Detecting Abrupt Changes in Sequential Pairwise Comparison Data

Anonymous Author(s) Affiliation Address email

Abstract

The Bradley-Terry-Luce (BTL) model is a classic and very popular statistical 1 approach for eliciting a global ranking among a collection of items using pairwise 2 comparison data. In applications in which the comparison outcomes are observed 3 as a time series, it is often the case that data are non-stationary, in the sense that 4 the true underlying ranking changes over time. In this paper we are concerned 5 with localizing the change points in a high-dimensional BTL model with piece-6 wise constant parameters. We propose novel and practicable algorithms based on 7 dynamic programming that can consistently estimate the unknown locations of 8 the change points. We provide consistency rates for our methodology that depend 9 explicitly on the model parameters, the temporal spacing between two consecutive 10 change points and the magnitude of the change. We corroborate our findings with 11 12 extensive numerical experiments and a real-life example.

13 1 Introduction

Pairwise comparison data are among the most common types of data collected for the purpose of 14 eliciting a global ranking among a collection of items or teams. The Bradley-Terry-Luce model 15 (Bradley and Terry, 1952; Luce, 1959) is a classical and popular parametric approach to model 16 pairwise comparison data and to obtain an estimate of the underlying ranking. The Bradley-Terry-17 Luce model and its variants have been proven to be powerful approaches in many applications, 18 including sports analytics (Fahrmeir and Tutz, 1994; Masarotto and Varin, 2012; Cattelan et al., 2013), 19 bibliometrics (Stigler, 1994; Varin et al., 2016), search analytics (Radlinski and Joachims, 2007; 20 Agresti, 2013), and much more. 21

To introduce the BTL model, suppose that we are interested in ranking n distinct items, each with a (fixed but unobserved) positive preference score w_i , $i \in [n]$, quantifying its propensity to beat other items in a pairwise comparison. The BTL model assumes that the outcomes of the comparisons between different pairs are independent Bernoulli random variables such that, for a given pair of items, say i and j in $[n] := \{1, \ldots, n\}$, the probability that i is preferred to (or beats) j is

$$P_{ij} = \mathbb{P}\left(i \text{ beats } j\right) = \frac{w_i^*}{w_i^* + w_j^*}, \,\forall \, i, j \in [n].$$

$$(1.1)$$

A common reparametrization is to set $w_i^* = \exp(\theta_i^*)$ for each i, where $\theta^* := (\theta_1^*, \dots, \theta_n^*)^\top \in \mathbb{R}^n$. To ensure identifiability it is further assumed that $\sum_{i \in [n]} \theta_i^* = 0$.

²⁹ The properties and performance of the BTL model have been thoroughly studied under the assumption

- 30 that the outcomes of all the pairwise comparisons are simultaneously available and follow the same
- 31 BTL model. In many applications however, it is very common to observe pairwise comparison data
- sequentially (i.e. one at a time), with time stamps over multiple time periods. In these cases, it is

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

1 INTRODUCTION

unrealistic to assume that observations with different time stamps come from the same distribution. 33 For instance, in sports analytics, the performance of teams often changes across match rounds, and 34 Fahrmeir and Tutz (1994) utilized a state-space generalization of the BTL model to analyze sport 35 tournaments data. Ranking analysis with temporal variants has also become increasingly important 36 because of the growing needs for models and methods to handle time-dependent data. A series of 37 results in this direction can be found in Glickman (1993), Glickman and Stern (1998), Cattelan et al. 38 (2013), Lopez et al. (2018), Maystre et al. (2019), Bong et al. (2020), Karlé and Tyagi (2021) and 39 references therein. Much of the aforementioned literature on time-varying BTL model postulates that 40 temporal changes in the model parameters are smooth functions of time and thus occur gradually on 41 a relatively large time scale. However, there are instances in which it may be desirable to instead 42 model abrupt changes in the underlying parameters and estimate the times at which such change has 43 occurred. These change point settings, which, to the best of our knowledge, have not been considered 44 in the literature, and are the focus of this paper. 45

46

47 Contributions

⁴⁸ We make the following methodological and theoretical contributions.

• Novel change point methodology. We develop a computationally efficient methodology to 49 consistently estimate the change points for a time-varying BTL model with piece-wise constant 50 parameters. Our baseline procedure Algorithm 1 consists of a penalized maximum likelihood 51 estimator of the BTL model under an ℓ_0 penalty, and can be efficiently implemented via dynamic 52 programming. We further propose a slightly more computationally expensive two-step procedure in 53 Algorithm 2 that takes as input the estimator returned by our baseline procedure and delivers a more 54 precise estimator with provably better error rates. We demonstrate through simulations and a real life 55 example the performance and practicality of the procedure we develop. 56

• Theoretical guarantees. We obtain finite sample error rates for our procedures that depend 57 explicitly on all the parameters at play: the dynamic range of the BTL model and the number of items 58 to be compared, the number of change points, the smallest distance between two consecutive change 59 points and the minimal magnitude of the difference between the model parameters at two consecutive 60 change points. Our results hold provided that a critical signal-to-noise ratio condition involving all 61 the relevant parameters is satisfied. We conjecture that this condition is optimal in an information 62 theoretic sense. Both the signal-to-noise ratio condition and the localization rates we obtain exhibit a 63 quadratic dependence on the number of items to be compared, which matches the sample complexity 64 bound for two sample testing for the BTL model recently derived by Rastogi et al. (2020). 65

We emphasize that the change point setting we consider have not been previously studied and both our methodology and the corresponding theoretical guarantees appear to be the first contribution of its kind in this line of work.

69

70 Related work

Change point detection is a classical problem in statistics that dates back to 1940s (Wald, 1945; Page, 71 1954). Contributions in the 1980s established asymptotic theory for change point detection methods 72 (Vostrikova, 1981; James et al., 1987; Yao and Au, 1989). Most of the classical literature studied the 73 74 univariate mean model. Recently with more advanced theoretical tools developed in modern statistics, more delicate analysis of change point detection came out in high-dimensional mean models (Jirak, 75 2015; Aston and Kirch, 2018; Wang and Samworth, 2018), covariance models (Aue et al., 2009; 76 Avanesov and Buzun, 2018; Wang et al., 2021b), high-dimensional regression models (Rinaldo et al., 77 2021; Wang et al., 2021c), network models (Wang et al., 2021a), and temporally-correlated times 78 series (Cho and Fryzlewicz, 2015; Preuss et al., 2015; Chen et al., 2021; Wang and Zhao, 2022). 79

Although change point detection has already been extensively studied in many different settings, little
 is known about the case of pairwise comparison data. Höhle (2010) numerically study the CUSUM
 method for online change point detection in logit models and BTL models without giving theoretical
 guarantees. We aim to fill the gap in the literature and propose a theoretically trackable approach that
 can optimally localize abrupt changes in the pairwise comparison data.

2 MODEL AND ASSUMPTIONS

2 Model and assumptions 85

Below we introduce the time-varying BTL model with piece-wise constant coefficients that we are 86 87 going to study and the sampling scheme for collecting pairwise comparison data over time.

We assume throughout that data are collected as a time series indexed by $t \in [T] := \{1, \ldots, T\}$ that, 88

at each time point t, a single pairwise comparison among a collection of n items is observed. The 89 distinct pair $(i_t, j_t) \in [n]^2$ of items to be compared at time t is randomly chosen from the n items, 90

independently over time. That is, 91

$$\mathbb{P}(i_t = i, j_t = j) = \frac{2}{n(n-1)}, \ \forall 1 \le i < j \le n.$$
(2.1)

For each t, let $y_t \in \{0,1\}$ denote the outcome of the comparison between i_t and j_t , where $y_t = 1$ 92

indicates that i_t beats j_t in the comparison. We assume that y_t follows the BTL model (1.1), i.e. 93

$$\mathbb{P}_{\boldsymbol{\theta}^{*}(t)}[y_{t}=1|(i_{t},j_{t})] = \frac{e^{\theta_{i_{t}}^{*}(t)}}{e^{\theta_{i_{t}}^{*}(t)} + e^{\theta_{j_{t}}^{*}(t)}},$$
(2.2)

where $\theta^*(t) = (\theta_1^*(t), \dots, \theta_n^*(t))$ is, a possibly time-varying, parameter that belongs to the set 94

$$\Theta_B := \{ \boldsymbol{\theta} \in \mathbb{R}^n : \mathbf{1}_n^\top \boldsymbol{\theta} = 0, \ \|\boldsymbol{\theta}\|_{\infty} \le B \},$$
(2.3)

for some B > 0. In the recent literature on the BTL model, the parameter B is referred to as the 95

dynamic range (see, e.g., Chen et al., 2019) which readily implies a bound on the smallest possible 96

probability that an item is beaten by any other item. Indeed, it follows from (2.2) and (2.3) that 97

$$\min_{t \in [T], i, j \in [n]} P_{ij}(t) \ge e^{-2B} / (1 + e^{-2B}) := p_{lb} > 0.$$
(2.4)

Remark 1. The quantity p_{lb} have appeared in several equivalent forms in the BTL literature, e.g., $\max_{i,j\in[n]} \frac{w_i^*}{w_i^*}$ (Simons and Yao, 1999; Negahban et al., 2017) and e^{2B} (Li et al., 2022). The minimal 98 99 winning probability p_{lb} can quantify the difficulty in estimating the model parameters, with a small 100 p_{lb} implying that some items are systematically better than others, a fact that is known to lead to 101 non-existence of the MLE (see, e.g. Ford, 1957) and to hinder parameter estimability. In the BTL 102 literature the dynamic range B and, as a result, the quantity p_{lb} are often treated as known constants 103 and thus omitted (Shah et al., 2016; Chen et al., 2020), a strong assumption that results in an implicit 104 105 regularization but potentially hides an important feature of the model. As argued in Bong and Rinaldo (2022), in high-dimensional settings this may not be realistic. We will allow for the possibility of a 106 varying B and p_{lb} , and keep track of the effect of these parameters on our consistency rates. 107

