±0.51
RankNet 46.90±0.38 44.42±0.46
ListMLE 46.23±0.56 43.87±0.46

XGBoost
rank:pairwise 46.8

Table 2: Relative percentage NDCG@60 improvement on e-
commerce search logs dataset

Loss Self-attention MLP
NDCGLoss 2++ 3.00 1.51
LambdaRank 2.97 1.39
ListNet 2.93 1.24
RankNet 2.68 1.19

XGBoost
rank:pairwise 1.83

5.2.2 Ordinal Loss. We formulated ordinal loss as follows. Multi-
level ground truth labels were converted to vectors as follows:

0 7→ [0, 0, 0, 0],
1 7→ [1, 0, 0, 0],
2 7→ [1, 1, 0, 0],
3 7→ [1, 1, 1, 0],
4 7→ [1, 1, 1, 1].

The self-attentive scoring function was modified to return four
outputs and each output was passed through a sigmoid activation
function. Thus, each neuron of the output predicts a single relevancy
level, but by the reformulation of ground truth, their relative order is
maintained, i.e. if, say, label 2 is predicted, label 1 should be predicted
as well (although it is not strictly enforced and model is allowed to
predict label 2 without predicting label 1). The final loss value is
the mean of binary cross-entropy losses for each relevancy level.
During inference, the outputs of all output neurons are summed to
produce the final score of an item.

5.2.3 LambdaLoss, RankNet and LambdaRank. We used NDCG-
Loss2++ of [30], formulated as follows:

l(s,y) = −
∑

yi>yj

log2
∑
π

(
1

1 + e−σ (si−sj)

)(ρi j+µδi j) |Gi−G j |

H (π |s)

where

Gi =
2yi − 1
maxDCG

,

ρi j =

���� 1Di
−

1
D j

���� ,
δi j =

���� 1
D |i−j |

−
1

D |i−j | + 1

���� ,
Di = loд2(1 + i)

and H (π |s) is a hard assignment distribution of permutations, i.e.

H (π̂ |s) = 1 and H (π |s) = 0 for all π , π̂

where π̂ is the permutation in which all items are sorted by decreas-
ing scores s . Fixed parameter µ is set to 10.0.

By removing the exponent in l(s,y) formulawe obtain the RankNet
loss function, weighing each score pair identically. Similarly, we
may obtain differently weighted RankNet variants by changing the
formula in the exponent.

To obtain a LambdaRank formula, replace the exponent with

∆NDCG(i, j) = |Gi −G j |ρi j .

5.2.4 ListNet and ListMLE. ListNet loss [9] is given by the follow-
ing formula:

l(s,y) = −
∑
j
softmax(y)j × log(softmax(s)j)

In binary version, softmax of ground truth y is omitted for single-
click lists and replaced with normalisation by the number of clicks
for multiple-click lists.

ListMLE [31] is given by:

l(s,y) = − log P(y |s)

where

P(y |s) =
n∏
i

exp(f (xy(i)))∑n
k=i exp(f (xy(k)))

and y(i) is the index of object which is ranked at position i .

5.3 Experimental setup
We train both our context-aware ranking models and MLP models
on both datasets, using all loss functions discussed in Section 5.2 2.
We also train XGBoost models with rank:pairwise loss similar to
the production model of the e-commerce search engine for both
datasets. Hyperparameters of all models (number of encoder blocks,
number of attention heads, dropout, etc.) are tuned on the validation
set of Fold 1 for each loss separately. MLP models are constructed
to have a similar number of parameters to context-aware ranking
models. For optimisation of neural network models, we use Adam
optimiser [18] with the learning rate tuned separately for each
model. Details of hyperparameters used can be found in Appendix A.
In Section 6 we provide an ablation study of the effect of various
hyperparameters on the model’s performance.

5.4 Results
On WEB30K, models’ performance is evaluated using NDCG@53,
which is the usual metric reported for this dataset. Results are re-
ported in Table 1. On e-commerce search logs, we report a relative
percentage increase in NDCG@60 over production XGBoost model,

2For the clickthrough logs dataset, we used only the losses which can be applied to
binary relevance labels.
3Expressed as a percentage.

Context-Aware Learning to Rank with Self-Attention The Web Conference, April, 2020, Taipei, Taiwan

presented in Table 2. We observe consistent and significant perfor-
mance improvement of the proposed self-attention based model
over MLP baseline across all types of loss functions considered. In
particular, for ListNet we observe a 7.9% performance improvement
over MLP baseline on WEB30K. Note also that the best perform-
ing MLP model is outperformed even by the worst-performing
self-attention based model on both datasets. We thus observe that
incorporating context-awareness into the model architecture has
a more pronounced effect on the performance of the model than
varying the underlying loss function. Surprisingly, ordinal loss out-
performs more established and better-studied losses like ListNet,
ListMLE or NDCGLoss 2++ on multi-level relevancy data. Another
surprising finding is a good performance of models trained with
RMSE loss, especially as compared to models trained to optimise
RankNet and ListMLE. For comparison with the current state-of-
the-art, we provide results on WEB30K reported in other works in
Table 3. For models with multiple variants, we cite the best result
reported in the original work. In all tables, boldface is the best value
column-wise.

