
Detecting Abrupt Changes in Sequential Pairwise
Comparison Data

Anonymous Author(s)
Affiliation
Address
email

Abstract

The Bradley-Terry-Luce (BTL) model is a classic and very popular statistical1

approach for eliciting a global ranking among a collection of items using pairwise2

comparison data. In applications in which the comparison outcomes are observed3

as a time series, it is often the case that data are non-stationary, in the sense that4

the true underlying ranking changes over time. In this paper we are concerned5

with localizing the change points in a high-dimensional BTL model with piece-6

wise constant parameters. We propose novel and practicable algorithms based on7

dynamic programming that can consistently estimate the unknown locations of8

the change points. We provide consistency rates for our methodology that depend9

explicitly on the model parameters, the temporal spacing between two consecutive10

change points and the magnitude of the change. We corroborate our findings with11

extensive numerical experiments and a real-life example.12

1 Introduction13

Pairwise comparison data are among the most common types of data collected for the purpose of14

eliciting a global ranking among a collection of items or teams. The Bradley-Terry-Luce model15

(Bradley and Terry, 1952; Luce, 1959) is a classical and popular parametric approach to model16

pairwise comparison data and to obtain an estimate of the underlying ranking. The Bradley-Terry-17

Luce model and its variants have been proven to be powerful approaches in many applications,18

including sports analytics (Fahrmeir and Tutz, 1994; Masarotto and Varin, 2012; Cattelan et al., 2013),19

bibliometrics (Stigler, 1994; Varin et al., 2016), search analytics (Radlinski and Joachims, 2007;20

Agresti, 2013), and much more.21

To introduce the BTL model, suppose that we are interested in ranking n distinct items, each with a22

(fixed but unobserved) positive preference score wi, i ∈ [n], quantifying its propensity to beat other23

items in a pairwise comparison. The BTL model assumes that the outcomes of the comparisons24

between different pairs are independent Bernoulli random variables such that, for a given pair of25

items, say i and j in [n] := {1, . . . , n}, the probability that i is preferred to (or beats) j is26

Pij = P (i beats j) =
w∗
i

w∗
i + w∗

j

, ∀ i, j ∈ [n]. (1.1)

A common reparametrization is to set w∗
i = exp(θ∗i ) for each i, where θ∗ := (θ∗1 , . . . , θ

∗
n)

⊤ ∈ Rn.27

To ensure identifiability it is further assumed that
∑
i∈[n] θ

∗
i = 0.28

The properties and performance of the BTL model have been thoroughly studied under the assumption29

that the outcomes of all the pairwise comparisons are simultaneously available and follow the same30

BTL model. In many applications however, it is very common to observe pairwise comparison data31

sequentially (i.e. one at a time), with time stamps over multiple time periods. In these cases, it is32
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unrealistic to assume that observations with different time stamps come from the same distribution.33

For instance, in sports analytics, the performance of teams often changes across match rounds, and34

Fahrmeir and Tutz (1994) utilized a state-space generalization of the BTL model to analyze sport35

tournaments data. Ranking analysis with temporal variants has also become increasingly important36

because of the growing needs for models and methods to handle time-dependent data. A series of37

results in this direction can be found in Glickman (1993), Glickman and Stern (1998), Cattelan et al.38

(2013), Lopez et al. (2018), Maystre et al. (2019), Bong et al. (2020), Karlé and Tyagi (2021) and39

references therein. Much of the aforementioned literature on time-varying BTL model postulates that40

temporal changes in the model parameters are smooth functions of time and thus occur gradually on41

a relatively large time scale. However, there are instances in which it may be desirable to instead42

model abrupt changes in the underlying parameters and estimate the times at which such change has43

occurred. These change point settings, which, to the best of our knowledge, have not been considered44

in the literature, and are the focus of this paper.45

46

Contributions47

We make the following methodological and theoretical contributions.48

• Novel change point methodology. We develop a computationally efficient methodology to49

consistently estimate the change points for a time-varying BTL model with piece-wise constant50

parameters. Our baseline procedure Algorithm 1 consists of a penalized maximum likelihood51

estimator of the BTL model under an ℓ0 penalty, and can be efficiently implemented via dynamic52

programming. We further propose a slightly more computationally expensive two-step procedure in53