It is convenient to rewrite (2.2) in a different but equivalent form that is reminiscent of logistic 108 regression and will facilitate our analysis. One can express the fact that, at time t, the items i_t and j_t 109 are randomly selected to be compared using a random n-dimensional vector $\mathbf{x}(t)$ that is uniformly 110 drawn from the sets of all vectors in $\{-1, 0, 1\}^n$ with exactly two-non-zero entries of opposite sign, 111 112

namely $x_{i_t}(t) = 1$ and $x_{j_t}(t) = -1$. Then equation (2.2) can be written as

$$\mathbb{P}_{\boldsymbol{\theta}^{*}(t)}[y_{t}=1|\mathbf{x}(t)]=\psi\left(\mathbf{x}(t)^{\top}\boldsymbol{\theta}^{*}(t)\right),$$
(2.5)

where $\psi(x) = \frac{1}{1+e^{-x}}$ is the sigmoid function. For any time interval $\mathcal{I} \subset [T]$ we then assume that 113 the data take the form of an i.i.d. sequence $\{(\mathbf{x}(t), y_t)\}_{t \in \mathcal{I}}$, where each $\mathbf{x}(t)$ is an i.i.d. draw from 114 $\{-1, 0, 1\}^n$ with aforementioned properties and, conditionally on $\mathbf{x}(t), y_t$ is a Bernoulli random 115 variable with success probability (2.2). The negative log-likelihood of the data is then given by 116

$$L(\boldsymbol{\theta}, \mathcal{I}) = \sum_{t \in \mathcal{I}} \ell_t(\boldsymbol{\theta}), \text{ where } \ell_t(\boldsymbol{\theta}) \coloneqq \ell(\boldsymbol{\theta}; y_t, \mathbf{x}(t)) = -y_t \mathbf{x}(t)^\top \boldsymbol{\theta} + \log[1 + \exp(\mathbf{x}(t)^\top \boldsymbol{\theta})].$$
(2.6)

For a time interval \mathcal{I} , we can define a random *comparison graph* $\mathcal{G}(V, E)$ with vertex set V := [n]117 and edge set $E := \{(i, j) : i \text{ and } j \text{ are compared } \}$. It is well-known that the topology of $\mathcal{G}(V, E)$ 118 plays an important role in the estimation of BTL parameters (Shah et al., 2016). Under assumption 119 (2.1), the comparison graph over \mathcal{I} follows the random graph model $G(n, |\mathcal{I}|)$, which has $|\mathcal{I}|$ edges 120 randomly picked from the full edge set $E_{\text{full}} := \{(i, j) : 1 \leq i < j \leq n\}$ with replacement. 121 Therefore, the process $\{(\mathbf{x}(t), y_t)\}_{t \in \mathcal{I}}$ is stationary as long as $\theta^*(t)$ is unchanged over \mathcal{I} . 122

3 MAIN RESULTS

In the change point BTL model we assume that, for some unknown integer $K \ge 1$, there exist K + 2points $\{\eta_k\}_{k=0}^{K+1}$ such that $1 = \eta_0 < \eta_1 < \cdots < \eta_K < \eta_{K+1} = T$ and $\theta^*(t) \neq \theta^*(t-1)$ whenever $t \in \{\eta_k\}_{k \in [K]}$. Define the *minimal spacing* Δ between consecutive change points and the *minimal jump size* κ as

$$\Delta = \min_{k \in [K+1]} (\eta_k - \eta_{k-1}), \quad \kappa = \min_{k \in [K+1]} \| \boldsymbol{\theta}^*(\eta_k) - \boldsymbol{\theta}^*(\eta_{k-1}) \|_2.$$
(2.7)

As we mentioned in the introduction, the goal of change point localization is to produce an estimator of the change points $\{\hat{\eta}_k\}_{k \in [\hat{K}]}$ such that, with high-probability as $T \to \infty$, we recover the correct number of change points and the localization error is a vanishing fraction of the minimal distance between change points, i.e. that

$$\hat{K} = K$$
, and $\max_{k \in [K]} |\hat{\eta}_k - \eta_k| / \Delta = o(1).$ (2.8)

In change point literature, estimators satisfying the above conditions are called *consistent*. In the next
 section we will present two change point estimators and prove their consistency.

133 3 Main results

To estimate the change points, we solve the following regularized maximum likelihood problem over all possible partitions \mathcal{P} of the time course [T]:

$$\hat{\mathcal{P}} = \operatorname*{arg\,min}_{\mathcal{P}} \left\{ \sum_{\mathcal{I} \in \mathcal{P}} L(\hat{\boldsymbol{\theta}}(\mathcal{I}), \mathcal{I}) + \gamma |\mathcal{P}| \right\}, \quad \hat{\boldsymbol{\theta}}(\mathcal{I}) = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \Theta_B} L(\boldsymbol{\theta}, \mathcal{I}), \tag{3.1}$$

where $L(\theta, \mathcal{I})$ is the negative log-likelihood function for the BTL model defined in (2.6) and $\gamma > 0$ is an user-specified tuning parameter. Here a partition \mathcal{P} is defined as a set of integer intervals:

$$\mathcal{P} = \{ [1, p_1), [p_1, p_2), \dots, [p_{K_{\mathcal{P}}}, T] \}, 1 < p_1 < p_2 < \dots < p_{K_{\mathcal{P}}} < T.$$
(3.2)

With $\tilde{K} = K_{\hat{\mathcal{P}}} = |\hat{\mathcal{P}}| - 1$, the estimated change points $\{\tilde{\eta}_k\}_{k \in \tilde{K}}$ are then induced by $\tilde{\eta}_k = \hat{p}_k$, $k \in [\tilde{K}]$. The optimization problem (3.1) has an ℓ_0 -penalty, and can be solved by a dynamic programming algorithm described in Algorithm 1 with $O(T^2\mathcal{C}(T))$ complexity (Friedrich et al., 2008; Rinaldo et al., 2021), where $\mathcal{C}(T)$ is the complexity of solving $\min_{\theta} L(\theta, [1, T])$.

In this section, we will demonstrate that the estimator returned by Algorithm 1 is consistent. Towards that goal, we require the following signal-to-noise ratio condition involving the parameters Δ , κ and B, n and the sample size T.

Assumption 3.1 (Signal-to-noise ratio). Let $\{(\mathbf{x}(t), y_t)\}_{t \in [T]}$ be i.i.d. observations generated from model (2.1) and (2.5) with parameters $\{\boldsymbol{\theta}^*(t)\} \subset \Theta_B$ defined in (2.3). We assume that for a diverging sequence $\{\mathcal{B}_T\}_{T \in \mathbb{Z}^+}$,

$$\Delta \cdot \kappa^2 \ge \mathcal{B}_T p_{lb}^{-4} K n^2 \log(Tn), \tag{3.3}$$

148 where we recall that $p_{lb} := \frac{e^{-2B}}{1+e^{-2B}}$.

The formulation of signal-to-noise ratio conditions involving all the parameters of the model has 149 become a staple of modern change point analysis literature. To provide some intuition, the term 150 $\Delta \kappa^2$ is a proxy for the strength of the signal of change points in the sense that the localization and 151 detection problems are expected to become easier, as the magnitude of the jumps and the spacing 152 between change points increase. On the other hand, the right hand side of Equation (3.3) collects 153 terms that impact negatively the difficulty of the problem: the smaller the minimal win probability p_{lb} , 154 the larger the number of items n to compare and the number of change points K, the more difficult it 155 is to estimate the change points. 156

Remark 2 (On the sharpness of the signal-to-noise ratio condition). We will now argue that the requirement (3.1) imposed by the signal-to-noise ratio (SNR for brevity) is reasonably sharp by relating it to the sample complexity of a two-sample testing problem. To that effect, consider the simplified setting in which there is only one change point at time $\Delta = T/2$. In this case, it can be shown that the SNR condition (3.1) becomes (see Proposition B.5)

$$\Delta \cdot \kappa^2 \ge \mathcal{B}_T p_{lb}^{-2} n^2 \log(Tn), \tag{3.4}$$

3 MAIN RESULTS

i.e. the dependence on the dynamic range B is through p_{lb}^{-2} instead of p_{lb}^{-4} . It stands to reason that estimating the unknown change point Δ should be at least as hard as testing the null hypothesis that there exists a change point at time Δ . Indeed, this testing problem should be easier because Δ has been revealed and because, in general, testing is easier than estimation. This can in turn be cast as a two-sample testing problem of the form

$$H_0: \mathbf{P}(\boldsymbol{\theta}^{(1)}) = \mathbf{P}(\boldsymbol{\theta}^{(2)}) \text{ v.s. } H_1: \frac{1}{n} \| \mathbf{P}(\boldsymbol{\theta}^{(1)}) - \mathbf{P}(\boldsymbol{\theta}^{(2)}) \|_F \ge \epsilon,$$
(3.5)

where $\epsilon > 0$ is to be specified, $\theta^{(1)}$ and $\theta^{(2)}$ are the BTL model parameters for the first and the last Δ observations respectively and, for $i \in \{1, 2\}$, $\mathbf{P}(\theta^{(i)})$ is the $n \times n$ matrix of winning probabilities corresponding to the BTL model parameter $\theta^{(i)}$ as specified by (2.2). To see how one arrives at (3.5), we have that, by Proposition B.4,

$$\|\mathbf{P}(\boldsymbol{\theta}^{(1)}) - \mathbf{P}(\boldsymbol{\theta}^{(2)})\|_{F}^{2} \ge \frac{np_{lb}^{2}}{16} \|\boldsymbol{\theta}^{(1)} - \boldsymbol{\theta}^{(2)}\|_{2}^{2}.$$
(3.6)

Thus, a change point setting with $\|\boldsymbol{\theta}^{(1)} - \boldsymbol{\theta}^{(2)}\|_2^2 = \kappa^2$, translates into the testing problem (3.5) with $\epsilon^2 = \kappa^2 p_{lb}^2/(16n)$. By Theorem 7 of Rastogi et al. (2020), there exists an algorithm that will 171 172 return a consistent test for (3.5) based on two independent samples of size N if $N \ge cn^2 \log(n) \frac{1}{n\epsilon^2}$. 173 When we apply this result to the simplified change point settings described above (by replacing 174 N and ϵ^2 with Δ and $\kappa^2 p_{lb}^2/(16n)$ respectively) we conclude that the sample complexity bound of 175 Theorem 7 of Rastogi et al. (2020) corresponds, up to constants, to the above SNR condition (3.4) 176 save for the terms $\log(T)$ and \mathcal{B}_T . Thus, we conclude that the assumed SNR condition for change 177 point localization is essentially equivalent to the sample complexity needed to tackle the simpler 178 two-sample testing problem, an indication that our assumption is sharp. 179

Finally, we take notice that, when there are multiple change points, in our analysis it appears necessary to strengthen the signal-to-noise ratio condition (3.4) to (3.1) by requiring a dependence on p_{lb}^{-4} .