Table 3: Results reported in other papers

Method WEB30K NDCG@5
GSF 41.50
GSF + LambdaMART (re-ranking) 44.90
DLCM 45.00
NDCGLoss 2++ (LightGBM) 51.21

Table 4: NDCG@5 on re-ranking task

Loss With PE Self-attention w/o PE
Ordinal loss 49.68 49.21
NDCGLoss 2++ 49.24 48.41
RMSE 48.85 47.23
ListNet 48.77 48.34
LambdaRank 48.51 48.23
ListMLE 47.91 46.20
RankNet 47.58 46.91

5.5 Re-ranking
All experiments onWEB30K described above were conducted in the
ranking setting - input lists of items were treated as unordered, thus
positional encoding was not used. To verify the effect of positional
encoding on the model’s performance, we conduct the following
experiments on WEB30K. To avoid information leak, training data4
is divided into five folds and five XGBoost models are trained, each
on four folds. Each model predicts scores for the remaining fold,
and the entire dataset is sorted according to these scores.

Finally, we train the samemodels5 as earlier on the sorted dataset,
but use fixed positional encoding. Results are presented in Table
4In experiments with positional encoding, we used only Fold 1 of the dataset.
5The only loss for which we had to modify model’s hyperparameters as compared
to training on the ranking task was NDCGLoss 2++. We observed severe overfitting
when training on re-ranking task and thus reduced the number of encoder blocks N
from 4 to 2 and hidden dimension dh form 512 to 256.

4. As expected, the models are able to learn positional information
and demonstrates improved performance over the plain ranking
setting.

Table 5: Ablation study

Parameter Value Params WEB30K NDCG@5
baseline 950K 49.01

H 1 950K 48.99
4 950K 48.97

N 1 250K 47.33
2 490K 48.73

dh

64 430K 47.92
128 509K 48.31
256 650K 48.82
1024 1540K 49.12

pdrop

0.0 950K 39.18
0.1 950K 47.36
0.2 950K 48.84
0.3 950K 49.00
0.5 950K 48.32

l

30 950K 47.48
60 950K 48.14
120 950K 48.72
360 950K 48.89

6 ABLATION STUDY
To gauge the effect of various hyperparameters of self-attention
based ranker on its performance, we performed the following abla-
tion study. We trained the context-aware ranker with the ordinal
loss on Fold 1 of WEB30K dataset and experimented with a differ-
ent number N of encoder blocks, H attention heads, length l of
longest list used in training, dropout rate pdrop and size dh of hid-
den dimension. Results are summarised in Table 5. Baseline model
(i.e. the best performing context-aware ranker trained with ordinal
loss) had the following values of hyperparameters: N = 4, H = 2,
l = 240, pdrop = 0.4 and dh = 512. We observe that a high value of
dropout is essential to prevent overfitting. Even though it is better
to use multiple attention heads as opposed to a single attention
head, using too many results in performance degradation. Notice
that increasing hidden dimension yields better performance than
one reported in Table 1, however, this comes at a price of a large in-
crease in the number of parameters and thus longer training times.
Finally, stacking multiple encoder blocks increases performance.
However, we did not test the effect of stacking more than 4 encoder
blocks due to GPU memory constraints.

7 CONCLUSION
In this work, we addressed the problem of constructing a context-
aware scoring function for learning to rank. We adapted the self-
attention based Transformer architecture from the neural machine
translation literature to propose a new type of scoring function
for LTR. We demonstrated considerable performance gains of pro-
posed neural architecture over MLP baselines across different losses
and types of data, both in ranking and re-ranking setting. These

The Web Conference, April, 2020, Taipei, Taiwan Anon.

