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Abstract

Masked Autoencoders (MAE) have shown great potentials in self-supervised pre-1

training for language and 2D image transformers. However, it still remains an2

open question on how to exploit masked autoencoding for learning 3D representa-3

tions of irregular point clouds. In this paper, we propose Point-M2AE, a strong4

Multi-scale MAE pre-training framework for hierarchical self-supervised learning5

of 3D point clouds. Unlike the standard transformer in MAE, we modify the6

encoder and decoder into pyramid architectures to progressively model spatial7

geometries and capture both fine-grained and high-level semantics of 3D shapes.8

For the encoder that downsamples point tokens by stages, we design a multi-scale9

masking strategy to generate consistent visible regions across scales, and adopt10

a local spatial self-attention mechanism to focus on neighboring patterns. By11

multi-scale token propagation, the lightweight decoder gradually upsamples point12

tokens with complementary skip connections from the encoder, which further pro-13

motes the reconstruction from a global-to-local perspective. Extensive experiments14

demonstrate the state-of-the-art performance of Point-M2AE for 3D representation15

learning. With a frozen encoder after pre-training, Point-M2AE achieves 92.9%16

accuracy for linear SVM on ModelNet40, even surpassing some fully trained meth-17

ods. By fine-tuning on downstream tasks, Point-M2AE achieves 86.43% accuracy18

on ScanObjectNN,+3.36% to the second-best, and largely benefits the few-shot19

classification, part segmentation and 3D object detection with the hierarchical20

pre-training scheme.21

1 Introduction22

Learning to represent from unlabeled data without annotations, known as self-supervised learning,23

has attained great success in natural language processing [10, 31, 32, 5], computer vision [19, 7,24

8, 18] and multi-modality learning [30, 49, 21]. By pre-training on the large-scale raw data, the25

networks are endowed with robust representation abilities and can significantly benefit downstream26

tasks with fine-tuning. Motivated by masked language modeling [31, 10], MAE [18] and some27

other methods [45, 52, 3] adopt asymmetric encoder-decoder transformers [13] to apply masked28

autoencoding for self-supervised learning on 2D images. They represent the input image as multiple29

local patches, and randomly mask them with a high ratio to build the pretext task for reconstruction.30

Specifically, the encoder aims at capturing high-level latent representations from limited visible31

patches, and the lightweight decoder is forced to reconstruct the RGB values of masked patches on32

top. Despite its superiority on grid-based 2D images, we ask the question: can MAE-style masked33

autoencoding be adapted to irregular point clouds as a powerful 3D representation learner?34
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Figure 1: Comparison of MAE (Top) and our Point-M2AE (Bottom). MAE for 2D image pre-
training adopts standard transformer of the plain encoder and decoder, while Point-M2AE introduces
a hierarchical transformer with skip connections for multi-scale point cloud pre-training.

To tackle this challenge, we propose Multi-scale Masked autoencoders for learning the hierarchical35

representations of point clouds via self-supervised pre-training, termed as Point-M2AE. We represent36

a point cloud as a set of point tokens depicting different spatial local regions, and inherit MAE’s37

pipeline to first encode visible point tokens and then reconstruct the masked 3D coordinates. Different38

from 2D images, masked autoencoding for 3D point clouds has three characteristics to be considered.39

Firstly, it is critical to understand the relations between local parts and the overall 3D shapes, which40

have strong geometric and semantic dependence. As examples, the network can recognize an airplane41

starting from its wing, or segment the wing’s part from the airplane’s global feature. Therefore, we42

regard the standard transformer with the plain encoder and decoder is sub-optimal for capturing43

such local-global spatial relations in 3D, which directly downsamples the input into a low-resolution44

representation as shown in Figure 1 (Top). We modify both the encoder and decoder into multi-45

stage hierarchies for progressively encoding multi-scale features of point clouds, constructing an46

asymmetric U-Net [34] like architecture in Figure 1 (Bottom). In detail, the shallower stages of the47

encoder contain a larger number of point tokens to focus on local patterns, while the deeper stages48

