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Abstract

Dynamic spatiotemporal processes on the Earth can be observed by an increasing1

number of optical Earth observation satellites that measure spectral reflectance at2

multiple spectral bands in regular intervals. Clouds partially covering the surface3

is an omnipresent challenge for the majority of remote sensing approaches that4

are not robust regarding cloud coverage. In these approaches, clouds are typically5

handled by cherry-picking cloud-free observations or by pre-classification of cloudy6

pixels and subsequent masking. In this work, we demonstrate the robustness of7

a straightforward convolutional long short-term memory network for vegetation8

classification using all available cloudy and non-cloudy satellite observations. We9

visualize the internal gate activations within the recurrent cells and find that, in10

some cells, modulation and input gates close on cloudy pixels. This indicates that11

the network has internalized a cloud-filtering mechanism without being specifically12

trained on cloud labels. The robustness regarding clouds is further demonstrated13

by experiments on sequences with varying degrees of cloud coverage where our14

network achieved similar accuracies on all cloudy and non-cloudy datasets. Overall,15

our results question the necessity of sophisticated pre-processing pipelines if robust16

classification methods are utilized.17

Supplementary material can be accessed via https://tinyurl.com/NIPS18ST-supplement18

1 Introduction19

A wide range of dynamic spatiotemporal processes of the Earth can be observed with remote sensing20

satellites that revisit the same position on Earth at discrete time intervals. Seasonal vegetation life-21

cycles and other land cover dynamics are typically monitored at weekly intervals at spatial resolutions22

of several meters that allow distinguishing large single objects. Imagery acquired by these optical23

satellites is, however, regularly covered by clouds. These coverages are typically addressed by either24

selecting exclusively cloud-free observations or masking and removing clouds by computationally25

sophisticated pre-processing pipelines. We investigate the robustness of convolutional long short-term26

memory networks [8] with regard to temporal noise induced by cloud coverage for remote sensing27

imagery.28

2 Related Work29

Clouds distinguish themselves from ground pixels by their the high reflectance compared to ground30

pixels. Decision-tree based models [4, 10, 2] applied on expert-designed features are used for many31

remote sensing applications. The fmaskalgorithm [10] and improved versions [9, 1] additionally32

implement a projection of the detected cloud on the surface as initialization to additionally predict33

the shadow casted by the cloud. Other approaches extract features from a time series and utilize the34
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Figure 1: Illustration of the two-layer convolutional long short-term memory network (LSTM)
topology. Each input image xt of T images is passes sequentially to the LSTM encoder that extracts
classification relevant features to the internal cell state tensor cT . A second convolutional layer
compresses the dimensionality to the number of classes yielding activations per class.

sudden increase in reflectance to identify cloudy pixels [2]. Convolutional neural networks (CNNs)35

have also shown to compare well [11] indicating that these features can be learned by deep methods.36

These methods have proven beneficial in the last years and are widely implemented in remote sensing37

approaches. However, masking single pixels by a pre-classification introduces an additional layer of38

procedural complexity and raises the question of how to treat these pixels accordingly in the designed39

framework. Overall, cloud-filtering remains a pre-processing necessity for most remote sensing40

approaches that are prone to fail in the presence of data noise.41

Similar to our work, only a few approaches have tried to design robust methods that do not require42

this additional pre-classification step. One approach added pre-classified cloud labels as additional43

prediction targets that allowed the implemented network to distinguish cloud from ground classes44

[7]. Also, ensemble-based methods of supervised classifiers have shown robustness regarding the45

appearance of clouds [6].46

3 Method47

In this section, we outline the theoretical basis of convolutional long short-term memory (convLSTM)48

networks utilized in this work and detail the employed network topology.49

3.1 Convolutional Long Short-term Neural Networks50

Long short-term memory networks (LSTM) [3] implement internal gates to control the gradient-51

flow through time and an additional container for long-term memory ct. This yields the LSTM52

update (ht, ct−1)← (xt, ht−1, ct−1) that map an input xt and short-term context ht−1 to a hidden53

representation ht. Additionally, a long-term cell state ct−1 is updated to ct at each iteration and can54

store information for a theoretically unlimited number of iteration. Three gates control the update of55

the cell state56

ct ← ct−1 � f t + it � jt (1)
by element-wise multiplication denoted by the Hadamard operator �. The forget gate f t =57

σ (xt ∗ θfx + ht−1 ∗ θfh + 1) evaluates the influence of the previous cell state ct−1 with a sigmoidal58

σ (·) ∈ ]0, 1[ activation function. The input and modulation gates59

it = σ (xt ∗ θix + ht−1 ∗ θih) , and jt = tanh
(
xt ∗ θjx + ht−1 ∗ θjh

)
(2)

are element-wise multiplied for the cell state update. The output gate ot =60

tanh (xt ∗ θox + ht−1 ∗ θoh) determines with the cell state the current cell output ht ← ot � ct.61

Convolutional recurrent networks implement a convolution, denoted by ∗, instead of a matrix mul-62

tiplication of the formulation of recurrent networks. Each respective gate activation, referred by63

subscripts f, i, j, o, is controlled by trainable weights for input θfx, θix, θjx, θox ∈ Rk×k×d×r and64
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Figure 2: Activations of the cell state and selected gates of one convolutional LSTM cell that indicate
that the cell has internalized a cloud-fiiltering scheme. The input gate i in this specific cell seems to
be assigned values of zero on cloudy pixels as seen at steps t = 13, 26, 31, 33.