Algorithm 2 that takes as input the estimator returned by our baseline procedure and delivers a more54

precise estimator with provably better error rates. We demonstrate through simulations and a real life55

example the performance and practicality of the procedure we develop.56

• Theoretical guarantees. We obtain finite sample error rates for our procedures that depend57

explicitly on all the parameters at play: the dynamic range of the BTL model and the number of items58

to be compared, the number of change points, the smallest distance between two consecutive change59

points and the minimal magnitude of the difference between the model parameters at two consecutive60

change points. Our results hold provided that a critical signal-to-noise ratio condition involving all61

the relevant parameters is satisfied. We conjecture that this condition is optimal in an information62

theoretic sense. Both the signal-to-noise ratio condition and the localization rates we obtain exhibit a63

quadratic dependence on the number of items to be compared, which matches the sample complexity64

bound for two sample testing for the BTL model recently derived by Rastogi et al. (2020).65

We emphasize that the change point setting we consider have not been previously studied and both66

our methodology and the corresponding theoretical guarantees appear to be the first contribution of67

its kind in this line of work.68

69

Related work70

Change point detection is a classical problem in statistics that dates back to 1940s (Wald, 1945; Page,71

1954). Contributions in the 1980s established asymptotic theory for change point detection methods72

(Vostrikova, 1981; James et al., 1987; Yao and Au, 1989). Most of the classical literature studied the73

univariate mean model. Recently with more advanced theoretical tools developed in modern statistics,74

more delicate analysis of change point detection came out in high-dimensional mean models (Jirak,75

2015; Aston and Kirch, 2018; Wang and Samworth, 2018), covariance models (Aue et al., 2009;76

Avanesov and Buzun, 2018; Wang et al., 2021b), high-dimensional regression models (Rinaldo et al.,77

2021; Wang et al., 2021c), network models (Wang et al., 2021a), and temporally-correlated times78

series (Cho and Fryzlewicz, 2015; Preuss et al., 2015; Chen et al., 2021; Wang and Zhao, 2022).79

Although change point detection has already been extensively studied in many different settings, little80

is known about the case of pairwise comparison data. Höhle (2010) numerically study the CUSUM81

method for online change point detection in logit models and BTL models without giving theoretical82

guarantees. We aim to fill the gap in the literature and propose a theoretically trackable approach that83

can optimally localize abrupt changes in the pairwise comparison data.84
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2 Model and assumptions85

Below we introduce the time-varying BTL model with piece-wise constant coefficients that we are86

going to study and the sampling scheme for collecting pairwise comparison data over time.87

We assume throughout that data are collected as a time series indexed by t ∈ [T ] := {1, . . . , T} that,88

at each time point t, a single pairwise comparison among a collection of n items is observed. The89

distinct pair (it, jt) ∈ [n]2 of items to be compared at time t is randomly chosen from the n items,90

independently over time. That is,91

P(it = i, jt = j) =
2

n(n− 1)
, ∀1 ≤ i < j ≤ n. (2.1)

For each t, let yt ∈ {0, 1} denote the outcome of the comparison between it and jt, where yt = 192

indicates that it beats jt in the comparison. We assume that yt follows the BTL model (1.1), i.e.93

Pθ∗(t)[yt = 1|(it, jt)] =
eθ

∗
it
(t)

eθ
∗
it
(t) + eθ

∗
jt
(t)
, (2.2)

where θ∗(t) = (θ∗1(t), . . . θ
∗
n(t)) is, a possibly time-varying, parameter that belongs to the set94

ΘB := {θ ∈ Rn : 1⊤
n θ = 0, ∥θ∥∞ ≤ B}, (2.3)

for some B > 0. In the recent literature on the BTL model, the parameter B is referred to as the95

dynamic range (see, e.g., Chen et al., 2019) which readily implies a bound on the smallest possible96

probability that an item is beaten by any other item. Indeed, it follows from (2.2) and (2.3) that97

min
t∈[T ],i,j∈[n]

Pij(t) ≥ e−2B/(1 + e−2B) := plb > 0. (2.4)

Remark 1. The quantity plb have appeared in several equivalent forms in the BTL literature, e.g.,98

maxi,j∈[n]
w∗

i

w∗
j

(Simons and Yao, 1999; Negahban et al., 2017) and e2B (Li et al., 2022). The minimal99

winning probability plb can quantify the difficulty in estimating the model parameters, with a small100

plb implying that some items are systematically better than others, a fact that is known to lead to101

non-existence of the MLE (see, e.g. Ford, 1957) and to hinder parameter estimability. In the BTL102

literature the dynamic range B and, as a result, the quantity plb are often treated as known constants103

and thus omitted (Shah et al., 2016; Chen et al., 2020), a strong assumption that results in an implicit104

regularization but potentially hides an important feature of the model. As argued in Bong and Rinaldo105

(2022), in high-dimensional settings this may not be realistic. We will allow for the possibility of a106

varying B and plb, and keep track of the effect of these parameters on our consistency rates.107