merge spatially adjacent tokens to acquire global understanding. Secondly, as Point-M2AE encodes49

multi-scale point clouds unlike the single-scale 2D images, the unmasked visible regions are required50

to be block-wise within one scale and consistent across scales, which are respectively for reserving51

more complete local geometries and ensuring coherent feature learning for the network. For this, we52

introduce a multi-scale masking strategy, which generates random masks at the final scale with a53

high ratio (e.g., 80%), and back-projects the unmasked positions to all preceding scales. Thirdly, to54

better capture the fine-grained 3D geometries, we adopt a local spatial self-attention mechanism with55

increasing attention scopes for point tokens at different stages in the encoder, which refocus each56

token within neighboring detailed structures. Also, we utilize skip connections to complement the57

decoder with fine-grained information from the corresponding stages of the encoder.58

By the multi-scale pre-training, Point-M2AE can encode point clouds from local-to-global hier-59

archies and then reconstructs the masked coordinates from global-to-local perspectives, which60

learns powerful 3D representations and performs superior transfer ability. After self-supervised61

pre-training on ShapeNet [6], Point-M2AE achieves 92.9% classification accuracy for linear SVM62

on ModelNet40 [43] with the frozen encoder, which surpasses the runner-up CrossPoint [2] by63

+1.2% and even outperforms some fully supervised methods. By fine-tuning on various downstream64

tasks, Point-M2AE achieves 86.43% (+3.36%) accuracy on ScanObjectNN [37] and 94.0% (+0.8%)65

accuracy on ModelNet40 [43] for shape classification, 86.51% (+0.91%) instance mIoU on ShapeNet-66

Part [47] for part segmentation, and 95.0% (+2.7%) accuracy on 10-way 20-shot ModelNet40 for67
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few-shot classification. Our multi-scale masked autoencoding also benefits the 3D object detection68

on ScanNetV2 [9] by +1.3% AP25 and +1.3% AP50, which provides the detection backbone with69

a hierarchical understanding of the point clouds. We summarize the contributions of our paper as70

follows:71

1. We propose Point-M2AE, a strong masked autoencoding framework, which conducts hi-72

erarchical point cloud encoding and reconstruction for better learning multi-scale spatial73

geometries of 3D shapes.74

2. We introduce a U-Net like transformer architecture for MAE-style pre-training on point75

clouds, and adopt a multi-scale masking strategy to generate consistent visible regions across76

scales.77

3. Point-M2AE achieves state-of-the-art performance for transfer learning on various down-78

stream tasks, which indicates our approach to be a powerful representation learner for 3D79

point clouds.80

2 Related Work81

Pre-training by Masked Modeling. Compared to contrastive learning methods [19, 7, 8] that learn82

from inter-sample relations, self-supervised pre-training by masked autoencoding builds the pretext83

tasks to predict the masked parts of the input signals. The series of GPT [31, 32, 5] and BERT [11]84

apply masked modeling to natural language processing and achieve extraordinary performance85

boost on downstream tasks with fine-tuning. Inspired by this, BEiT [4] proposes to match image86

patches with discrete tokens via dVAE [33] and pre-train a standard vision transformer [13, 48]87

by masked image modeling. On top of that, MAE [18] directly reconstructs the raw pixel values88

of masked tokens and performs great efficiency with a high mask ratio. The follow-up works89

further improve the performance of MAE by momentum encoder [52], contrastive learning [3], and90

modified reconstruction targets [41]. For self-supervised pre-training on 3D point clouds, the masked91

autoencoding has not been widely adopted. Similar to BEiT, Point-BERT [48] utilizes dVAE to map92

3D patches to tokens for masked point modeling, but heavily relies on constrastive learning [19],93

complicated data augmentation, and the costly two-stage pre-training. In contrast, our Point-M2AE94

is a pure masked autoencoding method of one-stage pre-training, and follows MAE to reconstruct the95

input signals without dVAE mapping. Different from previous MAE methods adopting standard plain96

transformer, we propose a hierarchical transformer architecture along with the multi-scale masking97

strategy to better learn a strong and generic representation for 3D point clouds.98

