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Abstract

Natural language instructions for visual navigation use object references and scene1

descriptions to provide a breadcrumb trail to a goal location. This work presents a2

multimodal transformer for Vision-and-Language Navigation (VLN) that processes3

visual observations using both an object detector and a scene classification network,4

which produce features that mirror these two distinct types of visual cues. In5

our approach, scene features provide high-level contextual information to support6

object-level processing. With this design, our model is able to use vision-and-7

language pretraining – i.e., learning the alignment between images and text from8

large-scale web data – to substantially improve performance over a strong baseline9

on the Room-to-Room (R2R) [1] and Room-Across-Room (RxR) [2] benchmarks.10

Dummy Teaser Label

Figure 1: Dummy Teaser caption

1 Introduction11

The vision-and-language navigation (VLN) task [1] requires an agent to find a goal location within12

an environment by following natural language navigation instructions. A central component of this13

task is associating the instruction with visual landmarks in the environment. Figure 1 provides an14

illustrative example from the Room-to-Room (R2R) dataset [1] in which the agent needs to follow15

the indoor navigation instructions: “Exit the bedroom and turn left. Continue down the hall and16

into the room straight ahead and stop before the desk with two green chairs.” The visual landmarks17

in this instruction range from scene-level descriptions (e.g., “bedroom” and “hall”) to specific18

object references (e.g., “desk” and “two green chairs”). Accordingly, VLN agents should be able to19

recognize this diverse range of visual cues.20
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In most VLN methods [1, 3–12], visual observations are first encoded with a convolutional network21

that was trained to solve an image classification task – either using ImageNet [13] or the Places [14]22

scene recognition dataset. While ImageNet features may identify objects mentioned in the instructions23

and Places features might match the scene descriptions, neither solution was explicitly trained to24

recognize both types of visual cues. Another limitation of standard VLN methods is that the alignment25

(or grounding) between instructions and visual features is typically learned using only the limited26

supervision provided by VLN datasets (e.g., the 14k or 42k path-instruction pairs from the R2R [1]27

and RxR [2] datasets, respectively). Recent work has overcome this challenge by transferring visual28

grounding from large-scale web corpora to VLN models operating over either scene [15] or object [16]29

features. We advance this line of research by developing a VLN model that transfers visual grounding30

to make effective use of both scene and object features.31

Our proposed approach extends the VLNœ BERT framework [15] by incorporating object features32

as an input to the model and for action prediction. We find that naïvely using both scene and object33

features does not significantly improve VLN performance over a VLNœ BERT baseline. Thus, we34

propose architectural changes that allow the model to take better advantage of these two distinct types35

of visual information. Specifically, our model treats scene features as contextual information that is36

used for object-level processing. This design is similar to the object-level processing paradigm that37

has been adopted by several recent vision-and-language pretraining (VLP) methods (e.g., [17, 18]),38

which learn visual grounding by pretraining on large image-text datasets collected from the web.39

Accordingly, unlike VLNœ BERT, our model consistently uses object features during vision-and-40

language pretraining and VLN task-specific fine-tuning.41

We experiment with our proposed approach on the Room-to-Room (R2R) [1] and Room-Across-Room42

(RxR) [2] datasets. Empirically we find that our model substantially improves VLN metrics over a43

strong baseline on R2R and outperforms state-of-the-art methods on English language instructions44

in RxR. Concretely, our proposed approach improves Success Rate (SR) on the unseen validation45

split in the R2R dataset by 1.4 absolute percentage points. On RxR, which is a more challenging46

dataset due to indirect paths and larger variations in path length, we see even larger improvements47

in SR of 3.7 absolute percentage points, alongside a gain of 1.9 absolute percentage points on the48

Normalized Dynamic Time Warping (NDTW) metric. Through ablation experiments we discover49

that vision-and-language pretraining is vital to our approach, suggesting that strong visual grounding50

is key for using object features in VLN.51

To summarize, we make the following contributions:52

• We propose a unified multi-modal transformer model for vision-and-language navigation that53

leverages vision-and-language pretraining for jointly processing scene and object features.54