182 We are now ready to present our first consistency result.

Theorem 3.2. Let $\{\tilde{\eta}_k\}_{k \in [\tilde{K}]}$ be the estimates of change points from Algorithm 1 with the tuning parameter $\gamma = C_{\gamma} p_{lb}^{-2} (K+1) n \log(Tn)$ where C_{γ} is a universal constant. Under Assumption 3.1 we have

$$\mathbb{P}\left\{\tilde{K}=K, \quad \max_{k\in[K]} |\tilde{\eta}_k - \eta_k| \le C_P p_{lb}^{-4} \frac{Kn^2}{\kappa^2} \log(Tn)\right\} \ge 1 - 2(Tn)^{-2}, \tag{3.7}$$

where $C_P > 0$ is a universal constant that depends on C_{γ} .

Theorem 3.2 gives a high-probability upper bound for the localization error of the output $\{\tilde{\eta}_k\}_{k \in [\tilde{K}]}$ of Algorithm 1. By Assumption 3.1, it follows that as $T \to \infty$, with high probability,

$$\max_{k \in [K]} |\tilde{\eta}_k - \eta_k| \le C_P p_{lb}^{-4} \frac{K n^2}{\kappa^2} \log(Tn) \le C_P \frac{\Delta}{\mathcal{B}_T} = o(\Delta), \tag{3.8}$$

where we use the singal-to-noise ratio assumption $\Delta \cdot \kappa^2 \ge \mathcal{B}_T p_{lb}^{-4} K n^2 \log(Tn)$ in the last inequality and the fact that \mathcal{B}_T diverges in the final step. This implies that the estimators $\{\tilde{\eta}_k\}_{k \in [\tilde{K}]}$ are consistent. Moreover, when K = 0 or there is no change point, it is guaranteed that with high probability, Algorithm 1 will return an empty set. We summarize this property as Proposition B.6 and include it in Appendix B.2 due to the limit of space.

Inspired by previous works (Wang et al., 2021a; Rinaldo et al., 2021), we can further improve the 194 localization error by applying a local refinement procedure as described in Algorithm 2 to $\{\tilde{\eta}_k\}_{k \in [\tilde{K}]}$. 195 This methodology takes as input any preliminary estimator of the change points that estimates the 196 number of change points correctly with a localization error that is a (not necessarily vanishing) 197 fraction of the minimal spacing Δ , and returns a new estimator with a provably smaller localization 198 error. A natural preliminary estimator is the one returned in Algorithm 1. The next result derives the 199 improved localization rates delivered by the local refinement step. The two improvements are the 200 elimination of the term K in the rate and a better dependence on p_{lb} . 201

Algorithm 1: Dynamic Programming. DP $(\{(\mathbf{x}(t), y_t)\}_{t \in [T]}, \gamma)$

INPUT: Data $\{(\mathbf{x}(t), y_t)\}_{t \in [T]}$, tuning parameter γ . Set $S = \emptyset$, $\mathfrak{p} = -\mathbf{1}_T$, $\mathbf{b} = (\gamma, \infty, \dots, \infty) \in \mathbb{R}^T$. Denote b_i to be the *i*-th entry of \mathbf{b} . for r in $\{2, \dots, T\}$ do for l in $\{1, \dots, r-1\}$ do $b \leftarrow b_l + \gamma + L(\hat{\theta}(\mathcal{I}), \mathcal{I})$ where $\mathcal{I} = (l, \dots, r]$; if $b < b_r$ then $\lfloor b_r \leftarrow b; \mathfrak{p}_r \leftarrow l$. To compute the change point estimates from $\mathfrak{p} \in \mathbb{N}^T$, $k \leftarrow T$.

while k > 1 do $[h \leftarrow \mathfrak{p}_k; S = S \cup h; k \leftarrow h.$ OUTPUT: The estimated change points $S = {\tilde{\eta}_k}_{k \in \tilde{K}}$.

Algorithm 2: Local Refinement.

INPUT: Data $\{(\mathbf{x}(t), y_t)\}_{t \in [T]}, \{\widetilde{\eta}_k\}_{k \in [\widetilde{K}]}, (\widetilde{\eta}_0, \widetilde{\eta}_{\widetilde{K}+1}) \leftarrow (1, T).$ for $k = 1, \ldots, \widetilde{K}$ do

$$(s_k, e_k) \leftarrow (2\widetilde{\eta}_{k-1}/3 + \widetilde{\eta}_k/3, \ \widetilde{\eta}_k/3 + 2\widetilde{\eta}_{k+1}/3);$$
$$\hat{\eta}_k \leftarrow \operatorname*{arg\,min}_{\eta \in \{s_k+1, \dots, e_k-1\}} \left\{ \min_{\boldsymbol{\theta}^{(1)} \in \Theta_B} \sum_{t=s_k+1}^{\eta} \ell_t(\boldsymbol{\theta}^{(1)}) + \min_{\boldsymbol{\theta}^{(2)} \in \Theta_B} \sum_{t=\eta+1}^{e_k} \ell_t(\boldsymbol{\theta}^{(2)}) \right\}; (3.9)$$

OUTPUT: $\{\hat{\eta}_k\}_{k \in [\widetilde{K}]}$.

Theorem 3.3. Let $\{\hat{\eta}_k\}_{k \in [\hat{K}]}$ be the output of Algorithm 2 with input $\{\tilde{\eta}_k\}_{k \in [\hat{K}]}$ returned by Algorithm 1. Under Assumption 3.1, for all sufficiently large T we have

$$\mathbb{P}\left\{\hat{K}=K, \quad \max_{k\in[K]} |\hat{\eta}_k - \eta_k| \le C_P p_{lb}^{-2} \frac{n^2}{\kappa^2} \log(Tn)\right\} \ge 1 - 2(Tn)^{-2}, \tag{3.10}$$

where $C_P > 0$ is a universal constant that depends on C_{γ} .

Remark 3. By "sufficiently large T" in the theorem statement, we mean that T should be large enough to make $\max_{k \in [K]} |\hat{\eta}_k - \eta_k| \le \Delta/5$ (see Proposition B.3 in Appendix B for details). Such Texists because of Equation (3.8) and the fact that \mathcal{B}_T is diverging in T.

We conjecture that the rate (3.10) resulting from the local refinement procedure is, aside possibly from a logarithmic factor, minimax optimal.

210 4 Experiments

In this section, we study the numerical performance of our newly proposed method based on a 211 combination of dynamic programming with local refinement, which we will refer to as DPLR; see 212 Algorithms 1 and 2. We note that the detection of multiple change points in pairwise comparison data 213 has not been studied before, as Höhle (2010) only focus on single change point detection for pairwise 214 comparison data, so we are not aware of any existing competing methods in the literature. Thus, 215 we develop a potential competitor based on the combination of *Wild Binary Segmentation* (WBS) 216 (Fryzlewicz, 2014), a popular method for univariate change point detection, and the likelihood ratio 217 approach studied in Höhle (2010). We will call this potential competitor WBS-GLR (GLR stands 218 for generalized likelihood ratio). Due to the limit of space, we include the detail of WBS-GLR in 219 Appendix A.1, and results of additional experiments in Appendix A.2. 220

All of our simulation results show that our proposed method DPLR outperforms WBS-GLR in the sense that DPLR gives more accurate change point estimates with similar running time. Each

4 EXPERIMENTS

experiment is run on a virtual machine of Google Colab with Intel(R) Xeon(R) CPU of 2 cores 2.30 GHz and 12GB RAM. All of our reproducible code is openly accessible ¹.

Simulation Settings. Suppose we have K change points $\{\eta_k\}_{k\in[K]}$ in the sequential pairwise comparison data, with $\eta_0 = 1$. We can use $\theta^*(\eta_k)$ to represent the value of true parameters after the change point η_k . To begin, we define $\theta_i^*(\eta_0)$ as follows. For $1 < i \le n$, we set $\theta_i^*(\eta_0) =$ $\theta_1^*(\eta_0) + (i-1)\delta$ with some constant δ . In each experiment, we set δ first and then set $\theta_1^*(\eta_0)$ to make $\mathbf{1}_n^{\mathsf{T}} \theta^*(\eta_0) = 0$. For a given n, we set $\delta = \frac{1}{n-1}\psi^{-1}(p) = \frac{1}{n-1}\log(\frac{p}{1-p})$ where ψ^{-1} is the inverse function of ψ and p = 0.9. Recall that $P_{ij} = \psi(\theta_i - \theta_j)$ is the winning probability, so the value of δ guarantees that the maximum winning probability is 0.9. We consider three types of changes:

232 Type I (reverse): $\theta_i^*(\eta_k) = \theta_{n+1-i}^*(\eta_0)$.

233 Type II (block-reverse): $\theta_i^*(\eta_k) = \theta_{\lceil \frac{n}{2} \rceil + 1 - i}^*(\eta_0)$ for $i \le \lceil \frac{n}{2} \rceil$; $\theta_i^*(\eta_k) = \theta_{\lceil \frac{n}{2} \rceil + n + 1 - i}^*(\eta_0)$ for $i > \lceil \frac{n}{2} \rceil$.