Self-supervised Learning for Point Clouds. 3D representation learning without annotations has99

been widely studied in recent years. Mainstream methods mainly build the pretext tasks to reconstruct100

the transformed input point cloud based on the encoded latent vectors, such as rotation [27], defor-101

mation [1], rearranged parts [35] and occlusion [39]. From another perspective, PointContrast [44]102

utilizes contrastive learning between features of the same points from different views to learn discrimi-103

native 3D representations. DepthContrast [50] further extends the contrast for depth maps of different104

augmentations. CrossPoint [2] conducts cross-modality contrastive learning between point clouds105

and their corresponding rendering images to acquire rich self-supervised signals. Point-BERT [48]106

first introduces BERT-style pre-training for 3D point clouds with a standard transformer network and107

performs competitively on various downstream tasks. In this paper, we propose an MAE-style [18]108

pre-training framework, Point-M2AE, which reconstructs the highly masked 3D coordinates of the109

input point cloud for self-supervised learning. Point-M2AE with a hierarchical architecture achieves110

state-of-the-art downstream performance by learning the multi-scale representation of point clouds.111

3 Method112

The overall pipeline of Point-M2AE is shown in Figure 2, where we encode and reconstruct the point113

cloud by a hierarchical network architecture. In Section 3.1, We first introduce the masking strategy114

of Point-M2AE with multi-scale representations of point clouds. Then in Section 3.2 and Section 3.3,115

we present the details of our encoder and decoder with multi-stage hierarchies.116

3



Token

Merging

Token

Merging
𝑆-th Stage

Encoder

𝑇!"#$

Token

Emebeding
2-nd Stage

Encoder

1-st Stage

Decoder

Token

Propog.

(𝑆 − 1)-th

Stage

Decoder

… …
…

…

…

Reconstuction

Head

Skip
Connection

𝑇!$

{𝐻%&, 𝐻%$ }{𝐻!"#& , 𝐻!"#$ } {𝐻#&, 𝐻#$ }
Reconstructed 𝑃%→#

1-st Stage

Encoder

Multi–Scale Masking

Concatenate

Masked Tokens

Visiable Tokens

𝑇#$

…

𝑃#$

𝑃%$

𝑃!$

𝐻!"#&

…
…

Figure 2: Overall pipeline of Point-M2AE. After the multi-scale masking, we embed point tokens
at the 1-st scale and feed the visible ones into a hierarchical encoder-decoder transformer, which
captures both high-level semantics and fine-grained patterns of the point cloud during pre-training.

3.1 Multi-scale Masking117

To build a U-Net [34] like masked autoencoder for hierarchical learning, we encode the point cloud118

by S scales with different number of points at each scale, and correspondingly modify the standard119

plain encoder into the S-stage architecture. Following MAE, we embed the point cloud into discrete120

point tokens and randomly mask them for reconstruction. Importantly, for irregular-distributed points121

in the multi-scale architecture, the unmasked visible spatial regions are required to be consistent122

not only within one scale, but also across different scales. This is because the block-wise parts of123

3D shapes tend to preserve more complete fine-grained geometries, and the unmasked positions are124

better to be shared across all scales for coherent feature learning of the encoder. Therefore, as shown125

in Figure 3, we first construct the S-scale coordinate representations of the input point cloud and126

back-project the random masks from the final S-th scale to the earlier scales to avoid fragmented127

visible parts.128

S-scale Representations. We denote the input point cloud as P ∈ RN×3 and regard it as the 0-th129

scale. For the i-th scale, 1 ≤ i ≤ S, we utilize Furthest Point Sampling (FPS) to downsample the130

points from the (i − 1)-th scale, which produces seed points Pi ∈ RNi×3 for scale i of Ni points.131

Then, we adopt k Nearest-Neighbour (k-NN) to aggregate the neighboring k points for each seed132

point and obtain the neighbor indices Ii ∈ RNi×k. By successively downsampling and grouping, we133

acquire the S-scale representations {Pi, Ii}Si=1 of the input point cloud, where the number of points134