It is convenient to rewrite (2.2) in a different but equivalent form that is reminiscent of logistic108

regression and will facilitate our analysis. One can express the fact that, at time t, the items it and jt109

are randomly selected to be compared using a random n-dimensional vector x(t) that is uniformly110

drawn from the sets of all vectors in {−1, 0, 1}n with exactly two-non-zero entries of opposite sign,111

namely xit(t) = 1 and xjt(t) = −1. Then equation (2.2) can be written as112

Pθ∗(t)[yt = 1|x(t)] = ψ
(
x(t)⊤θ∗(t)

)
, (2.5)

where ψ(x) = 1
1+e−x is the sigmoid function. For any time interval I ⊂ [T ] we then assume that113

the data take the form of an i.i.d. sequence {(x(t), yt)}t∈I , where each x(t) is an i.i.d. draw from114

{−1, 0, 1}n with aforementioned properties and, conditionally on x(t), yt is a Bernoulli random115

variable with success probability (2.2). The negative log-likelihood of the data is then given by116

L(θ, I) =
∑
t∈I

ℓt(θ), where ℓt(θ) := ℓ(θ; yt,x(t)) = −ytx(t)⊤θ+ log[1 + exp(x(t)⊤θ)]. (2.6)

For a time interval I, we can define a random comparison graph G(V,E) with vertex set V := [n]117

and edge set E := {(i, j) : i and j are compared }. It is well-known that the topology of G(V,E)118

plays an important role in the estimation of BTL parameters (Shah et al., 2016). Under assumption119

(2.1), the comparison graph over I follows the random graph model G(n, |I|), which has |I| edges120

randomly picked from the full edge set Efull := {(i, j) : 1 ≤ i < j ≤ n} with replacement.121

Therefore, the process {(x(t), yt)}t∈I is stationary as long as θ∗(t) is unchanged over I.122
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In the change point BTL model we assume that, for some unknown integer K ≥ 1, there exist K + 2123

points {ηk}K+1
k=0 such that 1 = η0 < η1 < · · · < ηK < ηK+1 = T and θ∗(t) ̸= θ∗(t− 1) whenever124

t ∈ {ηk}k∈[K]. Define the minimal spacing ∆ between consecutive change points and the minimal125

jump size κ as126

∆ = min
k∈[K+1]

(ηk − ηk−1), κ = min
k∈[K+1]

∥θ∗(ηk)− θ∗(ηk−1)∥2. (2.7)

As we mentioned in the introduction, the goal of change point localization is to produce an estimator127

of the change points {η̂k}k∈[K̂] such that, with high-probability as T →∞, we recover the correct128

number of change points and the localization error is a vanishing fraction of the minimal distance129

between change points, i.e. that130

K̂ = K, and max
k∈[K]

|η̂k − ηk|/∆ = o(1). (2.8)

In change point literature, estimators satisfying the above conditions are called consistent. In the next131

section we will present two change point estimators and prove their consistency.132

3 Main results133

To estimate the change points, we solve the following regularized maximum likelihood problem over134

all possible partitions P of the time course [T ]:135

P̂ = argmin
P

{∑
I∈P

L(θ̂(I), I) + γ|P|

}
, θ̂(I) = argmin

θ∈ΘB

L(θ, I), (3.1)

where L(θ, I) is the negative log-likelihood function for the BTL model defined in (2.6) and γ > 0136

is an user-specified tuning parameter. Here a partition P is defined as a set of integer intervals:137

P = {[1, p1), [p1, p2), . . . , [pKP , T ]}, 1 < p1 < p2 < · · · < pKP < T. (3.2)

With K̃ = KP̂ = |P̂| − 1, the estimated change points {η̃k}k∈K̃ are then induced by η̃k = p̂k,138

k ∈ [K̃]. The optimization problem (3.1) has an ℓ0-penalty, and can be solved by a dynamic139

programming algorithm described in Algorithm 1 with O(T 2C(T )) complexity (Friedrich et al.,140

2008; Rinaldo et al., 2021), where C(T ) is the complexity of solving minθ L(θ, [1, T ]).141

In this section, we will demonstrate that the estimator returned by Algorithm 1 is consistent. Towards142

that goal, we require the following signal-to-noise ratio condition involving the parameters ∆, κ and143

B, n and the sample size T .144

Assumption 3.1 (Signal-to-noise ratio). Let {(x(t), yt)}t∈[T ] be i.i.d. observations generated from145

model (2.1) and (2.5) with parameters {θ∗(t)} ⊂ ΘB defined in (2.3). We assume that for a diverging146

sequence {BT }T∈Z+ ,147

∆ · κ2 ≥ BT p−4
lb Kn

2 log(Tn), (3.3)

where we recall that plb := e−2B

1+e−2B .148

The formulation of signal-to-noise ratio conditions involving all the parameters of the model has149

become a staple of modern change point analysis literature. To provide some intuition, the term150