• We show that our approach outperforms strong baselines on the R2R and RxR datasets. [SL]55

Would be nice to make these a little punchier and include key results.56

• We provide analysis that demonstrates the effectiveness of our design decisions and high-57

lights the importance of vision-and-language pretraining to the success of our model.58

2 Related Work59

Vision-and-Language Navigation. The Room-to-Room (R2R) [1] and Room-Across-Room60

(RxR) [2] datasets both situate the VLN task within Matterport3D [19] indoor environments. Since61

the release of R2R there has been steady improvement in VLN task performance [3–12, 15]. Some of62

the key innovations include using instruction-generation via “speaker” models for data augmenta-63

tion [3, 8], combining imitation and reinforcement learning [4], using auxiliary losses [5, 11], and64

different pretraining strategies [10, 12, 15]. All of these methods have one thing in common – they65

process visual observations with a convolutional network pretrained to solve an image classification66

task (using either the ImageNet [13] or Places [14] datasets). In contrast, this work explores using a67

combination of features from visual encoders pretrained for scene classification and object detection.68

Object Features for VLN. Intuitively, object detections should naturally match the object cues69

mentioned in VLN instructions. Indeed, several recent studies [16, 20–22] have demonstrated the70

utility of using object detectors for VLN. In [20, 21] detections are converted into object “tags” (i.e.,71

object classification labels), which are encoded using a GLoVe [23] embedding. Similarly, [22]72
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convert detections into a feature vector using the classification label, object area, and detector73

confidence. Unlike these methods, our approach directly uses object features produced by a detector74

and takes advantage of vision-and-language pretraining to transfer visual grounding. In [16], object75

features are used in a model that solves a path selection task in VLN, which requires pre-exploring an76

environment before executing the navigation task. By comparison, this work focuses on combining77

scene and object features to solve instruction-guided visual navigation without pre-exploration.78

3 Preliminaries79

[AM] TODO: Update this paragraph.80

In this section, we review the Vision-and-Language Navigation (VLN) task and the recently pro-81

posed VLNœ BERT [15] model for this task. We describe our approach that builds on top of the82

VLNœ BERT architecture in Section 4.83

3.1 Vision-and-Language Navigation84

In VLN, an agent is placed in a photo-realistic 3D environment and must navigate to a goal location85

that is specified through natural language navigation instructions I (as illustrated in Figure 1). At86

each timestep t, the agent receives a panoramic observation Ot “ tot,iu
36
i“1 (introduced by Fried87

et al. [3]), which is composed of RGB images from 36 viewing angles (12 headings ˆ 3 elevations).88

In this work we focus on the “nav-graph” setting, in which the agent has access to a navigation89

graph that specifies a discrete set of navigable locations for each viewpoint in the environment. Using90

this information the agent selects an action from the set At “ tat,iu
Nt
i“0 consisting of Nt navigable91

locations and the stop action. The agent is successful if it calls stop within 3m of the goal location.92

3.2 Visual Encoders for VLN93

The goal of this work is to develop a VLN model that can process both scene and object features94

(as discussed in Section 1). This is accomplished by processing each RGB image ot,i with two95

different visual encoders that are adopted from prior work. The feature extraction methods used by96

VLNœ BERT and our model are summarized here; additional details are provided in the Appendix.97

Scene Features. Following [1], scene features are produced using a ResNet-152 [24] CNN that was98

trained on the Places [14] scene recognition dataset. In VLN, understanding the relative angle to99

each image ot,i is important for following instructions with directional cues (e.g., “to your left”).100

Accordingly, the relative heading θt,i and elevation φt,i to each RGB image is encoded into a 4-101

dimensional vector rsinθt,i, cosθt,i, sinφt,i, cosφt,is and combined with the CNN features to construct102

the final scene feature vector f t,i.103

Object Features. To generate object features we use the approach taken in [16], in which a Faster104

