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ABSTRACT

The availability of large datsets has enabled neural networks to achieve impressive
recognition results. However, the presence of inaccurate class labels is known to
deteriorate the performance of even the best classifiers in a broad range of classi-
fication problems. Noisy labels also tend to be more harmful than noisy attributes.
When the observed label is noisy, we can view the correct label as a latent ran-
dom variable and model the noise processes by a communication channel with
unknown parameters. Thus we can apply the EM algorithm to find the parameters
of both the network and the noise and to estimate the correct label. In this study we
present a neural-network approach that optimizes the same likelihood function as
optimized by the EM algorithm. The noise is explicitly modeled by an additional
softmax layer that connects the correct labels to the noisy ones. This scheme is
then extended to the case where the noisy labels are dependent on the features in
addition to the correct labels. Experimental results demonstrate that this approach
outperforms previous methods.

1 INTRODUCTION

The presence of class label noise inherent to training samples has been reported to deteriorate the
performance of even the best classifiers in a broad range of classification problems (Nettleton et al.
(2010), |Pechenizkiy et al.|(2006), Zhu & Wu|(2004))). Noisy labels also tend to be more harmful than
noisy attributes (Zhu & Wu| (2004)). Noisy data are usually related to the data collection process.
Typically, the labels used to train a classifier are assumed to be unambiguous and accurate. However,
this assumption often does not hold since the labels provided by human judgments are subjective.
Many of the largest image datasets have been extracted from social networks. Because these datasets
images are labeled by non-expert users, building a consistent model on a precisely labeled training
set is very tedious. Mislabeling examples have been reported even in critical applications such as
biomedical datasets where the available data are restricted (Alon et al| (1999)). A very common
approach to noisy datasets is to remove the suspect samples in a preprocessing stage or have them
relabeled by a data expert (Brodley & Friedl (1999)). However, these methods are not scalable and
may run the risk of removing crucial examples that can impact small datasets considerably.

Robust noise variants have been proposed for the most common classifiers such as logistic-
regression and SVM (Frénay & Verleysen| (2014)), Jakramate & Kaban| (2012), Beigman & Kle-
banov|(2009)). However, classifiers based on label noise-robust algorithms are still affected by label
noise. From a theoretical point of view, Bartlett et al.| (2006) showed that most loss functions are
not completely robust to label noise. [Natarajan et al.| (2013) proposed a generic unbiased estima-
tor for binary classification with noisy labels. They developed a surrogate cost function that can be
expressed by a weighted sum of the original cost functions, and provided asymptotic bounds for per-
formance. Grandvalet & Bengio (2005) addressed the problem of missing labels that can be viewed
as an extreme case of noisy label data. They suggested a semi-supervised algorithm that encourages
the classifier to predict the non-labeled data with high confidence by adding a regularization term
to the cost function. The problem of classification with label noise is an active research area. A
comprehensive up-to-date review of both the theoretical and applied aspects of classification with
label noise can be found in [Frenay & Kaban|(2014)) and |[Frénay & Verleysen| (2014).



Under review as a conference paper at ICLR 2017

In spite of the huge success of deep learning there are not many studies that have explicitly attempted
to address the problem of Neural Net (NN) training using data with unreliable labels. [Larsen et al.
(1998) introduced a single noise parameter that can be calculated by adding a new regularization
term and cross validation. [Minh & Hinton| (2012) proposed a more realistic noise model that de-
pends on the true label. However, they only considered the binary classification case. |Sukhbaatar,
& Fergus|(2014) recently proposed adding a constrained linear layer at the top of the softmax layer,
and showed that only under some strong assumptions can the linear layer be interpreted as the tran-
sition matrix between the true and noisy (observed) labels and the softmax output layer as the true
probabilities of the labels. Reed et al.[(2014) suggested handling the unreliability of the training data
labels by maximizing the likelihood function with an additional classification entropy regularization
term.