Type III (block exchange): $\theta_i^*(\eta_k) = \theta_{i+\lceil \frac{n}{2} \rceil}^*(\eta_0)$ for $i \leq \lceil \frac{n}{2} \rceil$; $\theta_i^*(\eta_k) = \theta_{i-\lceil \frac{n}{2} \rceil}^*(\eta_0)$ for $i > \lceil \frac{n}{2} \rceil$.

We consider four simulation settings. For each setting, we have $T = (K + 1)\Delta$ and the change points locate at $\eta_i = i\Delta$ for $i \in [K]$. To describe the true parameter at each change point, we use an ordered tuple. For instance, (I, II, III, I) means that K = 4 and the true parameters at $\eta_1, \eta_2, \eta_3, \eta_4$ are determined based on $\theta^*(\eta_0)$ and the change type I, II, III, and I, respectively.

are determined based on $\theta'(\eta_0)$ and the change type 1, 11, 111, and 1, respect

	$H(\hat{\eta},\eta)$	Time	$\hat{K} < K$	$\hat{K} = K$	$\hat{K} > K$	
	Setting (i) $n = 10, K = 3, \Delta = 500$, Change (I, II, III)					
DPLR	9.2 (9.1)	49.7s (0.7)	0	100	0	
WBS-GLR	15.2 (7.9)	31.9s (3.9)	0	100	0	
	Setting (ii) n =	$= 20, K = 3, \Delta =$	800, Change	(I, II, III)		
DPLR	9.0 (9.9)	118.5s (2.2)	0	100	0	
WBS-GLR	240.5 (220.3)	144.2s (12.5)	0	40	60	
Setting (iii) $n = 100, K = 2, \Delta = 1000$, Change (I, II)						
DPLR	13.4 (14.4)	167.4s (3.3)	0	100	0	
WBS-GLR	111.9 (195.6)	215.9s (17.0)	0	79	21	
Setting (iv) $n = 100, K = 3, \Delta = 2000$, Change (I, II, III)						
DPLR	12.4 (12.1)	402.4s (7.4)	0	100	0	
WBS-GLR	412.3 (495.5)	400.0s (40.9)	0	57	43	

Table 1: Comparison of DPLR and WBS-GLR under four different simulation settings. 100 trials are conducted in each setting. For the localization error and running time (in seconds), the average over 100 trials is shown with standard error in the bracket. The three columns on the right record the number of trials in which $\hat{K} < K$, $\hat{K} = K$, and $\hat{K} > K$ respectively.

For the constrained MLE in Equation (3.1), we use the function in sklearn for fitting the ℓ_2 penalized logistic regression, as it is well-known that the constrained and the penalized estimators for generalized linear models are equivalent. For both DPLR and WBS-GLR, we use $\lambda = 0.1$. For M,

the number of random intervals in WBS-GLR, we set it to be 50 as a balance of time and accuracy.

For both methods, we use cross-validation to choose the tuning parameter γ . Given the sequential pairwise comparison data in each trial, we use samples with odd time indices as training data and even time indices as test data. For each tuning parameter, the method is applied to the training data to get estimates of change points. Then a BTL model is fitted to the test data for each interval determined by the estimated change points. The tuning parameter and the corresponding change point estimators with the minimal test error (negative loglikelihood) are selected. We run 100 trials for each setting.

Results. To measure the localization errors, we use the Hausdorff distance $H(\{\hat{\eta}_i\}_{i \in [\hat{K}]}, \{\eta_i\}_{i \in [K]})$ between the estimated change points $\{\hat{\eta}_i\}_{i \in [\hat{K}]}$ and the true change points $\{\eta_i\}_{i \in [K]}$. The Hausdorff distance $H(S_1, S_2)$ between two sets of scalars is defined as

$$H(S_1, S_2) = \max\{\sup_{x \in S_1} \inf_{y \in S_2} |x - y|, \sup_{y \in S_2} \inf_{x \in S_1} |x - y|\}.$$
(4.1)

¹Code repository: https://anonymous.4open.science/r/CPD_BT-4664

The results are summarized in Table 1, where we use $H(\hat{\eta}, \eta)$ to denote the localization error for brevity. As we can see, our proposed method DPLR gives more accurate localization with similar running time compared to the potential competitor WBS-GLR.