hidden representation θfh, θih, θjh, θoh ∈ Rk×k×r×r where d represents the dimensional depth of65

the input image, k the convolutional kernel size, and r a hyper-parameter determening the number66

of recurrent cells by setting dimensionality of the hidden states. With this change, image data of67

certain width, height and depth can be processed where convolutions partially connect the local pixel68

neighborhoods between layers.69

3.2 Network architecture70

We utilize this single-layer convolutional LSTM neural network to encode a sequence of T satellite71

images to the fixed length representation cT , as illustrated in Fig. 1. To balance the influence of72

the sequence order, we also encode the reversed sequence and append the final cell states. In initial73

published experiments, we found 256 recurrent cells to be optimal and used this hyper-parameter of74

dimensionality for the hidden tensors within the LSTM network.75

After sequential encoding, the combined cell state is passed to a second convolution layer that76

compresses the dimensionality from 2 × 256 hidden dimensions to the number of classes. Applying77

softmax normalization produces activations that can be interpreted as network-confidences per class78

and are illustrated in the figure. We used convolutional kernels of 3× 3px in size throughout the79

network. To train, we evaluate the cross-entropy between the last layer and a one-hot representation80

of the ground truth labels. The influence of each weight on the evaluated loss is determined by81

back-propagated gradients and iterative adjustments are determined by the Adam optimizer[5].82

4 Results83

The primary objective for this network was to identify the type of cultivated crops in an area of84

interest of 100 km × 40 km. Hence, we trained our network end-to-end on label data describing the85

crop-type on disctinct field parcels. No additional label information about cloud coverages was used.86

We used a sequence of 46 SENTINEL 2 satellite observations from the year 2016 for this objective.87

This satellite measures the reflectances of 13 spectral bands at 10 m, 20 m, and 60 m resolution. To88

harmonize the data sources, we bi-linearly interpolated these to 10 m resolution and rasterized the89

crop labels accordingly. In this section, we evaluate the robustness of the proposed network regarding90

cloud coverage.91

4.1 Long-short term memory cell activations92

We trained the network on field crop labels for thirty epochs using raw sequences of cloudy and93

non-cloudy observations. The top row of Fig. 2 shows an partocular example input sequence of94

T = 34 images of 48 × 48px in size. The following rows illustrate activations of the internal95

convolutional LSTM gates i, j and cell state c given each input element. While all of the 256 recurrent96

cells likely contribute to the classification decision, only few were visually interpretable similar to97

the shown example. Following Eq. (1), the cell state is updated with new information based on98
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Figure 3: Overall accuracy over the training progress of the same convolutional LSTM network
topology trained on datasets with different degrees of cloud coverage.

the input and modulation gates i, j. The activations in Fig. 2 of these gates in the second and third99

row show that the input gate i approaches zero at pixels that are covered by clouds. This effect can100

be observed at time steps t = {13, 26, 31, 33}. At time t = 32 the input gate seems unchanged,101

however, the modulation gate j changes sign. Overall, these results indicate that the convolutional102

recurrent network has internalized a mechanism for cloud-filtering. More activation examples can be103

obtained from the supplementary material.104

4.2 Experiments with varying degrees of cloud coverage105

In this experiment, we trained the network on datasets with different degrees of cloud coverage. To106

determine the cloud coverage per observation, all satellite observations have been pre-processed using107

the fmaskalgorithm implemented in the Sen2Cor software, as being common practice in remote108

sensing. This yields a per-pixel cloud classification label. With this, a cloud coverage pixel ratio per109

observation can be calculated. Based on this, several sub-datasets have been created with either all 46110

observations, the 26 images covered with less than 50%, 17 images with less than 25%, 10 with less111

than 10%, and 4 completely cloud-free images.112

We trained the network on these pre-filtered datasets. In Fig. 3 one can observe that the overall113

accuracy over the training process remains remarkably similar for all of the sub-sampled datasets.114

The right graph shows a zoomed view and reveals some differences between the dataset performances.115

Datasets containing observations and the four completely cloud-free observations have been slightly116

worse classified than the intermediate ones of 10%, 25%, and 40% coverage. It seems that the117

rejection of completely covered observations was beneficial as indicated by the slightly worse118

accuracy on the dataset of all observations. Similarly, the four cloud-free observations may have119

missed some characteristic vegetation-related events. Intuitively, these results show a trade-off120

between restrictions on cloud coverage and sequence length and demonstrate that cherry-picking121

single cloud-free observations may lead to inferior classification accuracy. Overall, these results122

demonstrate the robustness of the convolutional long short-term memory network to handle data123

containing temporal noise induced by cloud coverage.124

5 Conclusion125

Noise in temporal data is a common challenge for a variety of disciplines. In this work, we focused on126

noise induced by cloud coverage in multi-temporal remote sensing imagery. Most Earth observation127

approaches either select few completely cloud-free observations or use a pre-classification to mask128

cloudy pixels. The experiments of this work showed that this cloud-induced temporal noise can be129

learned purely from the data in an end-to-end fashion with an appropriate model design. We utilized130

long short-term memory cells that are popularly used in natural language processing tasks, such as131

translation or text generation in a straightforward two-layer network. Our results demonstrate this132

model design is able to consistently extract the classification-relevant features from observations133

between cloudy observations.134

Our work questions the necessity of sophisticated, partly hand-crafted pre-processing pipelines for135

remote sensing imagery. These results show that methods perform well in the seemingly unrelated136

field of remote sensing and Earth observation. To encourage further research with spatiotemporal137

data in remote sensing and related fields, we will publish source code and data upon acceptance.138
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