Ni gradually decreases and the inclusion relations between scales are recorded in Ii.135

Back-projecting Visible Positions. For seed points PS at the final S-th scale, we randomly mask136

them with a large proportion (e.g., 80%) and denote the remaining visible points as P v
S ∈ RNv

S×3137

of NS points. We then back-project the unmasked positions P v
S to ensure the consistent visible138

regions across scales. For the i-th scale, 1 ≤ i < S, we retrieve all the k nearest neighbors of139

P v
i+1 from the indices Ii+1 to serve as the visible positions P v

i , and mask the others. By recursively140

back-projecting, we obtain the visible and masked positions of all S scales, denoted as {P v
i , P

m
i }Si=1,141

where P v
i ∈ RNv

i ×3, Pm
i ∈ RNm

i ×3 and Ni = Nv
i +Nm

i .142

3.2 Hierarchical Encoder143

Based on the multi-scale masking, we embed the initial tokens of visible points P v
1 for the 1-st scale144

and them into the hierarchical encoder with S stages. Every stage is equipped with K stacked encoder145

blocks, and each block contains a local spatial self-attention layer and a Feed Forward Network (FFN)146

of MLP layers. Between every two consecutive stages, we introduce spatial token merging modules147

to aggregate adjacent visible tokens and enlarge receptive fields for downsampling the point clouds.148
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Figure 3: Multi-scale masking strategy. To obtain a consistent visible regions across scales, we
first represent the input point cloud by multi-scale coordinates and generate the random mask at the
highest one. Then, we back-project the unmasked visible positions to all earlier scales.

Token Embedding and Merging. Indexed by I1, we utilize a mini-PointNet [28] to extract and149

fuse the features of every seed point from P v
1 ∈ RNv

1 ×3 with its k nearest neighbors. After that,150

we obtain the initial point tokens T v
1 ∈ RNv

1 ×C1 for the 1-st stage of the encoder, which embeds151

Ne
1 local patterns of the 3D shape. Between the (i − 1)-th and i-th stages, 1 < i ≤ S, we merge152

T v
i−1 ∈ RNi−1×Ci−1 to acquire the downsampled point tokens for the i-th stage. We utilize MLP153

layers and a max pooling to integrate every k tokens nearest to P v
i indexed by Ii, which outputs154

T v
i ∈ RNi×Ci . Due to our multi-scale masking, the merged T v

i corresponds to the same visible parts155

of T v
i−1, which enables the consistent feature encoding across different scales. For larger i of deeper156

stages, we set higher feature dimension Ci to encode spatial geometries with richer semantics.157

Local Spatial Self-Attention. For smaller i of shallower stages, we expect each token to mainly158

focus on finer-grained information and not to be disturbed by long-range signals. Thus, we modify159

the original self-attention layer by a local spatial constraint that only neighboring tokens within a160

ball query [29] would be available for attention calculation. As the point tokens are downsampled161

by stages, we set increasing radii {ri}Si=1 of multi-scale ball queries for gradually expanding the162

attention scopes, which fulfills the local-to-global feature aggregation scheme.163

3.3 Hierarchical Decoder164

Via the hierarchical encoder, we obtain the encoded visible tokens {T v
i }Si=1 of all scales. Starting165

from the highest S-th scale, we assign a shared learnable mask token to all the masked positions Pm
S ,166

and concatenate them with the visible tokens T v
S . We denote them as {Hv

1 , H
m
1 } with coordinates167

{P v
S , P

m
S }, which serve as the input of the hierarchical decoder. We design the decoder to be168

lightweight with S − 1 stages and only one decoder block for each stage, which enforces the encoder169

to embed more semantics of the point clouds. Each decoder block consists of a vanilla self-attention170

layer and an FFN. We do not apply the local constraint to the attention in the decoder, since a global171

understanding between visible and mask tokens is crucial to the reconstruction.172