The correct unknown label can be viewed as a hidden random variable. Hence, it is natural to apply
the EM algorithm where in the E-step we estimate the true label and in the M-step we retrain the
network. Several variations of this paradigm have been proposed (e.g. Minh & Hinton (2012),
Bekker & Goldberger| (2016)). However, iterating between EM-steps and neural network training
does not scale well. In this study we use latent variable probabilistic modeling but we optimize the
likelihood score function within the framework of neural networks. Current noisy label approaches
assume either implicitly or explicitly that, given the correct label, the noisy label is independent
of the feature vector. This assumption is probably needed to simplify the modeling and derive
applicable learning algorithms. However, in many cases this assumption is not realistic since a
wrong annotation is more likely to occur in cases where the features are misleading. By contrast,
our framework makes it easy to extend the proposed learning algorithm to the case where the noise
is dependent on both the correct label and the input features. In the next section we describe a model
formulation and review the EM based approach. In Section 3 we described our method that is based
on adding another softmax layer to the network and in Section 4 we present our results.

2 A PROBABILISTIC FRAMEWORK FOR NOISY LABELS

Assume we want to train a multi-class neural-network soft-classifier p(y = i|x; w) where z is the
feature vector, w is the network parameter-set and ¢ is a member of the class-set {1,...,k}. We
further assume that in the training process we cannot directly observe the correct label y. Instead,
we only have access to a noisy version of it denoted by z. We follow here the probabilistic modeling
and the EM learning approach described in |Bekker & Goldberger| (2016). In this approach noise
generation is assumed to be independent of the features and is modeled by a parameter 6(i,j) =
p(z = jly = 4). The noise distribution is unknown and we want to learn it as part of the training
phase. The probability of observing a noisy label z given the feature vector x is:

k
p(z = jlw;w,0) =Y p(z = jly = i 0)p(y = ilw; w) ()

i=1

where k is the number of classes. The model is illustrated in the following diagram:

w 0
X y . z
— | Neural-Network noisy channel ——

In the training phase we are given n feature vectors xi, ..., z,, with the corresponding noisy la-
bels 21, ..., z, which are viewed as noisy versions of the correct hidden labels ¥, ..., y,. The log-
likelihood of the model parameters is:

n k
L(w,0) = log(d>_ p(zily: = i 0)p(ye = ilas; w)) 2)
t=1 i=1

Based on the training data, the goal is to find both the noise distribution 6 and the Neural Network
parameters w that maximize the likelihood function. Since the random variables y1, ..., y,, are hid-
den, we can apply the EM algorithm to find the maximum-likelihood parameter set. In the E-step of
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each EM iteration we estimate the hidden true data labels based on the noisy labels and the current
parameters:

cri = p(yr = i|ay, 2¢5w0,00), 1=1,...,k, t=1,...n 3)

where wq and 6 are the current parameter estimations. In the M-step we update both the NN and
the noisy channel parameters. The updated noise distribution has a closed-form solution.

Zt Ctll{zt—ﬂ}
Zt Ct;
The k x k matrix 6 can be viewed as a confusion matrix between the soft estimates of the true label

{cti]i = 1,...,k} and the observed noisy labels z;. As part of the EM M-step, to find the updated
NN parameter w we need to maximize the following function:

0(i, j) = ije{l, ..k} &)

k
> cuilogp(ys = ilzy; w) 5)

14=1

M:

t

which is a soft-version of the likelihood function of the fully observed case, based on the current
estimate of the true labels. The back-propagation derivatives of the function (5) that we maximize
in the M-step are:

S , ,
ou. Z(p(yt = i|zy, 25 w0, 00) — p(ye = ilze; w))h(z:) (6)

t=1

such that A is the final hidden layer and w1, ..., ug are the parameters of the soft-max output layer.

The method reviewed here is closely related to the work of Minh & Hinton|(2012). They addressed
the problem of mislabeled data points in a particular type of dataset (aerial images). The main
difference is that in their approach they assumed that they do not learn the noise parameter. Instead
they assume that the noise model can be separately tuned using a validation set or set by hand. Note
that even if the true noise parameters are given, we still need the apply the EM iterative procedure.
However, this assumption makes the interaction between the E step and the NN learning much
easier since each time a data-point z; is visited we can compute the p(y; = i|z¢, z¢) based on the
current network parameters and the pre-defined noise parameters. Motivated by the need for model
compression, [Hinton et al.| (2014)) introduced an approach to learn a “distilled” model by training
a more compact neural network to reproduce the output of a larger network. Using the notation
defined above, in the second training stage they actually optimized the cost function: S(w) =
Sy Zle p(y: = i|lxe;wo, Oo) logp(y: = 4;a¢;w) such that wy is the parameter of the larger
network that was trained using the labels z1, ..., z,, w is the parameter of the smaller network and
00(, 7) in this case is a non-informative distribution (i.e. 6¢(¢, j) = 1/k).