R-CNN [25] detector trained on Visual Genome [26] using the training procedure from [27] is used105

to produce a set of M region features for each RGB image. Heading and elevation angles to each106

image region are encoded (as above) and combined with the region features, resulting in a set of107

object features tgt,i,ju
M
j“1 for each RGB image.108

3.3 Multimodal Transformers109

Here we provide a brief overview of multimodal transformers (e.g., OSCAR [17]), which provide a110

basis for VLNœ BERT and our approach. Multimodal transformers are an extension of transformer-111

based language models such as BERT [28] that process paired image and text data. Like their112

language counterparts, the inputs to these models are a set of tokens, which are processed by a series113

of transformer encoder layers [29] to output representations for each token. Commonly, language114

tokens are constructed using the approach taken in BERT [28] and “visual tokens” are generated115

using region features from an object detector (such as the specific model described above). Additional116

details can be found in [17], which describes OSCAR – the multimodal transformer used in this work.117

[AM] TODO: add a sentence about how multimodal transformers are used in our work118
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3.4 Multimodal Transformers for VLN119

VLN requires sequentially following navigation instructions (e.g., “Exit the bedroom...” then “Con-120

tinue down the hall...” then “stop before the desk with two green chairs.”). Accordingly, maintaining121

a history of the agent’s state is helpful for understanding which sub-instruction to follow at each122

timestep. Traditional VLN agents use recurrent neural networks (e.g., LSTM [30]) to model state123

history. In contrast, VLNœ BERT [15] introduces a generic recurrence mechanism that can, in124

principle, be added to any multimodal transformer model to refashion it for the VLN task. In this125

work we extend the OSCAR [17] instantiation of VLNœ BERT, which allows us to study the effect126

of vision-and-language pretraining on a VLN agent that processes both scene and object features.127

VLNœ BERT [15] uses a multimodal transformer to process a panoramic observation Ot along-128

side the navigation instructions I to selection an action from At. The recurrence mechanism in129

VLNœ BERT is operationalized using a state token st, which is passed as an input to the multimodal130

transformer and updated at each timestep using self-attention (as discussed below).131

Initialization. The state token is initialized by passing the word tokens from the navigation instruc-132

tions I along with special [CLS] and [SEP] tokens through the multimodal transformer. The output133

corresponding to the [CLS] token is used to set s0 and the outputs for the word tokens (denoted as134

X) are used as the language representation during navigation.135

Visual Tokens. For each panoramic observation Ot “ tot,iu
36
i“1, VLNœ BERT runs a Places [14]136

CNN on each of the 36 RGB images to extract scene features tf t,iu
36
i“1 (see Section 3.2). Since the137

agent can only navigate to one of Nt navigable viewpoints, only features for images pointing towards138

these locations are used as visual tokens. To facilitate the stop action an all zeros feature vector is139

added to the set of visual tokens (denoted as F t).140

Navigation. At each timestep (t ą 0), the input to the multimodal transformer is composed of the141

previous state st´1, the encoded instruction X , and the visual tokens F t. To reduce computational142

complexity, the instruction tokens are not updated during navigation and only serve as keys within the143

attention-based processing. Actions are selected using attention scores for the visual tokens from the144

last layer of the multimodal transformer model. Specifically, attention scores for the visual tokens are145

calculated with respects to the state token (i.e., the state token serves as the query and visual tokens146

serve as keys). [AM] Should we add an equation describing this? The scores are passed through a147

softmax function and treated as the probability of moving to that navigable viewpoint or stopping.148

Finally, the state history is maintained by using the output representation for the state token st´1 as149

the state token input at the next timestep (after a “refinement” procedure described in [15]).150

4 Approach151

One key limitation of VLNœ BERT is that it only uses high-level scene features, which might fail152

to encode specific object references such as “desk” or “two green chairs” (see Figure 1). Second,153

there is a mismatch between the pretraining and fine-tuning paradigm while training the model.154