∆κ2 is a proxy for the strength of the signal of change points in the sense that the localization and151

detection problems are expected to become easier, as the magnitude of the jumps and the spacing152

between change points increase. On the other hand, the right hand side of Equation (3.3) collects153

terms that impact negatively the difficulty of the problem: the smaller the minimal win probability plb,154

the larger the number of items n to compare and the number of change points K, the more difficult it155

is to estimate the change points.156

Remark 2 (On the sharpness of the signal-to-noise ratio condition). We will now argue that the157

requirement (3.1) imposed by the signal-to-noise ratio (SNR for brevity) is reasonably sharp by158

relating it to the sample complexity of a two-sample testing problem. To that effect, consider the159

simplified setting in which there is only one change point at time ∆ = T/2. In this case, it can be160

shown that the SNR condition (3.1) becomes (see Proposition B.5)161

∆ · κ2 ≥ BT p−2
lb n

2 log(Tn), (3.4)
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i.e. the dependence on the dynamic range B is through p−2
lb instead of p−4

lb . It stands to reason that162

estimating the unknown change point ∆ should be at least as hard as testing the null hypothesis that163

there exists a change point at time ∆. Indeed, this testing problem should be easier because ∆ has164

been revealed and because, in general, testing is easier than estimation. This can in turn be cast as a165

two-sample testing problem of the form166

H0 : P(θ(1)) = P(θ(2)) v.s. H1 :
1

n
∥P(θ(1))−P(θ(2))∥F ≥ ϵ, (3.5)

where ϵ > 0 is to be specified, θ(1) and θ(2) are the BTL model parameters for the first and the last167

∆ observations respectively and, for i ∈ {1, 2}, P(θ(i)) is the n× n matrix of winning probabilities168

corresponding to the BTL model parameter θ(i) as specified by (2.2). To see how one arrives at (3.5),169

we have that, by Proposition B.4,170

∥P(θ(1))−P(θ(2))∥2F ≥
np2lb
16
∥θ(1) − θ(2)∥22. (3.6)

Thus, a change point setting with ∥θ(1) − θ(2)∥22 = κ2, translates into the testing problem (3.5)171

with ϵ2 = κ2p2lb/(16n). By Theorem 7 of Rastogi et al. (2020), there exists an algorithm that will172

return a consistent test for (3.5) based on two independent samples of size N if N ≥ cn2 log(n) 1
nϵ2 .173

When we apply this result to the simplified change point settings described above (by replacing174

N and ϵ2 with ∆ and κ2p2lb/(16n) respectively) we conclude that the sample complexity bound of175

Theorem 7 of Rastogi et al. (2020) corresponds, up to constants, to the above SNR condition (3.4)176

save for the terms log(T ) and BT . Thus, we conclude that the assumed SNR condition for change177

point localization is essentially equivalent to the sample complexity needed to tackle the simpler178

two-sample testing problem, an indication that our assumption is sharp.179

Finally, we take notice that, when there are multiple change points, in our analysis it appears necessary180

to strengthen the signal-to-noise ratio condition (3.4) to (3.1) by requiring a dependence on p−4
lb .181

We are now ready to present our first consistency result.182

Theorem 3.2. Let {η̃k}k∈[K̃] be the estimates of change points from Algorithm 1 with the tuning183

parameter γ = Cγp
−2
lb (K + 1)n log(Tn) where Cγ is a universal constant. Under Assumption 3.1184

we have185

P
{
K̃ = K, max

k∈[K]
|η̃k − ηk| ≤ CP p−4

lb

Kn2

κ2
log(Tn)

}
≥ 1− 2(Tn)−2, (3.7)

where CP > 0 is a universal constant that depends on Cγ .186

Theorem 3.2 gives a high-probability upper bound for the localization error of the output {η̃k}k∈[K̃]187

of Algorithm 1. By Assumption 3.1, it follows that as T →∞, with high probability,188

max
k∈[K]

|η̃k − ηk| ≤ CP p−4
lb

Kn2

κ2
log(Tn) ≤ CP

∆

BT
= o(∆), (3.8)

where we use the singal-to-noise ratio assumption ∆ ·κ2 ≥ BT p−4
lb Kn

2 log(Tn) in the last inequality189

and the fact that BT diverges in the final step. This implies that the estimators {η̃k}k∈[K̃] are190

consistent. Moreover, when K = 0 or there is no change point, it is guaranteed that with high191

probability, Algorithm 1 will return an empty set. We summarize this property as Proposition B.6192

and include it in Appendix B.2 due to the limit of space.193

Inspired by previous works (Wang et al., 2021a; Rinaldo et al., 2021), we can further improve the194

localization error by applying a local refinement procedure as described in Algorithm 2 to {η̃k}k∈[K̃].195