Point Token Upsampling. We upsample the point tokens between stages to progressively recover173

the fine-grained geometries of 3D shapes before reconstruction. We regulate that the j-th stage of174

the decoder corresponds to the (S + 1 − j)-th stage of the encoder, both of which contain point175

tokens of the same (S + 1− j)-th scale with the feature dimension CS+1−j . Between the (j − 1)-176

th and j-th stage, 1 < j ≤ S − 1, we upsample the tokens {Hv
j−1, H

m
j−1} from the coordinates177

{P v
S+2−j , P

m
S+2−j} into {P v

S+1−j , P
m
S+1−j} via the token propagation module. Specifically, we178

obtain the k nearest neighbors of each point token in {Hv
j−1, H

m
j−1} indexed by IS+2−j , and recover179

their neighbors’ features by weighted interpolation referring to PointNet++ [29], which generates the180

tokens {Hv
j , H

m
j } of the j-th stage.181

Skip Connections. To further complement the fine-grained geometries, we channel-wisely con-182

catenate the visible tokens Hv
j ∈ RNS+1−j×CS+1−j of the decoder with T v

S+1−j ∈ RNS+1−j×CS+1−j183

from the corresponding (S + 1− j)-th stage of the encoder via skip connections, and adopt a linear184

projection layer to fuse their features. For the mask tokens Hm
j , we keep them unchanged, since the185

encoder only contains visible tokens without the masked ones.186
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Table 1: Linear evaluation on Model-
Net40 [43] by SVM. We report different
self-supervised learning methods and un-
derline the second-best one.

Method Acc. (%)

3D-GAN [42] 83.3
Latent-GAN [38] 85.7
SO-Net [22] 87.3
FoldingNet [46] 88.4
MAP-VAE [17] 88.4
VIP-GAN [16] 90.2

DGCNN + Jiasaw [36] 90.6
DGCNN + OcCo [39] 90.7
DGCNN + CrossPoint [2] 91.2

Transformer + OcCo [48] 89.6
Point-BERT [48] 87.4
Point-M2AE 92.9
Improvement +1.7

Table 2: Shape classification on ModelNet40 [43].
‘#points’ and ‘Acc.’ denote the number of points for
training and the overall accuracy. [S] represents fine-
tuning after self-supervised pre-training.

Method #points Acc. (%)

PointNet [28] 1k 89.2
PointNet++ [29] 1k 90.5
PointCNN [23] 1k 92.2
[S] SO-Net [22] 5k 92.5
DGCNN [40] 1k 92.9
PCT [15] 1k 93.2
Point Transformer [51] - 93.7

Transformer [48] 1k 91.4
[S] Transformer + OcCo [48] 1k 92.1
[S] Point-BERT [48] 1k 93.2
[S] Point-BERT 4k 93.4
[S] Point-BERT 8k 93.8
[S] Point-M2AE 1k 94.0

Point Reconstruction. After S − 1 stages of the decoder, we acquire {Hv
S−1, H

m
S−1} with co-187

ordinates {P v
2 , P

m
2 } and reconstruct the masked values from the mask tokens Hm

S−1. Other than188

predicting values at the 0-th scale of the input point cloud P , we reconstruct the coordinates of189

Pm
1 , namely, recovering the masked positions of the 1-st scale Pm

1 ∈ RNm
1 ×3 from the 2-nd scale190

Pm
2 ∈ RNm

2 ×3. This is because {P v
1 , P

m
1 } of the 1-st scale could well represent the overall 3D191

shape and simultaneously preserve enough local patterns, which already constructs a comparatively192

challenging pretext task for pre-training. If we further upsample {Hv
S−1, H

m
S−1} into {Hv

S , H
m
S }193

and reconstruct the masked raw points from Pm
1 , the extra spatial noises and computational over-194

head would adversely influence our performance and efficiency. Therefore, for every token in195

Hm
S−1 ∈ RNm

2 ×C2 , we reconstruct its k nearest neighbors recorded in I2 by a reconstruction head of196

one linear projection layer and compute the loss by l2 Chamfer Distance [14], formulated as,197