OSCAR [17] is pre-trained on Conceptual Captions [31] using image region features from an object155

detector as input. However, during fine-tuning on the VLN dataset, VLNœ BERT simply feeds156

high-level scene features as input and hopes that the model can adapt to the new feature distribution.157

To overcome these two limitations, we present a unified multi-modal transformer model which uses158

both scene and object features as shown in Figure 2. Interestingly, we find that simply adding objects159

as additional inputs in VLNœ BERT does not help. To address this challenge, we propose a selective160

attention mechanism that only refines a subset of the input tokens. This in turn shifts the processing161

in our model closer to the base model (i.e., OSCAR [17]) used for vision-and-language pretraining.162

4.1 Input Tokens163

Our approach expands the set of input tokens used in VLNœ BERT to include visual tokens for164

object features.1 Specifically, we use object features from the Faster R-CNN detector described165

in Section 3.2. Similar to the filtering done on scene features, only object features corresponding with166

navigable viewpoints are retained to form the set of object tokens Gt. Unlike scene tokens F t, each167

1[AM] Add a note about how VLNœ BERT using object features.

4



Dummy Approach Label

Figure 2: Dummy Approach caption

navigable viewpoint may include zero or more object tokens (based on the outputs from the object168

detector). Thus, we modify the VLNœ BERT approach for calculating action probabilities (discussed169

in Section 4.3). At each timestep, inputs to the multimodal transformer consists of four sets of tokens:170

the previous state st´1, encoded instruction X , scene tokens F t, and object tokens Gt.171

4.2 Selective Object Attention172

In initial experiments (detailed in Section 5) we found that simply adding object tokens to the173

set of inputs used by VLNœ BERT did not improve performance. We hypothesize that scene174

tokens dominate the VLN training, which does not allow the model to properly learn how to use175

object features. To mitigate this issue, we modify the attention pattern used within the multimodal176

transformer as illustrated in Figure 2. With our attention pattern, both the language I and scene F t177

tokens only serve as keys (and values) during the attention-based processing, while the state token st178

and object tokens Gt operate as queries, keys and values (which is standard in transformer models).179

Intuitively, this attention pattern focuses processing on the object tokens, while allowing the scene180

tokens to providing high-level contextual information to support this object-level processing. Ad-181

ditionally, the scene tokens are still used for action prediction (see section 4.3), which provides the182

model with flexibility in using both sources of information. We hypothesize that this design leads183

to more effective transfer learning (demonstrated in Section 5), because the object-level processing184

more closely matches the pretraining setup, in which the model only receives language and object185

tokens as input.186

4.3 Action Prediction187

Recall that in VLNœ BERT actions are selected using attention scores over the scene tokens F t188

(see Section 3.4), which correspond to each of the navigable viewpoints and the stop action. These189

attention scores are also used to update the state token (as described in [15]), so all of the values (not190

just the maximum) are used by the model. In our approach attention scores are also available for191

object tokens Gt that correspond to image regions pointing towards each of the navigable viewpoints.192

However, it is not immediately evident how the scene and object attention scores should be combined.193

Through initial experiments, we discovered that aggregating attention scores for each viewpoint194

by selecting the maximum over the scene and object scores yielded the best results. Intuitively,195

this approach allows the model to either select a relevant object (which may be mentioned in the196

instructions such as “green chairs”) or the full scene (which might match scene descriptions such197

as “hallway”) to represent each navigable viewpoint. Accordingly, the model is able to select actions198

using features that match both types of visual cues.199

[AM] We tried many alternatives here, should we provide some examples?200
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Table 1: R2R and RxR val-unseen results. : indicates reproduced results.