5 Application: the National Basketball Association games

Celtics 1.103 Bulls 0.9666 Spurs 0.8910 76ers 0.9851 Pistons 0.7696 Jazz 0.8618 Lakers 0.8714 Bucks 0.7828 Celtics 0.7304 Knicks 0.5628 Mavericks 0.5633 Lakers 0.0789 Bulls 0.6644 Suns 0.5628 Mavericks 0.5032 Suns 0.0636 Bucks 0.3147 Trail Blazers 0.4742 Jazz 0.3913 Suns 0.0611 Suns 0.3472 Cavaliers 0.4176 Timberwolves 0.3913 Spurs 0.0611 Suns 0.3472 Cavaliers 0.3751 Pacers 0.3165 Nets 0.0215 Rockets 0.3156 Magic 0.3093 Knicks 0.1002 Pistons -0.0252 76ers 0.2195 Lakers 0.2688 Suns 0.0721 Rockets 0.1950 Mavericks 0.1798 Hornets 0.2468 Suns <t< th=""></t<>	
Totos 11001 11001 11001 01001 01001 Sters 0.9811 Pistons 0.7696 Jazz 0.8618 Lakers 0.8714 Bucks 0.7828 Celtics 0.7304 Knicks 0.5028 Mavericks 0.5037 Nuggets 0.0789 Bulls 0.6647 Rockets 0.5032 Trail Blazers 0.4899 Suns 0.0636 Jazz 0.5179 Spurs 0.4742 Jazz 0.3914 Suns 0.0636 Jazz 0.5179 Spurs 0.4742 Jazz 0.3914 Suns 0.0611 Suns 0.3472 Cavaliers 0.3009 Hornets 0.1002 Pistons -0.0252 Rockets 0.1798 Hornets 0.2465 Pistons 0.0249 Jazz -0.2926 Knicks 0.1798 Hornets 0.2465 Pistons 0.0249 Jazz -0.2026 Knicks 0.0315 Nets -0.2122 Knicks -0.1420	
Bucks 0.7828 Celtics 0.7304 Knicks 0.5908 Kings 0.6813 Lakers 0.7779 Trail Blazers 0.6647 Rockets 0.5023 Trail Blazers 0.4899 Nuggets 0.0636 Jazz 0.5179 Spurs 0.4742 Jazz 0.3944 Suns 0.0636 Bucks 0.3474 Trail Blazers 0.4176 Timberwolves 0.3913 Spurs 0.0611 Suns 0.3472 Cavaliers 0.3751 Pacers 0.3165 Nets 0.0215 Rockets 0.3156 Magic 0.3009 Hornets 0.1002 Pistons -0.0252 76ers 0.2195 Lakers 0.2730 76ers 0.0993 Knicks -0.1333 Cavaliers 0.1885 Pacers 0.2688 Suns 0.0721 Rockets -0.1950 Mavericks 0.1798 Hornets 0.2465 Pistons -0.0245 Mavericks 0.1190 Warriors 0.0353	
Lakers 0.7779 Trail Blazers 0.6848 Suns 0.5628 Mavericks 0.5087 Nuggets 0.0789 Bulls 0.6647 Rockets 0.5032 Trail Blazers 0.4899 Trail Blazers 0.0636 Jazz 0.5179 Spurs 0.4176 Timberwolves 0.3943 Suns 0.0636 Bucks 0.3474 Trail Blazers 0.4176 Timberwolves 0.3913 Spurs 0.0611 Suns 0.3472 Cavaliers 0.3751 Pacers 0.3165 Nets 0.0215 Rockets 0.3156 Magic 0.3009 Hornets 0.1002 Pistons -0.0252 76ers 0.2195 Lakers 0.2730 76ers 0.0993 Knicks -0.133 Cavaliers 0.1885 Pacers 0.2688 Suns 0.0721 Rockets -0.1950 Mavericks 0.1885 Pacers 0.2228 Rockets -0.0146 Kings -0.3104 Warriors 0.0414 Pistons -0.2228 Rockets -0.1455 Warriors	
Nurgets 0.0789 Bulls 0.6647 Rockets 0.532 Trail Blazers 0.4899 Trail Blazers 0.0636 Jazz 0.5179 Spurs 0.4742 Jazz 0.3944 Suns 0.0636 Bucks 0.3474 Trail Blazers 0.47742 Jazz 0.3941 Spurs 0.0611 Suns 0.3472 Cavaliers 0.3751 Pacers 0.3165 Nets 0.0215 Rockets 0.3156 Magic 0.3009 Hornets 0.1002 Pistons -0.0252 76ers 0.2195 Lakers 0.2730 76ers 0.0293 Knicks -0.133 Cavaliers 0.1885 Pacers 0.2688 Suns 0.0721 Rockets -0.1950 Mavericks 0.0583 Heat 0.1445 Bucks -0.0146 Kings -0.3104 Warriors 0.0431 Pistons -0.2122 Knicks -0.1420 Bulls -0.3115 Nugets -0.0237 Celtics	
Trail Blazers 0.0036 Jazz 0.517 Notes 0.012 Jazz 0.3944 Suns 0.0636 Bucks 0.3474 Trail Blazers 0.4176 Timberwolves 0.3913 Spurs 0.0611 Suns 0.3472 Cavaliers 0.3751 Pacers 0.3043 Spurs 0.0611 Suns 0.3472 Cavaliers 0.3091 Hornets 0.1002 Pistons -0.0252 76ers 0.2195 Lakers 0.2730 76ers 0.0993 Knicks -0.1333 Cavaliers 0.1885 Pacers 0.2668 Suns 0.0721 Rockets -0.1950 Mavericks 0.1798 Hornets 0.2465 Pistons 0.0249 Jazz 0.2266 Knicks 0.0353 Heat 0.1445 Bucks -0.0146 Kings -0.3104 Warriors 0.0441 Pistons -0.2122 Knicks -0.1420 Bulls -0.3145 Nuggets -0.0237 Celtics -0.3288 Nets -0.2276 Pacers -0.5500	
Num Drakito 0.0636 Bucks 0.3474 Trail Blazers 0.4176 Timberwolves 0.3914 Spurs 0.0611 Suns 0.3472 Cavaliers 0.3751 Pacers 0.3165 Nets 0.0215 Rockets 0.3156 Magic 0.3009 Hornets 0.1002 Pistons -0.0252 76ers 0.2195 Lakers 0.2700 76ers 0.0993 Knicks -0.1333 Cavaliers 0.1885 Pacers 0.2688 Suns 0.0721 Rockets -0.1950 Mavericks 0.1798 Hornets 0.2465 Pistons 0.0249 Jazz -0.2926 Knicks 0.0583 Heat 0.1445 Bucks -0.0146 Kings -0.3104 Warriors 0.0035 Nets -0.2122 Knicks -0.1425 Bauers -0.3115 Nuggets -0.0237 Celtics -0.2288 Nets -0.2276 Pacers -0.5500 Kings -0.7006 <td< td=""></td<>	
Suns 0.0611 Suns 0.3471 Funder Stress 0.3175 Pacers 0.3165 Nets 0.0215 Rockets 0.3165 Magic 0.3009 Hornets 0.1002 Pistons -0.0252 76ers 0.2195 Lakers 0.2730 76ers 0.0993 Knicks -0.1333 Cavaliers 0.1885 Pacers 0.2688 Suns 0.0721 Rockets -0.1950 Mavericks 0.1798 Hornets 0.2465 Pistons 0.0249 Jazz -0.2926 Knicks 0.0583 Heat 0.1445 Bucks -0.0146 Kings -0.3104 Spurs 0.0035 Nets -0.2122 Knicks -0.1420 Bulls -0.3115 Nuggets -0.0237 Celtics -0.3288 Nets -0.2276 Pacers -0.5500 Kings -0.7788 Bucks -0.5644 Nagic -0.2885 Cavaliers -0.7711 Clippers -0.6570 Cavaliers<	
Nets 0.0215 Rockets 0.1315 Martino 0.1001 Neto Pistons -0.0252 76ers 0.2195 Lakers 0.3009 Hornets 0.1002 Pistons -0.0252 76ers 0.2195 Lakers 0.2730 76ers 0.0993 Knicks -0.1333 Cavaliers 0.1885 Pacers 0.2688 Suns 0.0721 Rockets -0.1950 Mavericks 0.1798 Hornets 0.2465 Pistons 0.0249 Jazz -0.2926 Knicks 0.0583 Heat 0.1445 Bucks -0.0146 Kings -0.3104 Warriors 0.0035 Nets -0.2122 Knicks -0.1420 Bulls -0.3115 Nuggets -0.0237 Celtics -0.3075 Heat -0.1455 Warriors -0.4330 Pacers -0.0237 Celtics -0.2388 Nets -0.2276 Pacers -0.500 Kings -0.7778 Bucks -0.5419	
Pistons -0.0252 76ers 0.2195 Lakers 0.2730 76ers 0.0093 Knicks -0.1333 Cavaliers 0.1885 Pacers 0.2688 Suns 0.0721 Rockets -0.1950 Mavericks 0.1798 Hornets 0.2465 Pistons 0.0249 Jazz -0.2926 Knicks 0.0583 Heat 0.1445 Bucks -0.0146 Kings -0.3104 Warriors 0.0431 Pistons -0.2028 Rockets -0.0525 Mavericks -0.3104 Spurs 0.0035 Nets -0.2122 Knicks -0.1420 Bulls -0.3115 Nuggets -0.0237 Celtics -0.3075 Heat -0.1455 Warriors -0.4430 Pacers -0.5419 Celtics -0.2276 Pacers -0.5430 Pacers -0.6443 Nets -0.7666 Clippers -0.5419 Celtics -0.2885 Cavaliers -0.7771 Clippers -0.5474	
Knicks -0.1333 Cavaliers 0.1885 Patters 0.2688 Suns 0.0721 Rockets -0.1950 Mavericks 0.1798 Hornets 0.2465 Pistons 0.0249 Jazz -0.2926 Knicks 0.0583 Heat 0.1445 Bucks -0.0146 Kings -0.3104 Warriors 0.0441 Pistons -0.2028 Rockets -0.0525 Mavericks -0.3104 Spurs 0.0035 Nets -0.2122 Knicks -0.1420 Bulls -0.3115 Nuggets -0.0237 Celtics -0.3075 Heat -0.1455 Warriors -0.4330 Pacers -0.0237 Celtics -0.3288 Nets -0.2276 Pacers -0.5500 Kings -0.7066 Kings -0.5419 Celtics -0.2885 Cavaliers -0.7771 Clippers -0.6660 Nuggets -0.6270 Clippers -0.6250 Hornets NA Timberwolves -0.9574 Timberwolves -0.6270 Clippers -0.6250 Clippers -0.6250	
Initial On 1950 Mavericks 0.1798 Hornets 0.2465 Pistons 0.0249 Jazz -0.2926 Knicks 0.0583 Heat 0.1445 Bucks -0.0146 Kings -0.3104 Warriors 0.0441 Pistons -0.2028 Rockets -0.0525 Mavericks -0.3104 Spurs 0.0035 Nets -0.2122 Knicks -0.1420 Bulls -0.3115 Nuggets -0.0237 Celtics -0.3075 Heat -0.1455 Warriors -0.4330 Pacers -0.0237 Celtics -0.3288 Nets -0.2276 Pacers -0.5500 Kings -0.7066 Clippers -0.4808 Magic -0.2650 Clippers -0.6443 Nets -0.7666 Clippers -0.5419 Celtics -0.8894 Heat NA Magic -0.9778 Bucks -0.6570 Cavaliers -0.6796 Magic NA Timberwolves -0.9874 76ers -0.8869 Warriors -0.3625 Suns 0.9559	
Jazz-0.2926Knicks0.0583Heat0.1445Bucks-0.0146Kings-0.3104Warriors0.0441Pistons-0.2028Rockets-0.0525Mavericks-0.3104Spurs0.0035Nets-0.2122Knicks-0.1420Bulls-0.3115Nuggets-0.0232Warriors-0.3075Heat-0.1455Warriors-0.4330Pacers-0.0237Celtics-0.3288Nets-0.2276Pacers-0.5500Kings-0.7066Kings-0.4808Magic-0.2650Clippers-0.6443Nets-0.7666Clippers-0.5419Celtics-0.2885Cavaliers-0.7771Clippers-0.7788Bucks-0.5864Nuggets-0.6250HornetsNAMagic-0.8969Nuggets-0.6570Cavaliers-0.6796MagicNAHeat-0.987476ers-0.8869Warriors-0.7362TimberwolvesNAHeat-0.987476ers-0.8869Warriors-1.3617Suns0.9559Celtics0.8699Spurs0.8653Spurs1.2728Mavericks0.9338Magic0.7741Bulls0.8292Clippers0.9909Pistons0.8120Cavaliers0.7466Nuggets0.5857Rockets0.6158Heat0.2713Spurs0.6270Lakers0.4922Trail Blazers0.501Rockets0.1803Mavericks	
Kings -0.3104 Warriors 0.0441 Pistons -0.2028 Rockets -0.01420 Mavericks -0.3104 Spurs 0.0035 Nets -0.2122 Knicks -0.1420 Bulls -0.3115 Nuggets -0.0232 Warriors -0.3075 Heat -0.1455 Warriors -0.4330 Pacers -0.0237 Celtics -0.3288 Nets -0.2276 Pacers -0.5400 Kings -0.7006 Kings -0.4808 Magic -0.2650 Clippers -0.6443 Nets -0.7066 Clippers -0.5419 Celtics -0.2885 Cavaliers -0.7771 Clippers -0.7788 Bucks -0.5644 Nuggets -0.4894 HeatNAMagic -0.8969 Nuggets -0.66770 Cavaliers -0.6796 MagicNATimberwolves -0.9554 Timberwolves -0.6770 Cavaliers -0.7362 HornetsNAHeat -0.9874 76ers -0.8869 Warriors -0.7362 TimberwolvesNAHornets -1.0418 Mavericks -1.1542 Bulls -1.1801 Suns 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728 Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909 Pistons 0.8120 Cavaliers 0.7666 Nuggets 0.5857 Rockets 0.6158 Heat 0.2713 Spurs 0.6270	
Mavericks -0.3104 Spurs 0.0035 Nets -0.2122 Knicks -0.1420 Bulls -0.3115 Nuggets -0.0232 Warriors -0.3075 Heat -0.1420 Bulls -0.3115 Nuggets -0.0237 Celtics -0.3288 Nets -0.2276 Pacers -0.5500 Kings -0.7006 Kings -0.4808 Magic -0.22650 Clippers -0.6443 Nets -0.7666 Clippers -0.5419 Celtics -0.2885 Cavaliers -0.7771 Clippers -0.7788 Bucks -0.5670 Cavaliers -0.6796 HeatNAMagic -0.99574 Timberwolves -0.6570 Cavaliers -0.6796 MagicNAHeat -0.9874 76ers -0.8869 Warriors -0.7362 TimberwolvesNAHornets -1.0418 Mavericks -1.1542 Bulls -1.1801 Suns 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728 Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909 Pistons 0.8120 Cavaliers 0.6270 Lakers 0.4922 Trail Blazers 0.5501 Rockets 0.1803 Mavericks 0.5666 Mayericks 0.4922 Trail Blazers 0.5501 Rockets 0.1803 Mavericks 0.5670 Lakers 0.4922 Trail Blazers 0.5501 Rockets 0.1803 Maveric	