There are several drawbacks to this EM-based approach described above. The EM algorithm is
a greedy optimization procedure that is notoriously known to get stuck in local optima. Another
potential issue with combining neural networks and EM direction is scalability. The framework
requires training a neural network in each iteration of the EM algorithm. For real-world, large-scale
networks, even a single training iteration is a non-trivial challenge. Moreover, in many domains
(e.g. object recognition in images) the number of labels is very large, so many EM iterations are
likely to be needed for convergence. Another drawback of the probabilistic models is that they are
based on the simplistic assumption that the noise error is only based on the true labels but not on the
input feature. In this study we propose a method for training neural networks with noisy labels that
successfully addresses all these problems.

3 TRAINING DEEP NEURAL NETWORKS USING A NOISE ADAPTATION LAYER

In the previous section we utilized the EM algorithm to optimize the noisy-label likelihood function
(2). In this section we describe an algorithm that optimizes the same function within the framework
of neural networks. Assume the neural network classifier we are using is based on non-linear inter-
mediate layers followed by a soft-max output layer used for soft classification. Denote the non-linear
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function applied on an input = by h = h(z) and denote the soft-max layer that predicts the true y
label by:
.
ply = ilw) = oAy ™)
>oi—qexp(u/ h+bp)
where w is the network parameter-set (including the softmax layer). We next add another softmax
output layer to predict the noisy label z:

exp(uj;h + bij)
Yorexp(ujh + bi)

p(z = jlz) =Y p(z = jly = i, 2)p(y = ilx) )
We can also define a simplified version where the noisy label only depends on the true label, i.e. we
assume that labels flips are independent of x:

plz=jly=1,1)= 8)

exp(bi;)
= jly = 10
p(z =jly Zwm " (10)
p(z = jlo) = Ep =1)p(y = i|x) (11)

We denote the two noise modeling variants as the complex model (c-model) (8) and the simple
model (s-model) @]) Hereafter we use the notation w,. for all the parameters of the second
softmax layer which can be viewed as a noise adaptation layer.

In the training phase we are given n feature vectors x1,...,x, with corresponding noisy labels
21, ..., 2n, Which are viewed as noisy versions of the correct hidden labels yi,...,y,. The log-
likelihood of the model parameters is:

'lU wnolse ZIng Zt‘fEt Zlog(zp(zt|yt == iaxt;wnoise)p(yt = Z|It5 w)) (12)
t i

Since the noise is modeled by adding another layer to the network, the score S(w, wys.) can be
optimized using standard techniques for neural network training. By setting

exp(b;;)
> exp(ba)’

it can easily verified that, by using either the EM algorithm (2)) or the s-model neural network scheme
(12), we are actually optimizing exactly the same function. Thus the neural network with the s-model
noise adaptation layer provides an alternative optimization strategy to the EM algorithm. Instead of
alternating between optimizing the the noisy model and the network classifier we consider them as
components of the same network and optimize them simultaneously.

p(z = jly =1i) = 0(i,j) = (13)

Note that for the case of the c-model where the noise is also based on the input feature there is no
straightforward equivalent generative modeling that can be optimized by using the EM algorithm.

w w Wioise
X . . h h7 y Z
— | non-linear function soft-max soft-max ——
w w
X . . h y
non-linear function soft-max ——

Figure 1: An illustration of the noisy-label neural network architecture for the training phase(above)
and test phase (below).
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At test time we want to predict the true labels. Hence, we remove the last softmax layer, that aims to
get rid of the noise in the training set. We compute the true-label softmax estimation p(y = i|x; w)
(7). The proposed architecture for training the neural network based on training data with noisy
labels is illustrated in Figure [T}