R2R RxR

Methods TL NE Ó SR Ò SPL Ò NE Ó SR Ò SDTW Ò NDTW Ò

1 Random 9.77 9.23 16 - 9.5 5.1 3.8 27.6
2 Human - - - - 1.32 90.4 74.3 77.7

3 RxR baseline[2] - - 37 32 10.1 25.6 20.3 41.3
4 EnvDrop [8] 10.70 5.22 52 48 - - - -
5 PREVALENT [12] 10.19 4.71 58 53 - - - -
6 VLNœ BERT [15] (init. OSCAR) 11.86 4.29 59 53 - - - -
7 VLNœ BERT [15] (init. PREVALENT) 12.01 3.93 63 57 - - - -

8 VLNœ BERT [15] : 12.16 4.40 58 51 7.31 40.5 50.8 65.9
9 Ours 12.15 4.28 59 53 6.72 44.2 54.6 67.8

5 Experiments201

5.1 Training and Evaluation202

Datasets. We initialize our model with a pre-trained OSCAR model [17] for training. We evaluate our203

method on R2R [1] and RxR [2] datasets. R2R dataset contains 21,567 instruction-path pairs which204

are divided into four splits: training (14,025), val-seen (1,020), val-unseen (2,349) and test-unseen205

(4,173). Val-seen split uses environments from the training split but the instruction-path pairs are206

novel. Val-unseen and test-unseen tests the generalization capacity of agents on unseen environments207

with novel instruction-path pairs. For R2R, we also use augmented dataset generated from speaker208

model as done in prior works [8, 12, 15]. RxR [2] is a recently introduced multi-lingual VLN209

dataset. It contains total 126K instruction-path pairs in 3 languages (Hindi, English and Telugu) on210

the same 90 Matterport scenes which were used in R2R. Moreover, it contains English instructions211

from two regions: India (en-IN) and US (en-US). Since our model is pre-trained on Conceptual212

Captions dataset which is in English language, we just use English instructions (combining en-IN213

and en-US instructions) from RxR dataset for training and evaluation. Specifically, we use 26,464214

English instructions from RxR train split for training and test on 4,551 English instructions from RxR215

val-unseen split.216

Evaluation. We follow standard evaluation protocol for R2R and RxR datasets. On R2R, we report217

(Ò indicates higher is better and Ó indicates lower is better): Trajectory Length (TL), Navigation Error218

(NE Ó), Success Rate (SR Ò) and Success weighted by Path Length (SPL Ò). On RxR dataset, in219

addition to NE and SR metrics, we also report Normalized Dynamic Time Warping (NDTW Ò) and220

Success weighted by normalized Dynamic Time Warping (SDTW Ò) metrics which explicity measure221

path adherence. We refer the reader to [1, 32, 33] for a detailed explanation of these metrics.222

5.2 Implementation Details223

Our model has been implemented in PyTorch [34] on a single Nvidia TitanX GPU. For both R2R and224

RxR, we fine-tune our model with behaviour cloning and reinforcement learning objectives. Each225

minibatch consists of 50% rollouts from behaviour cloning and 50% from reinforcement learning226

(policy gradient). We train using a constant learning rate of 1e-5 with AdamW optimizer and batch227

size 16 for 300k iterations. We extract visual features for scene tokens with a pre-trained ResNet-152228

on Places [14] dataset. For object tokens, we extract object proposals from a pre-trained bottom-up229

attention model [27] and adopt filtering procedure from [16] to discard redundant proposals. We use230

the exact same hyperparameters for VLNœ BERT baseline and our approach in all the experiments.231

5.3 Results and Analysis232

How does our method compare to state-of-the-art methods? We compare our approach with233

the recently published state-of-the-art approaches in Table 1 on R2R [35] and RxR [2] val-unseen234

splits. EnvDrop [8] trains an encoder-decoder model [3] with mixture of imitation and reinforcement235

learning on augmented data (in addition to R2R training split) with back-translated instructions and236

"dropped out" environments in order to generalize well to unseen environments. PREVALENT [12]237
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Table 2: R2R test results. : indicates reproduced results.