This methodology takes as input any preliminary estimator of the change points that estimates the196

number of change points correctly with a localization error that is a (not necessarily vanishing)197

fraction of the minimal spacing ∆, and returns a new estimator with a provably smaller localization198

error. A natural preliminary estimator is the one returned in Algorithm 1. The next result derives the199

improved localization rates delivered by the local refinement step. The two improvements are the200

elimination of the term K in the rate and a better dependence on plb.201
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Algorithm 1: Dynamic Programming. DP ({(x(t), yt)}t∈[T ], γ)

INPUT: Data {(x(t), yt)}t∈[T ], tuning parameter γ.
Set S = ∅, p = −1T , b = (γ,∞, . . . ,∞) ∈ RT . Denote bi to be the i-th entry of b.
for r in {2, . . . , T} do

for l in {1, . . . , r − 1} do

b← bl + γ + L(θ̂(I), I) where I = (l, . . . , r];

if b < br then
br ← b; pr ← l.

To compute the change point estimates from p ∈ NT , k ← T .
while k > 1 do

h← pk ; S = S ∪ h; k ← h.
OUTPUT: The estimated change points S = {η̃k}k∈K̃ .

Algorithm 2: Local Refinement.
INPUT: Data {(x(t), yt)}t∈[T ], {η̃k}k∈[K̃], (η̃0, η̃K̃+1)← (1, T ).

for k = 1, . . . , K̃ do

(sk, ek)← (2η̃k−1/3 + η̃k/3, η̃k/3 + 2η̃k+1/3);

η̂k ← argmin
η∈{sk+1,...,ek−1}

{
min

θ(1)∈ΘB

η∑
t=sk+1

ℓt(θ
(1)) + min

θ(2)∈ΘB

ek∑
t=η+1

ℓt(θ
(2))

}
;

(3.9)

OUTPUT: {η̂k}k∈[K̃].

Theorem 3.3. Let {η̂k}k∈[K̂] be the output of Algorithm 2 with input {η̃k}k∈[K̂] returned by Algo-202

rithm 1. Under Assumption 3.1, for all sufficiently large T we have203

P
{
K̂ = K, max

k∈[K]
|η̂k − ηk| ≤ CP p−2

lb

n2

κ2
log(Tn)

}
≥ 1− 2(Tn)−2, (3.10)

where CP > 0 is a universal constant that depends on Cγ .204

Remark 3. By “sufficiently large T ” in the theorem statement, we mean that T should be large205

enough to make maxk∈[K] |η̂k − ηk| ≤ ∆/5 (see Proposition B.3 in Appendix B for details). Such T206

exists because of Equation (3.8) and the fact that BT is diverging in T .207

We conjecture that the rate (3.10) resulting from the local refinement procedure is, aside possibly208

from a logarithmic factor, minimax optimal.209

4 Experiments210

In this section, we study the numerical performance of our newly proposed method based on a211

combination of dynamic programming with local refinement, which we will refer to as DPLR; see212

Algorithms 1 and 2. We note that the detection of multiple change points in pairwise comparison data213

has not been studied before, as Höhle (2010) only focus on single change point detection for pairwise214

comparison data, so we are not aware of any existing competing methods in the literature. Thus,215

we develop a potential competitor based on the combination of Wild Binary Segmentation (WBS)216

(Fryzlewicz, 2014), a popular method for univariate change point detection, and the likelihood ratio217

approach studied in Höhle (2010). We will call this potential competitor WBS-GLR (GLR stands218

for generalized likelihood ratio). Due to the limit of space, we include the detail of WBS-GLR in219

Appendix A.1, and results of additional experiments in Appendix A.2.220

All of our simulation results show that our proposed method DPLR outperforms WBS-GLR in221

the sense that DPLR gives more accurate change point estimates with similar running time. Each222
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experiment is run on a virtual machine of Google Colab with Intel(R) Xeon(R) CPU of 2 cores 2.30223

GHz and 12GB RAM. All of our reproducible code is openly accessible 1.224

Simulation Settings. Suppose we have K change points {ηk}k∈[K] in the sequential pairwise225

comparison data, with η0 = 1. We can use θ∗(ηk) to represent the value of true parameters after226

the change point ηk. To begin, we define θ∗i (η0) as follows. For 1 < i ≤ n, we set θ∗i (η0) =227

θ∗1(η0)+(i−1)δ with some constant δ. In each experiment, we set δ first and then set θ∗1(η0) to make228