Table 6: Details of hyperparameters used in self-attentive models

Loss df c N H dh lr pdrop l |params|
WEB30K
NDCGLoss 2++ 128 4 4 512 1e-3 0.3 240 811K
LambdaRank 128 4 4 512 1e-3 0.3 240 811K
ListMLE 256 4 4 512 1e-3 0.3 240 2.14M
ListNet 128 4 4 512 1e-3 0.3 240 811K
Ordinal loss 144 4 2 512 1e-3 0.4 240 949K
RankNet 144 4 2 512 1e-3 0.3 240 949K
E-commerce
NDCGLoss 2++ 128 2 2 128 1e-3 0.0 60 206K
LambdaRank 128 2 2 128 1e-3 0.0 60 206K
ListNet 128 2 2 128 2e-3 0.0 60 206K
RankNet 128 2 2 128 2e-3 0.0 60 206K

Table 7: Details of hyperparameters used in MLP models

Loss Hidden dimensions lr pdrop l |params|
WEB30K
NDCGLoss 2++

[256, 512, 1024, 512, 256] 1e-3 0.3 240 1.35M

LambdaRank
ListMLE
ListNet
Ordinal loss
RankNet
E-commerce
NDCGLoss 2++ [256, 384, 256] 1e-3 0.0 60 210K
LambdaRank [256, 384, 256] 1e-3 0.0 60 210K
ListNet [256, 384, 256] 1e-4 0.0 60 210K
RankNet [256, 384, 256] 1e-4 0.0 60 210K

experiments provide strong evidence that the gains are due to the
ability of the model to score items simultaneously. As a result of
our empirical study, we observed the strong performance of models
trained to optimise ordinal loss function. Suchmodels outperformed
models trained with well-studied losses like LambdaLoss or Lamb-
daMART, which were previously shown to provide tight bounds on
IR metrics like NDCG. On the other hand, we observed the surpris-
ingly poor performance of models trained to optimise RankNet and
ListMLE losses. In future work, we plan to investigate the reasons
for both good and poor performance of the aforementioned losses,
in particular, the relation between ordinal loss and NDCG.

A EXPERIMENTS DETAILS
Above we provide hyperparameters used for all models reported in
Table 1. Models trained on WEB30K were trained for 100 epochs
with the learning rate decayed by 0.1 halfway through the training.
On e-commerce search logs, we trained the models for 10 epochs
and decayed the learning rate by 0.1 after 5-th epoch. The meaning
of the columns in Table 6 is as follows: dfc is the dimension of
the linear projection done on the input data before passing it to
the context-aware ranker, N is the number of encoder blocks, H
is the number of attention heads, dh is the hidden dimension used
throughout computations in encoder blocks, lr is the learning rate,

pdrop is the dropout probability and l is the list length (lists of items
were either padded or subsampled to that length). The last column
shows the number of learnable parameters of the model.

In Table 7, Hidden dimensions column gives dimensions of sub-
sequent layers of MLP models. The remaining columns have the
same meaning as in the previous table.

REFERENCES
[1] Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce Croft. 2018. Learning a Deep

Listwise Context Model for Ranking Refinement. CoRR abs/1804.05936 (2018).
arXiv:1804.05936 http://arxiv.org/abs/1804.05936

[2] Qingyao Ai, Xuanhui Wang, Sebastian Bruch, Nadav Golbandi, Mike Bendersky,
and Marc Najork. 2019. Learning Groupwise Multivariate Scoring Functions
Using Deep Neural Networks. In Proceedings of the 5th ACM SIGIR International
Conference on the Theory of Information Retrieval (ICTIR).

[3] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normalization.
ArXiv abs/1607.06450 (2016).

[4] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[5] Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig Boutilier, Ed Huai-hsin Chi, Elad
Eban, Xiyang Luo, Alan Mackey, and Ofer Meshi. 2018. Seq2Slate: Re-ranking and
Slate Optimization with RNNs. CoRR abs/1810.02019 (2018). arXiv:1810.02019
http://arxiv.org/abs/1810.02019

[6] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-
ton, and Greg Hullender. 2005. Learning to Rank Using Gradient Descent. In
Proceedings of the 22Nd International Conference on Machine Learning (ICML ’05).
ACM, New York, NY, USA, 89–96. https://doi.org/10.1145/1102351.1102363

http://arxiv.org/abs/1804.05936
http://arxiv.org/abs/1804.05936
http://arxiv.org/abs/1810.02019
http://arxiv.org/abs/1810.02019
https://doi.org/10.1145/1102351.1102363

Context-Aware Learning to Rank with Self-Attention The Web Conference, April, 2020, Taipei, Taiwan

[7] Christopher J. Burges, Robert Ragno, and Quoc V. Le. 2007. Learning to Rank
with Nonsmooth Cost Functions. In Advances in Neural Information Processing
Systems 19, B. Schölkopf, J. C. Platt, and T. Hoffman (Eds.). MIT Press, 193–
200. http://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-
functions.pdf

[8] Christopher J. C. Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. Technical Report. Microsoft Research. http://research.microsoft.
com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf

[9] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to
Rank: From Pairwise Approach to Listwise Approach. In Proceedings of the 24th
International Conference on Machine Learning (ICML ’07). ACM, New York, NY,
USA, 129–136. https://doi.org/10.1145/1273496.1273513

[10] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
785–794. https://doi.org/10.1145/2939672.2939785

[11] Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. Long Short-Term Memory-
Networks for Machine Reading. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguis-
tics, Austin, Texas, 551–561. https://doi.org/10.18653/v1/D16-1053

[12] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce
Croft. 2017. Neural Ranking Models with Weak Supervision. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’17). ACM, New York, NY, USA, 65–74. https:
//doi.org/10.1145/3077136.3080832

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2015), 770–778.