R2R Test Unseen

Methods TL NE Ó SR Ò SPL Ò

1 Random 9.89 9.79 13 12
2 Human 11.85 1.61 86 76

3 EnvDrop [8] 11.66 5.23 51 47
4 PREVALENT [12] 10.51 5.30 54 51
5 VLNœ BERT [15] (init. OSCAR) 12.34 4.59 57 53
6 VLNœ BERT [15] (init. PREVALENT) 12.35 4.09 63 57

7 VLNœ BERT [15] : 12.78 4.55 58 52
8 Ours 12.26 4.49 58 53

Table 3: R2R Ablations.
Object Score Selective Val Seen Val Unseen

Models Features Aggregation Attention TL NE Ó SR Ò SPL Ò TL NE Ó SR Ò SPL Ò

1 Baseline [15] 11.02 3.11 69.93 65.65 12.16 4.40 57.90 51.43
2 X 11.05 2.89 71.69 67.22 12.25 4.35 57.26 50.96
3 X X 11.12 3.24 70.03 66.59 12.05 4.34 57.85 51.73
4 Ours X X X 11.81 3.63 62.78 58.01 12.15 4.28 58.71 53.24

builds on top of EnvDrop method by pre-training a multi-modal transformer model on back-translated238

augmented VLN data. After pre-training, PREVALENT method feeds contextual word embeddings239

from this pre-trained transformer model into EnvDrop [8] encoder-decoder model for fine-tuning on240

R2R dataset. VLNœ BERT extends PREVALENT by directly fine-tuning the pre-trained multi-modal241

transformer model for navigation instead of using an ensemble of encoder-decoder model and a242

multi-modal transformer.243

RxR is more challenging dataset than R2R since it contains much longer instructions and paths244

(which are often not shortest) with dense object and scene references. On RxR, our approach (row 6)245

outperforms the previous state-of-the-art RxR method (row 1) by 26.33% absolute on NDTW and246

19.03% absolute on Success Rate (SR) metrics. We also train and evaluate VLNœ BERT baseline on247

RxR dataset with the same hyperparameters as ours. Our unified approach VLN
Ť

BERT which uses248

both object and scene features for navigation also beats (only scene features) VLNœ BERT baseline249

(row 5) by 3.7% on SR, 3.8% on SDTW and 1.9% on NDTW metrics. Moreover, the gap between250

our approach (row 6) and VLNœ BERT baseline (row 5) is significantly increased in RxR than R2R251

which highlights that object features significantly help as you move to a larger dataset with dense252

instructions containing more entity references. On R2R, our approach (row 6) shows 1.81% gain in253

SPL over the reproduced VLNœ BERT baseline (row 5) and is also competitive with the published254

VLNœ BERT result.255

Table 2 reports results on R2R test-unseen split which again demonstrates that our method is256

competitive with the previous state-of-the-art approaches across all the metrics. For completeness,257

we also report VLNœ BERT with PREVALENT initialization in Table 1 (row 5) and Table 1 (row258

4) since it achieves state-of-the-art results on R2R. However, comparison with it is unfair since it is259

pre-trained and fine-tuned with high-level scene features on augmented VLN data which has much260

less domain gap between pre-training and fine-tuning than VLNœ BERT with OSCAR initialization261

(row 4) which is pre-trained on Conceptual Captions and fine-tuned on VLN data. However, the focus262

of our work is to show how we can effectively leverage pre-training on large-scale V&L data to boost263

performance on VLN task without any additional pre-training on VLN data. Pre-training on VLN264

data requires large number of instruction-path pairs which is very expensive collection process [1, 2].265

PREVALENT resort to using noisy augmented data generated by speaker model for pre-training266

which leads to improvements over OSCAR pre-training. We posit that this gap can be overcome by267

pre-training OSCAR [17] model on larger V&L data whose collection process is relatively much268

cheaper and scalable than VLN.269
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Dummy Qualitative Figure