P̂m
2→1 = Linear(Hm

S−1), where P̂m
2→1 ∈ RNm

2 ×k×3, (1)

LCD = CharmferDistance(Pm
2→1, P̂

m
2→1), (2)

where P̂m
2→1 and Pm

2→1 denote the predicted and ground-truth reconstruction coordinates from the198

2-nd scale to the 1-st scale. We only utilize LCD for supervision without contrastive loss to conduct199

a pure masked autoencoding for self-supervised pre-training.200

4 Experiments201

In Section 4.1 and Section 4.2, we introduce the pre-training experiments of Point-M2AE and report202

the fine-tuning performance on various downstream tasks. We also conduct ablation studies in203

Section 4.3 to validate the effectiveness of our approach.204

4.1 Self-supervised Pre-training205

Settings. We pre-train our Point-M2AE on ShapeNet [6] dataset, which contains 57,448 synthetic206

3D shapes of 55 categories. We set the stage number S as 3, and construct a 3-stage encoder and a207

2-stage decoder for hierarchical learning. We adopt 5 blocks in each encoder stage, but only 1 block208

per stage for the lightweight decoder. For the 3-scale point cloud, we set the point numbers, token209

dimensions, and radii of the local spatial attention layers respectively as {512, 256, 64}, {96, 192,210

384} and {0.32, 0.64, 1.28}. We also set different k for the k-NN at different scales, which are {16,211

8, 8}. We mask the highest scale of point clouds with a high ratio of 80% and set 6 heads for all the212

attention modules. The detailed training settings are in Appendix.213
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Table 3: Shape classification on ScanObjectNN [37]. We report the accuracy (%) on the three splits
of ScanObjectNN. [S] represents fine-tuning after self-supervised pre-training.

Method OBJ-BG OBJ-ONLY PB-T50-RS

PointNet [28] 73.3 79.2 68.0
PointNet++ [29] 82.3 84.3 77.9
DGCNN [40] 82.8 86.2 78.1
PointCNN [23] 86.1 85.5 78.5

Transformer [48] 79.86 80.55 77.24
[S] Transformer + OcCo [48] 84.85 85.54 78.79
[S] Point-BERT [48] 87.43 88.12 83.07
[S] Point-M2AE 91.22 88.81 86.43
Improvement +3.79 +0.69 +3.36

Linear SVM. After pre-training on ShapeNet, we test the 3D representation capability of Point-214

M2AE via linear evaluation on ModelNet40 [43]. We sample 1,024 points from each 3D shape215

of ModelNet40 and utilize our frozen encoder to extract their features. On top of that, we train216

a linear SVM and report the classification accuracy in Table 1. As shown, Point-M2AE achieves217

the best performance among all existing self-supervised methods for point clouds, and surpasses218

the second-best CrossPoint [2] by +1.7%. Point-M2AE also exceeds Point-BERT [48] by +5.5%,219

which is a masked point modeling method with a MoCo loss [19] but adopts a standard transformer220

and conducts single-scale learning. It is worth noting that even if we freeze all our parameters,221

Point-M2AE with 92.9% accuracy still outperforms many fully trained methods on ModelNet40, e.g.,222

90.5% by PointNet++ [29], 92.8% by DensePoint [24], etc. The experiments fully demonstrate the223

superior 3D representation capacity of our Point-M2AE.224

4.2 Downstream Tasks225

For fine-tuning on downstream tasks, we discard the hierarchical decoder in pre-training and append226

different heads onto the hierarchical encoder for different tasks.227

Shape Classification. We fine-tune Point-M2AE on two shape classification datasets: the widely228

adopted ModelNet40 [43] and the challenging ScanObjectNN [37]. We follow Point-BERT to use229

the voting strategy [25] for fair comparison on ModelNet40, which tests the model for several times230

with different point cloud augmentation and ensembles the predictions. To handle the noisy spatial231

structures, we increase k of k-NN into {32, 16, 16} for ScanObjectNN to encode local patterns with232

larger receptive fields. As reported in Table 2, Point-M2AE achieves 94.0% accuracy on ModelNet40233

with 1024 points per sample, which surpasses Point-BERT fine-tuned with 1024 points by +0.8%234

and 8192 points by +0.2%. For ScanObjectNN in Table 3, our Point-M2AE outperforms the second-235

best Point-BERT by a significant margin, +3.79%, +0.69% and +3.36%, respectively for the three236

splits, indicating our great advantages under complex circumstances by multi-scale encoding. As237