Bulls -0.3115 Nuggets -0.0232 Warriors -0.3075 Heat -0.1455 Warriors -0.4330 Pacers -0.0237 Celtics -0.3075 Heat -0.1455 Pacers -0.5500 Kings -0.0237 Celtics -0.3288 Nets -0.2276 Pacers -0.5500 Kings -0.7066 Kings -0.4808 Magic -0.2650 Clippers -0.6443 Nets -0.7666 Clippers -0.5419 Celtics -0.2885 Cavaliers -0.7771 Clippers -0.7788 Bucks -0.570 Cavaliers -0.4894 Heat NA Magic -0.8969 Nuggets -0.6770 Cavaliers -0.6796 Magic NA Heat -0.9874 76ers -0.6869 Warriors -0.7362 Timberwolves NA Hornets -1.0418 Mavericks -1.1542 Bulls -1.1801 Suns 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728 Mavericks 0.9338	
Damb 0.04330 Pacers -0.0237 Celtics -0.3288 Netz -0.2276 Pacers -0.5500 Kings -0.7006 Kings -0.4808 Magic -0.2276 Clippers -0.6443 Nets -0.7666 Clippers -0.4808 Magic -0.2650 Cavaliers -0.7771 Clippers -0.7788 Bucks -0.5864 Nuggets -0.4894 Heat NA Magic -0.8969 Nuggets -0.6272 Clippers -0.6250 Hornets NA Timberwolves -0.9554 Timberwolves -0.6570 Cavaliers -0.6796 Magic NA Heat -0.9874 76ers -0.8869 Warriors -0.7362 Timberwolves NA Hornets -1.0418 Mavericks -1.1542 Bulls -1.1801 Suns 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728 Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909 Pistons 0.8120<	
MartinJohnsonHerricJohnsonHerricJohnsonHerricJohnsonPacers -0.5500 Kings -0.7066 Kings -0.4808 Magic -0.2650 Clippers -0.6443 Nets -0.7666 Clippers -0.5408 Magic -0.2885 Cavaliers -0.7771 Clippers -0.7788 Bucks -0.5864 Nuggets -0.4808 HeatNAMagic -0.8969 Nuggets -0.6272 Clippers -0.6250 HornetsNATimberwolves -0.9874 76ers -0.6570 Cavaliers -0.7362 MagicNAHeat -0.9874 76ers -0.8869 Warriors -0.7362 TimberwolvesNAHornets -1.0418 Mavericks -1.1542 Bulls -1.1801 S2004-S2006S2007-S2009S2010-S2012S2013-S2015Spurs 1.0532 Lakers 1.0097 Heat 0.9909 Warriors 1.3617 Suns 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728 Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909 Pistons 0.8120 Cavaliers 0.7466 Nuggets 0.5857 Rockets 0.6158 Heat 0.2713 Spurs 0.6270 Lakers 0.4922 Trail Blazers 0.5501 Rockets 0.1803 Mavericks 0.5666 Mavericks 0.4121 Mavericks 0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
HeatNAMagic -0.8969 Nuggets -0.6272 Clippers -0.6250 HornetsNATimberwolves -0.9554 Timberwolves -0.6272 Clippers -0.6250 MagicNAHeat -0.9874 76ers -0.6869 Warriors -0.7362 TimberwolvesNAHornets -1.0418 Mavericks -1.1542 Bulls -1.1801 S2004-S2006S2007-S2009S2010-S2012S2013-S2015Spurs 1.0532 Lakers 1.0097 Heat 0.9909 Warriors 1.3617 Suns 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728 Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909 Pistons 0.8120 Cavaliers 0.7466 Nuggets 0.5857 Rockets 0.6158 Heat 0.2713 Spurs 0.6270 Lakers 0.4922 Trail Blazers 0.5501 Rockets 0.1803 Mavericks 0.5686 Mavericks 0.4121 Mavericks 0.4197 Cavaliers 0.1510 Jazz 0.5169 Clippers 0.3413 Cavaliers 0.3872 Nuggets 0.1322 Nuggets 0.4146 Knicks 0.1990 Pacers 0.3202 Lakers 0.0166 Hornets 0.3593 Pacers 0.1233 Bulls 0.2104	
HeatInterIntegr 0.0505 Tuggets 0.0572 0.0572 0.0572 0.0572 0.0572 0.0572 0.0572 0.0572 0.0572 0.0572 0.0573 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.07362 TimberwolvesNAHornets -1.0418 Mavericks -1.1542 Bulls -1.1801 S2004-S2006S2007-S2009S2010-S2012S2013-S2015Spurs 1.0532 Lakers 1.0097 Heat 0.9909 Warriors 1.3617 Suns 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728 Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909 Pistons 0.8120 Cavaliers 0.7466 Nuggets 0.5857 Rockets 0.6158 Heat 0.2713 Spurs 0.6270 Lakers 0.4922 Trail Blazers 0.5501 Rockets 0.1803 Mavericks 0.5686 Mavericks 0.4121 Mavericks 0.4197 Cavaliers 0.1510 Jazz 0.5169 Clippers 0.3413 Cavaliers 0.3872 Nuggets 0.1322 Nuggets 0.4751 Celtics 0.2901 Heat 0.3212 Kings 0.0542 Suns 0.4146 Knicks 0.1990 Pacers 0.3202 Lakers 0.0166 <th< td=""></th<>	
Magic NA Heat -0.9874 76ers -0.8869 Warriors -0.7362 Timberwolves NA Hornets -1.0418 Mavericks -1.1542 Bulls -1.1801 S2004-S2006 S2007-S2009 S2010-S2012 S2013-S2015 Spurs 1.0532 Lakers 1.0097 Heat 0.9909 Warriors 1.3617 Suns 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728 Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909 Pistons 0.8120 Cavaliers 0.7466 Nuggets 0.5857 Rockets 0.6158 Heat 0.2713 Spurs 0.6270 Lakers 0.4922 Trail Blazers 0.5501 Rockets 0.1803 Mavericks 0.5686 Mavericks 0.4121 Mavericks 0.4197 Cavaliers 0.1510 Jazz 0.5169 Clippers 0.3413 Cavaliers 0.	
ImageInformInform 0.05011 Inform 0.05051 0.05050 0.05050 0.05050 TimberwolvesNAHornets -1.0418 Mavericks -1.1542 Bulls -1.1801 S2004-S2006S2007-S2009S2010-S2012S2013-S2015Spurs 1.0532 Lakers 1.0097 Heat 0.9909 Warriors 1.3617 Suns 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728 Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909 Pistons 0.8120 Cavaliers 0.7466 Nuggets 0.5857 Rockets 0.6158 Heat 0.2713 Spurs 0.6270 Lakers 0.4922 Trail Blazers 0.5501 Rockets 0.1803 Mavericks 0.5686 Mavericks 0.4121 Mavericks 0.4197 Cavaliers 0.1510 Jazz 0.5169 Clippers 0.3413 Cavaliers 0.3872 Nuggets 0.1322 Nuggets 0.4146 Knicks 0.1900 Pacers 0.3202 Lakers 0.0166 Hornets 0.3593 Pacers 0.1233 Bulls 0.2104	
Sinder workes First Provided First Provided <th first="" pr<="" td=""></th>	
Spurs 1.0532 Lakers 1.0097 Heat 0.9090 Warriors 1.3617 Suns 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728 Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909 Pistons 0.8120 Cavaliers 0.7466 Nuggets 0.5857 Rockets 0.6158 Heat 0.2713 Spurs 0.6270 Lakers 0.4922 Trail Blazers 0.5501 Rockets 0.1803 Mavericks 0.5686 Mavericks 0.4121 Mavericks 0.4197 Cavaliers 0.1510 Jazz 0.5169 Clippers 0.3413 Cavaliers 0.3872 Nuggets 0.1322 Nuggets 0.4751 Celtics 0.2901 Heat 0.3215 Kings 0.0542 Suns 0.4146 Knicks 0.1990 Pacers 0.3202 Lakers 0.0166 Hornets 0.3593 Pace	
Spins 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728 Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909 Pistons 0.8120 Cavaliers 0.7466 Nuggets 0.5857 Rockets 0.6158 Heat 0.2713 Spurs 0.6270 Lakers 0.4922 Trail Blazers 0.5501 Rockets 0.1803 Mavericks 0.5686 Mavericks 0.4121 Mavericks 0.4197 Cavaliers 0.1510 Jazz 0.5169 Clippers 0.3413 Cavaliers 0.3872 Nuggets 0.1322 Nuggets 0.4751 Celtics 0.2901 Heat 0.3215 Kings 0.0542 Suns 0.4146 Knicks 0.1990 Pacers 0.3202 Lakers 0.0166 Hornets 0.3593 Pacers 0.1233 Bulls 0.2104	
Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909 Pistons 0.8120 Cavaliers 0.7466 Nuggets 0.5857 Rockets 0.6158 Heat 0.2713 Spurs 0.6270 Lakers 0.4922 Trail Blazers 0.5501 Rockets 0.1803 Mavericks 0.5686 Mavericks 0.4121 Mavericks 0.4197 Cavaliers 0.1510 Jazz 0.5169 Clippers 0.3413 Cavaliers 0.3872 Nuggets 0.1322 Nuggets 0.4751 Celtics 0.2901 Heat 0.3215 Kings 0.0542 Suns 0.4146 Knicks 0.1990 Pacers 0.3202 Lakers 0.0166 Hornets 0.3593 Pacers 0.1233 Bulls 0.2104	
Pistons0.8120Cavaliers0.7466Nuggets0.5857Rockets0.6158Heat0.2713Spurs0.6270Lakers0.4922Trail Blazers0.5501Rockets0.1803Mavericks0.5686Mavericks0.4121Mavericks0.4197Cavaliers0.1510Jazz0.5169Clippers0.3413Cavaliers0.3872Nuggets0.1322Nuggets0.4751Celtics0.2901Heat0.3215Kings0.0542Suns0.4146Knicks0.1990Pacers0.3202Lakers0.0166Hornets0.3593Pacers0.1233Bulls0.2104Nugets0.2164Duble0.2142Duble0.21450.1237Heat0.2104	
Heat 0.2713 Spurs 0.6270 Lakers 0.4922 Trail Blazers 0.5017 Rockets 0.1803 Mavericks 0.6270 Lakers 0.4922 Trail Blazers 0.5501 Rockets 0.1803 Mavericks 0.5686 Mavericks 0.4121 Mavericks 0.4197 Cavaliers 0.1510 Jazz 0.5169 Clippers 0.3413 Cavaliers 0.3872 Nuggets 0.1322 Nuggets 0.4751 Celtics 0.2901 Heat 0.3215 Kings 0.0542 Suns 0.4146 Knicks 0.1990 Pacers 0.3202 Lakers 0.0166 Hornets 0.3593 Pacers 0.1233 Bulls 0.2104	
Rockets 0.1803 Mavericks 0.5686 Mavericks 0.4121 Mavericks 0.4197 Cavaliers 0.1510 Jazz 0.5169 Clippers 0.3413 Cavaliers 0.3872 Nuggets 0.1322 Nuggets 0.4751 Celtics 0.2901 Heat 0.3215 Kings 0.0542 Suns 0.4146 Knicks 0.1990 Pacers 0.3202 Lakers 0.0166 Hornets 0.3593 Pacers 0.1233 Bulls 0.2104	
Cavaliers 0.1510 Jazz 0.5169 Clippers 0.3413 Cavaliers 0.3872 Nuggets 0.1322 Nuggets 0.4751 Celtics 0.2901 Heat 0.3215 Kings 0.0542 Suns 0.4146 Knicks 0.1990 Pacers 0.3202 Lakers 0.0166 Hornets 0.3593 Pacers 0.1233 Bulls 0.2104	
Nuggets 0.1322 Nuggets 0.4751 Celtics 0.2901 Heat 0.3215 Kings 0.0542 Suns 0.4146 Knicks 0.1990 Pacers 0.3202 Lakers 0.0166 Hornets 0.3593 Pacers 0.1233 Bulls 0.2104	
Kings0.0542Suns0.4146Knicks0.1990Pacers0.3202Lakers0.0166Hornets0.3593Pacers0.1233Bulls0.2104	
Lakers0.0166Hornets0.3593Pacers0.1233Bulls0.2104Using the state of the state	
Nets -UUI49 Rockets U3428 Rockets U1227 Hornets ()()145	
Timbervolves -0.0566 Trail Blazers 0.2750 Jazz 0.0167 Pistons -0.1710	
Clippers -0.0646 Bulls -0.1260 Trail Blazers -0.0549 Suns -0.1787	
Bulls -0.0680 Pistons -0.1821 Magic -0.0899 Jazz -0.1936	
Parers -0.0824 Heat -0.2939 Warriors -0.1402 Celtics -0.2037	
Lazz - 0.1039 76ers -0.3418 76ers -0.1930 Nets -0.303	
Magic -0.2482 Warriors -0.3729 Bucks -0.2362 Nuggets -0.3140	
Warriors -0.2803 Pacers -0.3936 Suns -0.3202 Kings -0.4066	
Mathematical Sciences -0.3030 Bucks -0.5556 Mathematical Sciences -0.4589 Bucks -0.4516	
Celtics -0.5144 Kings -0.7977 Hornets -0.4670 Timberwolves -0.6266	
Hornets -0.5641 Knicks -0.8568 Timberwolves -0.6034 Magic -0.6398	
Rucks0.6555 Nets0.8935 Kings0.6909 Knicks0.6591	
$D_{\rm L}$ D_{\rm	
Knicks -0./101 Clippers -1.0853 Pistons -0.7807 Lakers -0.9431	