Figure 3: Dummy caption

Learning curves. Figure 4 plots the learning curves for VLNœ BERT baseline and our method270

on RxR val-unseen split. [AB] Compare with human baseline on NDTW metric. Our model gives271

NDTW score 69 and human baseline is at 77.272

Do object features help just as additional input? In Table 3 (row 2), we show the results of an273

ablation experiment on val-seen and val-unseen split of R2R dataset in which we used object features274

just as additional input to VLNœ BERT baseline. In this ablation, all visual tokens (object and scene275

tokens) get refined via self-attention through multiple layers in the tranformer and we get action276

probabilities and next hidden state in the similar fashion as VLNœ BERT baseline [15]. We find out277

that adding object tokens as additonal input does not help in generalization – we see improvements278

by „2% in SPL and SR on val-seen but it is slightly worse than baseline on val-unseen by 0.64%279

on SR and 0.47% on SPL. Since additional detected object proposals are noisy, this experiment280

demonstrates that updating high-scene tokens from these object tokens introduces additional noise281

and causes overfitting. Moreover, during navigation, state token [CLS] gets updated from these282

updated scene tokens in experiment 2 which introduces more noise. In 3 (row 3), we fix this noise in283

[CLS] token by aggregating scores from objects and scenes for getting action probabilities and using284

corresponding token embeddings for updating state token [CLS]. Incorporating score aggregation285

(row 3) improves object features alation (row 2) SPL by 0.77% on val-unseen and reduces overfitting286

since it has lower gap between val-seen and val-unseen metrics.287

Do object features help without any pre-training? Table 4 reports results of VLNœ BERT base-288

line and our approach without V&L pre-training on R2R val-useen split. As evident from the Table 4,289

both the approaches perform similar across all the metrics. This further demonstrates that object290

grounding is crucial for our approach to work; our approach improves performance on RxR and291

R2R datasets compared to VLNœ BERT scene features baseline predominantly because it effectively292

utilizes the large-scale V&L pre-training.

Table 4: Results on R2R without V&L pre-training.

R2R Val Unseen

Models TL NE Ó SR Ò SPLÒ

1 VLNœ BERT [15] 10.31 5.21 49.21 45.53
2 Ours 12.00 4.99 50.36 44.69

293

How often does the model pick up objects rather than scenes for navigation?294
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Figure 4: NDTW learning curve comparing Recurrent VLN-BERT, our method and human baseline
on RxR val-unseen split.

6 Conclusion295
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A Appendix440

Table 5: Notation
Symbol Description

I Natural language navigation instruction
Ot “ tot,iu

Nt
i“1 Panoramic observation at time t for Nt navigable viewpoints

At “ tat,ku
Nt
i“0 Actions available at time t consisting of Nt navigable viewpoints and stop

θt,i Heading angle for view i at time t
φt,i Elevation angle for view i at time t
f t,i CNN scene features for view i at time t
gt,i,j Faster R-CNN features for region j in view i at time t
ppat,jq Probability of taking action at,k at time t
st Agent state at time t

441

Role of attention pattern on performance. [AB] TODO: Update this paragraph when all the442

experiments finish.443

Table 6: R2R attention ablations. [AB] TODO: Update numbers when experiments finish.
Val Seen Val Unseen

Models Input Tokens Query Tokens TL NE Ó SR Ò SPL Ò TL NE Ó SR Ò SPL Ò

1 Baseline [15] xs,X,V y xs,V y 11.02 3.11 69.93 65.65 12.16 4.40 57.90 51.43

2 Scene attention xs,X,V ,Oy xs,V y 11.12 3.24 70.03 66.59 12.05 4.34 57.85 51.73
3 All attention xs,X,V ,Oy xs,V ,Oy - - - - - - - -
4 Object attention xs,X,Oy xs,Oy - - - - - - - -
5 Ours xs,X,V ,Oy xs,Oy 11.81 3.63 62.78 58.01 12.15 4.28 58.71 53.24
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