[14] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

[15] Saratchandra Indrakanti, Svetlana Strunjas, Shubhangi Tandon, and Manojku-
mar Rangasamy Kannadasan. 2019. Exploring the Effect of an Item’s Neighbor-
hood on its Sellability in eCommerce. arXiv:cs.IR/1908.03825

[16] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-based Evaluation
of IR Techniques. ACM Trans. Inf. Syst. 20, 4 (Oct. 2002), 422–446. https://doi.
org/10.1145/582415.582418

[17] Ray Jiang, Sven Gowal, Yuqiu Qian, Timothy Mann, and Danilo J. Rezende.
2019. Beyond Greedy Ranking: Slate Optimization via List-CVAE. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
r1xX42R5Fm

[18] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Op-
timization. http://arxiv.org/abs/1412.6980 cite arxiv:1412.6980Comment: Pub-
lished as a conference paper at the 3rd International Conference for Learning
Representations, San Diego, 2015.

[19] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Found. Trends Inf.
Retr. 3, 3 (March 2009), 225–331. https://doi.org/10.1561/1500000016

[20] Andrew Y. Ng. 2004. Feature Selection, L1 vs. L2 Regularization, and Rotational
Invariance. In Proceedings of the Twenty-first International Conference on Machine
Learning (ICML ’04). ACM, New York, NY, USA, 78–. https://doi.org/10.1145/
1015330.1015435

[21] Zhenxing Niu, Mo Zhou, Le Wang, and Xinbo Gao. 2016. Ordinal Regression
with Multiple Output CNN for Age Estimation. 4920–4928. https://doi.org/10.
1109/CVPR.2016.532

[22] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic Differentiation in PyTorch. In NIPS Autodiff Workshop.

[23] Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian
Wu, Peng Jiang, and Wenwu Ou. 2019. Personalized Re-ranking for Recommen-
dation. arXiv:cs.IR/1904.06813

[24] Tao Qin and T. M. Liu. 2013. Introducing LETOR 4.0 Datasets. ArXiv abs/1306.2597
(2013).

[25] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. Learning Structured
Output Representation using Deep Conditional Generative Models. In Ad-
vances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc.,
3483–3491. http://papers.nips.cc/paper/5775-learning-structured-output-
representation-using-deep-conditional-generative-models.pdf

[26] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 1929–1958. http://dl.acm.org/
citation.cfm?id=2627435.2670313

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.).
Curran Associates, Inc., 5998–6008. http://papers.nips.cc/paper/7181-attention-
is-all-you-need.pdf

[28] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer Networks. In
Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 2692–2700.
http://papers.nips.cc/paper/5866-pointer-networks.pdf

[29] Ellen M. Voorhees. 1999. The TREC-8 Question Answering Track Report. In In
Proceedings of TREC-8. 77–82.

[30] Xuanhui Wang, Cheng Li, Nadav Golbandi, Mike Bendersky, and Marc Najork.
2018. The LambdaLoss Framework for Ranking Metric Optimization. In Proceed-
ings of The 27th ACM International Conference on Information and Knowledge
Management (CIKM ’18). 1313–1322.

[31] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
Approach to Learning to Rank: Theory and Algorithm. In Proceedings of the 25th
International Conference on Machine Learning (ICML ’08). ACM, New York, NY,
USA, 1192–1199. https://doi.org/10.1145/1390156.1390306

http://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
http://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.18653/v1/D16-1053
https://doi.org/10.1145/3077136.3080832
https://doi.org/10.1145/3077136.3080832
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/cs.IR/1908.03825
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://openreview.net/forum?id=r1xX42R5Fm
https://openreview.net/forum?id=r1xX42R5Fm
http://arxiv.org/abs/1412.6980
https://doi.org/10.1561/1500000016
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.1109/CVPR.2016.532
https://doi.org/10.1109/CVPR.2016.532
http://arxiv.org/abs/cs.IR/1904.06813
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf
https://doi.org/10.1145/1390156.1390306

	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Self-attentive ranker
	4.1 Self-Attention Mechanism
	4.2 Multi-Headed Self-Attention
	4.3 Positional Encodings
	4.4 Model Architecture

	5 Experiments
	5.1 Datasets
	5.2 Loss Functions
	5.3 Experimental setup
	5.4 Results
	5.5 Re-ranking

	6 Ablation Study
	7 Conclusion
	A Experiments details
	References