Table 2: Fitted $\hat{\theta}$ (rounded to the fourth decimal) for 24 selected teams in seasons 1980-2016 of the National Basketball Association. Teams are ranked by the MLE $\hat{\theta}$ on subsets splitted at the estimated change points given by our DPLR method. S1980 means season 1980-1981 and S1991m means the middle of season 1991-1992. Heat(1988), Hornets(1988), Magic(1989), and Timberwolves(1989) were founded after S1985, so the corresponding entries are marked as NA.

6 CONCLUSIONS

We study the game records of the National Basketball Association (NBA)². Usually a regular NBA season begins in October and ends in April of the next year, so in what follows, a season is named by the two years it spans over. The original data contains all game records of NBA from season 1946-1947 to season 2015-2016. We focus on a subset of 24 teams founded before 1990 and seasons from season 1980-1981 to season 2015-2016. All code of analysis is available online with the data ³.

We start with an exploratory data analysis and the results show strong evidence for multiple change points ⁴. Therefore, we apply our method DPLR to the dataset to locate those change points. We use the samples with odd time indices as training data and even time indices as test data, and use cross-validation to choose the tuning parameter γ .

To interpret the estimated change points, we fit the BTL model on each subset splitted at change point 265 estimates separately. The result is summarized in Table 2. Several teams show significant jumps in 266 the preference scores and rankings around change points. Apart from this quantitative assessment, 267 the result is also firmly supported by memorable facts in NBA history, and we will name a few here. 268 In 1980s, Celtics was in the "Larry Bird" era with its main and only competitor "Showtime" Lakers. 269 Then starting from 1991, Michael Jordan and Bulls created one of the most famous dynasties in NBA 270 history. 1998 is the year Michael Jordan retired, after which Lakers and Spurs were dominating 271 during 1998-2009 with their famous cores "Shaq and Kobe" and "Twin Towers". The two teams 272 together won 8 champions during these seasons. S2010-S2012 is the well-known "Big 3" era of Heat. 273 Meanwhile, Spurs kept its strong competitiveness under the lead of Timothy Duncan. From 2013, 274 with the arise of super stars Stephen Curry and Klay Thompson, Warriors started to take the lead. 275

276 6 Conclusions

We have formulated and investigate a novel change point analysis problem for pairwise comparison data based on a high-dimensional BTL model. We have developed a novel methodology that yields consistent estimators of the change points, and establish theoretical guarantees with nonasymptotic localization error. To the best of our knowledge, this is the first work in the literature that addresses in both a methodological and theoretically sound way multiple change points in ranking data.

Although we filled a big gap in the literature, there remain many open and interesting problems for 282 future work. First, we only consider pairwise comparison data modeled by the BTL model. Of course, 283 there are other popular ranking models for general ranking data, e.g., the Plackett-Luce model(Luce, 284 1959; Plackett, 1975), Stochastically Transitive models(Shah et al., 2017), and the Mallows model 285 (Tang, 2019). It would be interesting to see that for those models how different the method and 286 theory would be from our settings. Second, we have focused on *retrospective* setting of change point 287 detection and *passive* setting of ranking. On the other hand, *online* change point detection (Vovk, 288 2021) and active ranking (Heckel et al., 2019; Ren et al., 2021) are widely used in practice. Thus, it 289 would be interesting to consider the online or active framework in change point detection for ranking 290 data. Third, in the recent change point detection literature, incorporating temporal dependence is of 291 growing interest (Chen et al., 2021; Wang and Zhao, 2022), so investigating how temporal dependence 292 in the pairwise comparison data can affect our results seems like a worthwhile direction. Lastly, we 293 assume that the compared pairs are randomly sampled from the full edge set, or the complete graph, 294 making the comparison graph similar to an Erdös-Rényi graph. Although this setting is common in 295 the literature (Chen et al., 2019, 2020), it does not explicitly show the impact of the graph topology 296 297 of the comparison graph on ranking. Therefore, it would be very interesting to generalize our results to explicitly show the effect of the topology of the sampling graph. 298

At last, we discuss potential societal impacts of our work. The BTL model does have applications with potentially undesirable societal impacts, e.g., sports-betting (McHale and Morton, 2011), which could amplify the negative impacts of gambling. We recommend using our method for research purposes rather than gambling-driven purposes.

²https://gist.github.com/masterofpun/2508ab845d53add72d2baf6a0163d968

³Code repository: https://anonymous.4open.science/r/CPD_BT-4664

⁴Due to the limit of space, we include these results in Appendix A.3.

303 **References**

- Agresti, A. (2013). *Categorical data analysis*. Wiley Series in Probability and Statistics. Wiley Interscience [John Wiley & Sons], Hoboken, NJ, third edition.
- Aston, J. A. and Kirch, C. (2018). High dimensional efficiency with applications to change point tests. *Electronic Journal of Statistics*, 12(1):1901 1947.
- Aue, A., Hörmann, S., Horváth, L., and Reimherr, M. (2009). Break detection in the covariance structure of multivariate time series models. *The Annals of Statistics*, 37(6B):4046 – 4087.
- Avanesov, V. and Buzun, N. (2018). Change-point detection in high-dimensional covariance structure.
 Electronic Journal of Statistics, 12(2):3254 3294.
- Bong, H., Li, W., Shrotriya, S., and Rinaldo, A. (2020). Nonparametric estimation in the dynamic
 Bradley-Terry model. In *Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning Research*, pages
 3317–3326. PMLR.
- Bong, H. and Rinaldo, A. (2022). Generalized results for the existence and consistency of the MLE
 in the Bradley-Terry-Luce model. *to appear in International Conference on Machine Learning*.
- Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs. I. The method of paired comparisons. *Biometrika*, 39:324–345.
- Cattelan, M., Varin, C., and Firth, D. (2013). Dynamic Bradley-Terry modelling of sports tournaments.
 Journal of the Royal Statistical Society. Series C (Applied Statistics), 62(1):135–150.
- Chen, L., Wang, W., and Wu, W. B. (2021). Inference of breakpoints in high-dimensional time series.
 Journal of the American Statistical Association, 0(0):1–13.
- Chen, P., Gao, C., and Zhang, A. Y. (2020). Partial recovery for top-K ranking: optimality of MLE
 and sub-optimality of spectral method. *to appear in The Annals of Statistics*.
- Chen, Y., Fan, J., Ma, C., and Wang, K. (2019). Spectral method and regularized MLE are both optimal for top-*K* ranking. *The Annals of Statistics*, 47(4):2204–2235.
- Cho, H. and Fryzlewicz, P. (2015). Multiple-change-point detection for high dimensional time series
 via sparsified binary segmentation. *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, 77(2):475–507.
- Fahrmeir, L. and Tutz, G. (1994). Dynamic stochastic models for time-dependent ordered paired comparison systems. *Journal of the American Statistical Association*, 89(428):1438–1449.
- Ford, L. R. (1957). Solution of a ranking problem from binary comparisons. *The American Mathematical Monthly*, 64(8):28–33.
- Friedrich, F., Kempe, A., Liebscher, V., and Winkler, G. (2008). Complexity penalized *M*-estimation: fast computation. *Journal of Computational and Graphical Statistics*, 17(1):201–224.
- Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. *The Annals of Statistics*, 42(6):2243 2281.
- Glickman, M. E. (1993). Paired comparison models with time varying parameters. *Doctoral thesis*,
 Harvard University.
- Glickman, M. E. and Stern, H. S. (1998). A state-space model for national football league scores.
 Journal of the American Statistical Association, 93(441):25–35.
- Heckel, R., Shah, N. B., Ramchandran, K., and Wainwright, M. J. (2019). Active ranking from
 pairwise comparisons and when parametric assumptions do not help. *The Annals of Statistics*,
 47(6):3099–3126.
- Höhle, M. (2010). Online change-point detection in categorical time series. In *Statistical Modelling and Regression Structures: Festschrift in Honour of Ludwig Fahrmeir*, pages 377–397. Physica-
- ³⁴⁸ Verlag HD, Heidelberg.