ScanObjectNN of real-world scenes has a large semantic gap with the pre-trained synthetic ShapeNet,238

Point-M2AE also exerts strong transfer ability to understand point clouds of another domain.239

Part Segmentation. We evaluate Point-M2AE for part segmentation on ShapeNetPart [47], which240

predicts per-point part labels and requires detailed understanding for local patterns. We adopt241

an extremely simple segmentation head to validate the effectiveness of our pre-training for well242

capturing both high-level semantics and fine-grained details. By the hierarchical encoder, we obtain243

3-scale point tokens of {512, 256, 64} points, and perform feature propagation in PointNet++ [29] to244

independently upsample the tokens into 2048 points of the input point cloud. Then, we concatenate245

the upsampled 3-scale features for each point and predict the part label by stacked linear projection246

layers. As reported in Table 4.2, Point-M2AE achieves the best 86.51% instance mIoU with the simple247

segmentation head, surpassing the second-best Point-BERT by +0.91%. Note that Point-BERT [48]248

and other methods [28, 29, 40] adopt hierarchical segmentation heads to progressively upsample the249
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Table 4: Few-shot classification on ModelNet40 [43]. We report the average accuracy (%) and
standard deviation (%) of 10 independent experiments.

Method 5-way 10-way

10-shot 20-shot 10-shot 20-shot

DGCNN [40] 91.8 ± 3.7 93.4 ± 3.2 86.3 ± 6.2 90.9 ± 5.1
[S] DGCNN + OcCo [39] 91.9 ± 3.3 93.9 ± 3.1 86.4 ± 5.4 91.3 ± 4.6

Transformer [48] 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3
[S] Transformer + OcCo [48] 94.0 ± 3.6 95.9 ± 2.3 89.4 ± 5.1 92.4 ± 4.6
[S] Point-BERT [48] 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1
[S] Point-M2AE 96.8 ± 1.8 98.3 ± 1.4 92.3 ± 4.5 95.0 ± 3.0
Improvement +2.2 +2.0 +1.3 +2.3

Table 5: Part segmentation on ShapeNetPart [47].
‘mIoUC’ (%) and ‘mIoUI ’ (%) denote the mean IoU
across all part categories and all instances in the
dataset, respectively.

Method mIoUC mIoUI

PointNet [28] 80.39 83.70
PointNet++ [29] 81.85 85.10
DGCNN [40] 82.33 85.20

Transformer [48] 83.42 85.10
[S] Transformer + OcCo [48] 83.42 85.10
[S] Point-BERT [48] 84.11 85.60
[S] Point-M2AE 84.86 86.51
Improvement +0.75 +0.91

Table 6: 3D object detection on Scan-
NetV2 [9]. We report the performance (%)
of self-supervised learning methods based
on VoteNet [12] and 3DETR-m [26].

Method AP25 AP50

VoteNet [12] 58.6 33.5
[S] STRL [20] 59.5 38.4
[S] PointContrast [44] 59.2 38.0
[S] DepthContrast [50] 61.3 –

3DETR [26] 62.1 37.9
3DETR-m [26] 65.0 47.0
[S] Point-M2AE 66.3 48.3
Improvement +1.3 +1.3

point features from intermediate layers, while our head contains no hierarchical structure and only250

relies on the pre-trained encoder to capture the multi-scale information of point clouds. The results251

fully demonstrate the significance of Point-M2AE’s multi-scale pre-training to segmentation tasks.252

Few-shot Classification. We conduct experiments for few-shot classification on ModelNet40 [43]253

to evaluate the performance of Point-M2AE with limited fine-tuning data. As reported in Table 4.2,254