1⊤
n θ

∗(η0) = 0. For a given n, we set δ = 1
n−1ψ

−1(p) = 1
n−1 log(

p
1−p ) where ψ−1 is the inverse229

function of ψ and p = 0.9. Recall that Pij = ψ(θi − θj) is the winning probability, so the value of δ230

guarantees that the maximum winning probability is 0.9. We consider three types of changes:231

Type I (reverse): θ∗i (ηk) = θ∗n+1−i(η0).232

Type II (block-reverse): θ∗i (ηk) = θ∗[n2 ]+1−i(η0) for i ≤ [n2 ]; θ
∗
i (ηk) = θ∗[n2 ]+n+1−i(η0) for i > [n2 ].233

Type III (block exchange): θ∗i (ηk) = θ∗i+[n2 ](η0) for i ≤ [n2 ]; θ
∗
i (ηk) = θ∗i−[n2 ](η0) for i > [n2 ].234

We consider four simulation settings. For each setting, we have T = (K + 1)∆ and the change235

points locate at ηi = i∆ for i ∈ [K]. To describe the true parameter at each change point, we use an236

ordered tuple. For instance, (I, II, III, I) means that K = 4 and the true parameters at η1, η2, η3, η4237

are determined based on θ∗(η0) and the change type I, II, III, and I, respectively.238

H(η̂, η) Time K̂ < K K̂ = K K̂ > K
Setting (i) n = 10,K = 3,∆ = 500, Change (I, II, III)

DPLR 9.2 (9.1) 49.7s (0.7) 0 100 0
WBS-GLR 15.2 (7.9) 31.9s (3.9) 0 100 0

Setting (ii) n = 20,K = 3,∆ = 800, Change (I, II, III)
DPLR 9.0 (9.9) 118.5s (2.2) 0 100 0
WBS-GLR 240.5 (220.3) 144.2s (12.5) 0 40 60

Setting (iii) n = 100,K = 2,∆ = 1000, Change (I, II)
DPLR 13.4 (14.4) 167.4s (3.3) 0 100 0
WBS-GLR 111.9 (195.6) 215.9s (17.0) 0 79 21

Setting (iv) n = 100,K = 3,∆ = 2000, Change (I, II, III)
DPLR 12.4 (12.1) 402.4s (7.4) 0 100 0
WBS-GLR 412.3 (495.5) 400.0s (40.9) 0 57 43

Table 1: Comparison of DPLR and WBS-GLR under four different simulation settings. 100 trials
are conducted in each setting. For the localization error and running time (in seconds), the average
over 100 trials is shown with standard error in the bracket. The three columns on the right record the
number of trials in which K̂ < K, K̂ = K, and K̂ > K respectively.

For the constrained MLE in Equation (3.1), we use the function in sklearn for fitting the ℓ2-239

penalized logistic regression, as it is well-known that the constrained and the penalized estimators for240

generalized linear models are equivalent. For both DPLR and WBS-GLR, we use λ = 0.1. For M ,241

the number of random intervals in WBS-GLR, we set it to be 50 as a balance of time and accuracy.242

For both methods, we use cross-validation to choose the tuning parameter γ. Given the sequential243

pairwise comparison data in each trial, we use samples with odd time indices as training data and even244

time indices as test data. For each tuning parameter, the method is applied to the training data to get245

estimates of change points. Then a BTL model is fitted to the test data for each interval determined246

by the estimated change points. The tuning parameter and the corresponding change point estimators247

with the minimal test error (negative loglikelihood) are selected. We run 100 trials for each setting.248

Results. To measure the localization errors, we use the Hausdorff distance H({η̂i}i∈[K̂], {ηi}i∈[K])249

between the estimated change points {η̂i}i∈[K̂] and the true change points {ηi}i∈[K]. The Hausdorff250

distance H(S1, S2) between two sets of scalars is defined as251

H(S1, S2) = max{ sup
x∈S1

inf
y∈S2

|x− y|, sup
y∈S2

inf
x∈S1

|x− y|}. (4.1)