- James, B., James, K. L., and Siegmund, D. (1987). Tests for a change-point. *Biometrika*, 74(1):71–83.
- Jirak, M. (2015). Uniform change point tests in high dimension. *The Annals of Statistics*, 43(6):2451– 2483.
- Karlé, E. and Tyagi, H. (2021). Dynamic ranking with the BTL model: A nearest neighbor based rank centrality method. *arXiv:2109.13743*.
- Li, W., Shrotriya, S., and Rinaldo, A. (2022). ℓ_{∞} -bounds of the MLE in the BTL model under general comparison graphs. *to appear in Uncertainty in Artificial Intelligence*.
- Lopez, M. J., Matthews, G. J., and Baumer, B. S. (2018). How often does the best team win? A
 unified approach to understanding randomness in North American sport. *The Annals of Applied Statistics*, 12(4):2483–2516.
- Luce, R. D. (1959). Individual Choice Behavior: A Theoretical Analysis. New York, Wiley.
- Masarotto, G. and Varin, C. (2012). The ranking lasso and its application to sport tournaments. *The Annals of Applied Statistics*, 6(4):1949–1970.
- Maystre, L., Kristof, V., and Grossglauser, M. (2019). Pairwise comparisons with flexible time dynamics. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pages 1236–1246.
- McHale, I. and Morton, A. (2011). A bradley-terry type model for forecasting tennis match results.
 International Journal of Forecasting, 27(2):619–630.
- Negahban, S., Oh, S., and Shah, D. (2017). Rank centrality: Ranking from pairwise comparisons.
 Operations Research, 65(1):266–287.
- Page, E. S. (1954). Continuous Inspection Schemes. *Biometrika*, 41(1-2):100–115.
- Plackett, R. L. (1975). The analysis of permutations. *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, 24(2):193–202.
- Pollard, D. F. (1990). *Empirical Processes: Theory and Applications*. Inst of Mathematical Statistic.
- Preuss, P., Puchstein, R., and Dette, H. (2015). Detection of multiple structural breaks in multivariate
 time series. *Journal of the American Statistical Association*, 110(510):654–668.
- Radlinski, F. and Joachims, T. (2007). Active exploration for learning rankings from clickthrough
 data. In *Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '07, pages 570–579, New York, NY, USA. ACM.
- Rastogi, C., Balakrishnan, S., Shah, N., and Singh, A. (2020). Two-sample testing on pairwise
 comparison data and the role of modeling assumptions. In 2020 IEEE International Symposium on
 Information Theory (ISIT), pages 1271–1276.
- Ren, W., Liu, J., and Shroff, N. (2021). Sample complexity bounds for active ranking from multi wise comparisons. In *Advances in Neural Information Processing Systems*, volume 34, pages
 4290–4300.
- Rinaldo, A., Wang, D., Wen, Q., Willett, R., and Yu, Y. (2021). Localizing changes in high dimensional regression models. In *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume 130 of *Proceedings of Machine Learning Research*, pages
 2089–2097. PMLR.
- Scott, A. and Knott, M. (1974). A cluster analysis method for grouping means in the analysis of variance. *Biometrics*, 30:507.
- Shah, N. B., Balakrishnan, S., Bradley, J., Parekh, A., Ramchandran, K., and Wainwright, M. J.
 (2016). Estimation from pairwise comparisons: Sharp minimax bounds with topology dependence.
 Journal of Machine Learning Research, 17(58):1–47.

- Shah, N. B., Balakrishnan, S., Guntuboyina, A., and Wainwright, M. J. (2017). Stochastically transi-
- tive models for pairwise comparisons: Statistical and computational issues. *IEEE Transactions on Information Theory*, 63(2):934–959.
- Shah, N. B. and Wainwright, M. J. (2018). Simple, robust and optimal ranking from pairwise
 comparisons. *Journal of Machine Learning Research*, 18(199):1–38.
- Simons, G. and Yao, Y.-C. (1999). Asymptotics when the number of parameters tends to infinity in
 the bradley-terry model for paired comparisons. *Annals of Statistics*, 27(3):1041–1060.
- Stigler, S. M. (1994). Citation patterns in the journals of statistics and probability. *Statistical Science*,
 9:94–108.
- Tang, W. (2019). Mallows ranking models: maximum likelihood estimate and regeneration. In
 Proceedings of the 36th International Conference on Machine Learning, volume 97 of *Proceedings of Machine Learning Research*, pages 6125–6134. PMLR.
- 405 Tao, T. (2012). Topics in Random Matrix Theory. American Mathematical Society.
- Tropp, J. A. (2015). An introduction to matrix concentration inequalities. *Foundations and Trends*®
 in Machine Learning, 8(1-2):1–230.
- Varin, C., Cattelan, M., and Firth, D. (2016). Statistical modelling of citation exchange between
 statistics journals. *Journal of the Royal Statistical Society. Series A (Statistics in Society)*, 179(1):1–63.
- Venkatraman, E. S. (1992). Consistency results in multiple change-point problems. *Doctoral thesis, Stanford University.*
- Vostrikova, L. (1981). Detection of the disorder in multidimensional random-processes. *Doklady Akademii Nauk SSSR*, 259:270 274.
- 415 Vovk, V. (2021). Testing randomness online. *Statistical Science*, 36(4):595–661.
- Wainwright, M. J. (2019). *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge:
 Cambridge University Press.
- Wald, A. (1945). Sequential Tests of Statistical Hypotheses. *The Annals of Mathematical Statistics*, 16(2):117 186.
- Wang, D., Yu, Y., and Rinaldo, A. (2020). Univariate mean change point detection: Penalization,
 CUSUM and optimality. *Electronic Journal of Statistics*, 14(1):1917 1961.
- Wang, D., Yu, Y., and Rinaldo, A. (2021a). Optimal change point detection and localization in sparse
 dynamic networks. *The Annals of Statistics*, 49(1):203 232.
- Wang, D., Yu, Y., and Rinaldo, A. (2021b). Optimal covariance change point localization in high
 dimensions. *Bernoulli*, 27(1):554 575.
- Wang, D. and Zhao, Z. (2022). Optimal change-point testing for high-dimensional linear models
 with temporal dependence. *arXiv:2205.03880*.
- Wang, D., Zhao, Z., Lin, K. Z., and Willett, R. (2021c). Statistically and computationally efficient
 change point localization in regression settings. *Journal of Machine Learning Research*, 22(248):1–
 46.
- Wang, T. and Samworth, R. J. (2018). High dimensional change point estimation via sparse projection.
 Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):57–83.
- Yao, Y.-C. and Au, S. T. (1989). Least-squares estimation of a step function. Sankhyā: The Indian
 Journal of Statistics, Series A (1961-2002), 51(3):370–381.

435 Checklist

436	1. For all authors
437 438	(a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes]
439	(b) Did you describe the limitations of your work? [Yes] See Section 6.
440	(c) Did you discuss any potential negative societal impacts of your work? [Yes] See the
441	end of Section 6.
442 443	(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
444	2. If you are including theoretical results
445	(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 2
446	(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B
447	3. If you ran experiments
448	(a) Did you include the code, data, and instructions needed to reproduce the main experi-
449	mental results (either in the supplemental material or as a URL)? [Yes] See Sections 4
450	and 5 for details including a link to our anonymized reproducible code repository i.e.
451	https://anonymous.4open.science/r/CPD_BT-4664
452	(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they $(b_1, b_2, b_3) = 0$
453	were chosen)? [Yes] See Section 4
454 455	(c) Did you report error bars (e.g., with respect to the random seed after running experi- ments multiple times)? [Yes] We report standard errors of 100 trials, see Section 4
456	(d) Did you include the total amount of compute and the type of resources used (e.g.,
457	type of GPUs, internal cluster, or cloud provider)? [Yes] See the second paragraph of Section 4
458	4. If a second state of the second state of th
459	4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets
460	(a) If your work uses existing assets, did you cite the creators? [Yes] We cited all relevant
461	works of the algorithms we used at places they first occur in our paper. We also cite the
462	(b) Did you montion the license of the assets? [N/A]
463	(b) Did you mendon the ficense of the assets? [IV/A]
464	(c) Did you include any new assets either in the supplemental material or as a URL? [IN/A]
465	(d) Did you discuss whether and have concert was obtained from manual whose data you're
466 467	(d) Did you discuss whether and now consent was obtained from people whose data you re using/curating? [N/A]
468	(e) Did you discuss whether the data you are using/curating contains personally identifiable
469	information or offensive content? [N/A]
470	5. If you used crowdsourcing or conducted research with human subjects
471	(a) Did you include the full text of instructions given to participants and screenshots, if
472	applicable? [N/A]
473	(b) Did you describe any potential participant risks, with links to Institutional Review
474	Board (IRB) approvals, if applicable? [N/A]
475 476	(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]