There are degrees of freedom in the two softmax layer model. Hence, a careful initialization of the
parameters of the noise adaptation layer is crucial for successful convergence of the network into
a good classifier of the correct labels at test time. We used the parameters of the original network
to initialize the parameters of the s-model network that contains the noise adaptation level. We can
initialize the softmax parameters of the s-model by assuming a small uniform noise:

€
bij = log((1 — €)=z + ml{i;ﬁj})

such that & is the number of different classes. A better procedure is to first train the original NN
without the noise-adaptation layer, ignoring the fact that the labels are noisy. We can then treat the
labels produced by the NN as the true labels and compute the confusion matrix on the train set and
used it as an initial value for the bias parameters:

Yo li=pp(ye = Z'Iﬂft))
> p(ye = ilay)

such that x4, ..., x,, are the feature vectors of the training dataset and z1, ..., z,, are the corresponding
noisy labels. So far we concentrated on parameter initialization for the s-model. The strategy that
worked best to initialize the c-model parameters is to use the parameters that were optimize for the
s-model. In other words we set linear terms u;; to zero and to initialize the bias terms b;; with the
values that were optimized by the s-model.

bij = log(

The computational complexity of the proposed method is quadratic in the size of the class-set. Sup-
pose there are k classes to predict, the proposed methods requires £+ 1 sets of softmax operations
with the size of k each. Hence there are scalability problems when the class set is large. As we
explained in the previous paragraph, we initialized the second soft-max layer using the confusion
matrix of the baseline system. The confusion matrix is a good estimation of the label noise. Assume
the rows of the matrix correspond to the true labels and the matrix columns correspond to the noisy
labels. The [ largest elements in the ¢-th row are the most frequent noisy class values when the true
class value is ¢. We can thus connect the i-th element in the first softmax layer only to its [ most
probable noisy class candidates. Note that if we connect the i-th label in the first softmax only to the
i-th label in the second softmax layer, the second softmax layer is collapsed to identity and we ob-
tain the standard baseline model. Taking the [ most likely connections to the second softmax layer,
we allow additional [ — 1 possible noisy labels for each correct label. We thus obtain a data driven
sparsifying of the second softmax layer which solves the scalability problem since the complexity
become linear in the number of classes instead of quadratic. In the experiment section we show that
by using this approach there is not much performance deference.

Our architecture, which is based on concatenation of softmax layers, resembles the hierarchical
softmax approach Morin & Bengio| (2005) that replaces the flat softmax layer with a hierarchical
layer that has the classes as leaves. This allowed them to decompose calculating the probability of
the class into a sequence of probability calculations, which saves us from having to calculate the
expensive normalization over all classes. The main difference between our approach and their (apart
from motivation) is that in our approach the true-label softmax layer is fully connected to the noisy-
label layer. |Sukhbaatar & Fergus|(2014) suggested to add a linear layer to handle noisy labels. Their
approach is similar to our s-model. In their approach, however, they proposed a different learning
procedure.

4 EXPERIMENTS

In this section, we evaluate the robustness of deep learning to training data with noisy labels with
and without explicit noise modeling. We first show results on the MNIST data-set with injected
label noise in our experiments. The MNIST is database of handwritten digits, which consists of
28 x 28 images. The dataset has 60k images for training and 10k images for testing. We used a two
hidden layer NN comprised of 500 and 300 neurons. The non-linear activation we used was ReLU
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Figure 2: Test classification accuracy results on the MNIST dataset as a function of the noise level.
The results are shown for several training data sizes (20%,50%,100%) of the training subset.

and we used dropout with parameter 0.5. We trained network using the Adam optimizer (Kingma
& Ba| (2014)) with default parameters, which we found to converge more quickly and effectively
than SGD. We used a mini-batch size of 256. These settings were kept fixed for all the experiments
described below. In addition to network that is based on fully connected layers we also applied a
network based on a CNN architecture. The results we obtained in the two architecture were similar.
The network we implemented is publicly available ﬂ

We generated noisy data from clean data by stochastically changing some of the labels. We con-
verted each label with probability p to a different label according to a predefined permutation. we
used the same permutation used in|Reed et al.[(2014)). The labels of the test data remained, of course,
unperturbed to validate and compare our method to the regular approach.