1Code repository: https://anonymous.4open.science/r/CPD_BT-4664

https://anonymous.4open.science/r/CPD_BT-4664
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The results are summarized in Table 1, where we use H(η̂, η) to denote the localization error for252

brevity. As we can see, our proposed method DPLR gives more accurate localization with similar253

running time compared to the potential competitor WBS-GLR.254

5 Application: the National Basketball Association games255

S1980-S1985 S1986-S1991m S1991m-S1997 S1998-S2003
Celtics 1.1484 Lakers 1.1033 Bulls 0.9666 Spurs 0.8910
76ers 0.9851 Pistons 0.7696 Jazz 0.8618 Lakers 0.8744
Bucks 0.7828 Celtics 0.7304 Knicks 0.5908 Kings 0.6833
Lakers 0.7779 Trail Blazers 0.6848 Suns 0.5628 Mavericks 0.5087
Nuggets 0.0789 Bulls 0.6647 Rockets 0.5032 Trail Blazers 0.4899
Trail Blazers 0.0636 Jazz 0.5179 Spurs 0.4742 Jazz 0.3944
Suns 0.0636 Bucks 0.3474 Trail Blazers 0.4176 Timberwolves 0.3913
Spurs 0.0611 Suns 0.3472 Cavaliers 0.3751 Pacers 0.3165
Nets 0.0215 Rockets 0.3156 Magic 0.3009 Hornets 0.1002
Pistons -0.0252 76ers 0.2195 Lakers 0.2730 76ers 0.0993
Knicks -0.1333 Cavaliers 0.1885 Pacers 0.2688 Suns 0.0721
Rockets -0.1950 Mavericks 0.1798 Hornets 0.2465 Pistons 0.0249
Jazz -0.2926 Knicks 0.0583 Heat 0.1445 Bucks -0.0146
Kings -0.3104 Warriors 0.0441 Pistons -0.2028 Rockets -0.0525
Mavericks -0.3104 Spurs 0.0035 Nets -0.2122 Knicks -0.1420
Bulls -0.3115 Nuggets -0.0232 Warriors -0.3075 Heat -0.1455
Warriors -0.4330 Pacers -0.0237 Celtics -0.3288 Nets -0.2276
Pacers -0.5500 Kings -0.7006 Kings -0.4808 Magic -0.2650
Clippers -0.6443 Nets -0.7666 Clippers -0.5419 Celtics -0.2885
Cavaliers -0.7771 Clippers -0.7788 Bucks -0.5864 Nuggets -0.4894
Heat NA Magic -0.8969 Nuggets -0.6272 Clippers -0.6250
Hornets NA Timberwolves -0.9554 Timberwolves -0.6570 Cavaliers -0.6796
Magic NA Heat -0.9874 76ers -0.8869 Warriors -0.7362
Timberwolves NA Hornets -1.0418 Mavericks -1.1542 Bulls -1.1801

S2004-S2006 S2007-S2009 S2010-S2012 S2013-S2015
Spurs 1.0532 Lakers 1.0097 Heat 0.9909 Warriors 1.3617
Suns 0.9559 Celtics 0.8699 Spurs 0.8653 Spurs 1.2728
Mavericks 0.9338 Magic 0.7741 Bulls 0.8292 Clippers 0.9909
Pistons 0.8120 Cavaliers 0.7466 Nuggets 0.5857 Rockets 0.6158
Heat 0.2713 Spurs 0.6270 Lakers 0.4922 Trail Blazers 0.5501
Rockets 0.1803 Mavericks 0.5686 Mavericks 0.4121 Mavericks 0.4197
Cavaliers 0.1510 Jazz 0.5169 Clippers 0.3413 Cavaliers 0.3872
Nuggets 0.1322 Nuggets 0.4751 Celtics 0.2901 Heat 0.3215
Kings 0.0542 Suns 0.4146 Knicks 0.1990 Pacers 0.3202
Lakers 0.0166 Hornets 0.3593 Pacers 0.1233 Bulls 0.2104
Nets -0.0149 Rockets 0.3428 Rockets 0.1227 Hornets 0.0145
Timberwolves -0.0566 Trail Blazers 0.2750 Jazz 0.0167 Pistons -0.1710
Clippers -0.0646 Bulls -0.1260 Trail Blazers -0.0549 Suns -0.1787
Bulls -0.0680 Pistons -0.1821 Magic -0.0899 Jazz -0.1936
Pacers -0.0824 Heat -0.2939 Warriors -0.1402 Celtics -0.2037
Jazz -0.1039 76ers -0.3418 76ers -0.1930 Nets -0.3093
Magic -0.2482 Warriors -0.3729 Bucks -0.2362 Nuggets -0.3140
Warriors -0.2803 Pacers -0.3936 Suns -0.3228 Kings -0.4066
76ers -0.3030 Bucks -0.5456 Nets -0.4589 Bucks -0.4516
Celtics -0.5144 Kings -0.7977 Hornets -0.4670 Timberwolves -0.6266
Hornets -0.5641 Knicks -0.8568 Timberwolves -0.6034 Magic -0.6398
Bucks -0.6555 Nets -0.8935 Kings -0.6929 Knicks -0.6591
Knicks -0.7101 Clippers -1.0853 Pistons -0.7807 Lakers -0.9431
Trail Blazers -0.8947 Timberwolves -1.0901 Cavaliers -1.2285 76ers -1.3676