We compared the proposed noise robust models to other model training strategies. The first network
is the baseline approach that ignores the fact that the labels of the the training data are unreliable.
Denote the observed noisy label by z and the softmax decision by g¢1,...,qx. The baseline log-
likelihood score (for a single input) is:

S = Z Li.—qy log(q:)

Icode available atlhttps://github.com/udibr/noisy_labels
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Figure 3: Test classification accuracy results on the CIFAR-100 dataset as a function of the noise
level. The results are shown for several training data sizes (20%,50%,100%) of the training subset
for a CNN network architecture).

We also implemented two variants of the noise robust approach proposed by Reed et al.| (2014).
They suggested a soft version

BS —(1- B)H(q) = B Z 1r.—i log(g;) + (1 - B) Z q: log(q:)

and a hard version:
BS + (1 — B) maxlog(q;)

In their experiments they took 5 = 0.8 for the hard version and 8 = 0.95 for soft version. and they
observed that the hard version provided better results. Finally we implemented the two variants of
our approach, namely, the noise modeling based only on the labels (s-model) and the noise modeling
that was also based on the features (c-model).

Figure [2]depicts the comparative test errors results as a function of the fractions of noise. The results
are showed for three different sizes of training data i.e. (20%,50%,100%) of the MNIST training
subset. Bootstrap is used to compute confidence intervals around the mean. For 1000 times, N = 10
samples are randomly drawn with repeats from the IV available samples and mean is computed. The
confidence interval is taken to be the 2.5% and 97.5% percentiles of this process.

We can see from the results that all the methods that are explicitly aware of the noise in the labels are
better than the baseline which is the standard training approach. We revalidated the results reported
in Reed et al.| (2014} and showed that the hard version of their method performs better than the soft
version. In all cases our models performed better than the alternatives. In most cases the c-model
was better than the s-model. In case the entire dataset is used training we can see that in our approach
there is a phase transition phenomena. We get almost perfect classification results until the noise
level is high and there is a sudden strong performance drop. Analyzing the reason for this effect is
left for a future research.

We next show results on the CIFAR-100 image dataset Krizhevsky & Hinton|(2009) which consists
of 32 x 32 colour images arranged in 100 classes containing 600 images each. There are 500 training
images and 100 testing images per class. We used raw images directly without any pre-processing
and augmentation. We generated noisy data from clean data by stochastically changing some of the
labels. We converted each one of the 100 labels with probability p to a different label according to
a predefined permutation. The labels of the test data remained, of course, unperturbed to validate
and compare our method to the regular approach. We used a CNN network with two convolutional
layers combined with ReLU activation and max-pooling, followed by two fully connected layers.
Figure [3] depicts the comparative test errors results as a function of the fractions of noise for three
different sizes of training data i.e. (20%,50%,100%) of the CIFAR-100 training subset. Bootstrap
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Figure 4: Test classification accuracy results on the CIFAR-100 dataset as a function of the noise
level. The results of regular and sparse second softmax layers are shown for several training data
sizes (20%,50%,100%) of the training subset .

was used to compute confidence intervals around the mean in the same way we did in the MNIST
experiment. We can see from the results the the proposed method works better than the alternatives.
The simple model consistently provide the best results while when the noise level is very high the
complex method tend to perform better.

We next show experiment results for the sparse variant of our method that remains efficient even
when the class set is large. We demonstrate it on the case of CIFAR-100 dataset which consists of
100 possible classes. For each class we took just the five most probable classes in the confusion
matrix which is used to initialize the model parameter (see section 3). As can be seen from Figure
[] sparsifying the second softmax layer does not yield performance degradation.

5 CONCLUSION

In this paper we investigated the problem of training neural networks that are robust to label noise.
We proposed an algorithm for training neural networks based solely on noisy data where the noise
distribution is unknown. We showed that we can reliably learn the noise distribution from the noisy
data without using any clean data which, in many cases, are not available. The algorithm can be
easily combined with any existing deep learning implementation by simply adding another softmax
output layer. Our results encourage collecting more data at a cheaper price, since mistaken data
labels can be less harmful to performance. One possible future research direction would be to
generalize our learning scheme to cases where both the features and the labels are noisy. We showed
results on datasets with small and medium class-set.
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