Table 2: Fitted θ̂ (rounded to the fourth decimal) for 24 selected teams in seasons 1980-2016 of the
National Basketball Association. Teams are ranked by the MLE θ̂ on subsets splitted at the estimated
change points given by our DPLR method. S1980 means season 1980-1981 and S1991m means the
middle of season 1991-1992. Heat(1988), Hornets(1988), Magic(1989), and Timberwolves(1989)
were founded after S1985, so the corresponding entries are marked as NA.
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We study the game records of the National Basketball Association (NBA) 2. Usually a regular NBA256

season begins in October and ends in April of the next year, so in what follows, a season is named257

by the two years it spans over. The original data contains all game records of NBA from season258

1946-1947 to season 2015-2016. We focus on a subset of 24 teams founded before 1990 and seasons259

from season 1980-1981 to season 2015-2016. All code of analysis is available online with the data 3.260

We start with an exploratory data analysis and the results show strong evidence for multiple change261

points 4. Therefore, we apply our method DPLR to the dataset to locate those change points. We262

use the samples with odd time indices as training data and even time indices as test data, and use263

cross-validation to choose the tuning parameter γ.264

To interpret the estimated change points, we fit the BTL model on each subset splitted at change point265

estimates separately. The result is summarized in Table 2. Several teams show significant jumps in266

the preference scores and rankings around change points. Apart from this quantitative assessment,267

the result is also firmly supported by memorable facts in NBA history, and we will name a few here.268

In 1980s, Celtics was in the “Larry Bird” era with its main and only competitor “Showtime” Lakers.269

Then starting from 1991, Michael Jordan and Bulls created one of the most famous dynasties in NBA270

history. 1998 is the year Michael Jordan retired, after which Lakers and Spurs were dominating271

during 1998-2009 with their famous cores “Shaq and Kobe” and “Twin Towers”. The two teams272

together won 8 champions during these seasons. S2010-S2012 is the well-known “Big 3” era of Heat.273

Meanwhile, Spurs kept its strong competitiveness under the lead of Timothy Duncan. From 2013,274

with the arise of super stars Stephen Curry and Klay Thompson, Warriors started to take the lead.275

6 Conclusions276

We have formulated and investigate a novel change point analysis problem for pairwise comparison277

data based on a high-dimensional BTL model. We have developed a novel methodology that yields278

consistent estimators of the change points, and establish theoretical guarantees with nonasymptotic279

localization error. To the best of our knowledge, this is the first work in the literature that addresses280

in both a methodological and theoretically sound way multiple change points in ranking data.281

Although we filled a big gap in the literature, there remain many open and interesting problems for282

future work. First, we only consider pairwise comparison data modeled by the BTL model. Of course,283

there are other popular ranking models for general ranking data, e.g., the Plackett-Luce model(Luce,284

1959; Plackett, 1975), Stochastically Transitive models(Shah et al., 2017), and the Mallows model285

(Tang, 2019). It would be interesting to see that for those models how different the method and286

theory would be from our settings. Second, we have focused on retrospective setting of change point287

detection and passive setting of ranking. On the other hand, online change point detection (Vovk,288

2021) and active ranking (Heckel et al., 2019; Ren et al., 2021) are widely used in practice. Thus, it289

would be interesting to consider the online or active framework in change point detection for ranking290

data. Third, in the recent change point detection literature, incorporating temporal dependence is of291

growing interest (Chen et al., 2021; Wang and Zhao, 2022), so investigating how temporal dependence292

in the pairwise comparison data can affect our results seems like a worthwhile direction. Lastly, we293

assume that the compared pairs are randomly sampled from the full edge set, or the complete graph,294

making the comparison graph similar to an Erdös-Rényi graph. Although this setting is common in295

the literature (Chen et al., 2019, 2020), it does not explicitly show the impact of the graph topology296

of the comparison graph on ranking. Therefore, it would be very interesting to generalize our results297

to explicitly show the effect of the topology of the sampling graph.298

At last, we discuss potential societal impacts of our work. The BTL model does have applications299

with potentially undesirable societal impacts, e.g., sports-betting (McHale and Morton, 2011), which300

could amplify the negative impacts of gambling. We recommend using our method for research301

purposes rather than gambling-driven purposes.302

2https://gist.github.com/masterofpun/2508ab845d53add72d2baf6a0163d968
3Code repository: https://anonymous.4open.science/r/CPD_BT-4664
4Due to the limit of space, we include these results in Appendix A.3.

https://gist.github.com/masterofpun/2508ab845d53add72d2baf6a0163d968
https://anonymous.4open.science/r/CPD_BT-4664
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