Point-M2AE achieves the best performance for all four settings, and surpasses Point-BERT by +2.2%,255

+2.0%, +1.3%, and +2.7%, respectively. Our approach also shows smaller deviations than other256

transformer-based methods, which indicates Point-M2AE has learned to produce more universal 3D257

representations for well adapting to downstream tasks under low-data regimes.258

3D Object Detection To further evaluate our hierarchical pre-training on 3D object detection, we259

apply Point-M2AE to serving as the feature backbone on the indoor ScanNetV2 [9] dataset. We260

select 3DETR-m [26] as our baseline, which consists of a 3-block encoder and a transformer decoder.261

Considering the quite different dataset statistics, e.g., 2k input points for ShapeNet [6] and 50k input262

points for ScanNetV2, we adopt the same encoder architecture with that of 3DETR-m, and keep our263

hierarchical decoder with skip connections unchanged for self-supervised pre-training on ScanNetV2.264

More details of models and training are in Appendix. As reported in Table 4.2, compared to training265

from scratch, our hierarchical pre-training boosts the performance of 3DETR-m by +1.34% AP25 and266

+1.29% AP50. The experiments demonstrate the effectiveness of Point-M2AE to learn multi-scale267

point cloud encoding for object detection and its potential to benefit a wider range of 3D applications.268

4.3 Ablation Study269

We conduct ablation study by modifying one of the components at a time to test their effectiveness270

and explore the best masking strategy for self-supervised pre-training. We report the classification271

accuracy on ModelNet40 [43] by linear SVM to evaluate the pre-trained representations. For272
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Table 7: Effectiveness of Hierarchical Modules. ‘H’ repre-
sents the encoder and decoder with multi-stage hierarchies.
‘Skip C.’ and ‘Local SA’ denote the skip connections and
local spatial attention layers, respectively.

Encoder Decoder Skip C. Local SA Acc. (%)

H H ✓ ✓ 92.9
- - ✓ ✓ 90.7
- H ✓ ✓ 91.5
H - ✓ ✓ 92.2
H H - ✓ 92.1
H H ✓ - 92.3

Table 8: Different Masking Strat-
egy. ‘MS Mask’ and ‘Ratio’ de-
note the multi-scale masking and
the mask ratio.

MS Mask Ratio Acc. (%)

✓ 0.8 92.9
- 0.8 88.4
✓ 0.5 92.1
✓ 0.6 92.3
✓ 0.7 92.7
✓ 0.9 92.5

downstream tasks, we compare the performance between fine-tuning and training from scratch to273

validate the significance of our hierarchical pre-training.274

Hierarchical Modules. As reported in Table 7, on top of our final solution of Point-M2AE in the275

first row, we respectively experiment with removing the hierarchical encoder, hierarchical decoder,276

skip connections, and local spatial self-attention layers from our framework. Specifically, we replace277

our encoder and decoder with 1-stage plain architectures similar to MAE, which contains 15 and 2278

blocks of vanilla self-attention layers, respectively. We observe the absence of multi-stage structures279

either in encoder or decoder would hurt the performance, and the hierarchical encoder plays a better280

role than the decoder. Also, the skip connections and local spatial attention can well benefit the281

network by providing complementary information and local inductive bias.282

Masking Strategy. In Table 8, we report Point-M2AE with different mask settings. Without the283

multi-scale masking, we randomly generate masks at each scale, which leads to fragmented visible284

regions for all scales. With this strategy, the network would ‘peek’ different parts of the point cloud285

at different stages, which disturbs the representation learning and harms the performance by 4.5%286

accuracy. For different mask ratios, we find the 80% ratio performs the best to build a properly287

challenging pretext task for self-supervised pre-training.288

Table 9: With and without pre-training.
‘ModelNet40-FS’ denotes the few-shot classifica-
tion on 10-way 20-shot ModelNet40 [43].

Dataset w/o (%) w (%)

ModelNet40 [43] 92.5 94.0
ScanObjectNN [37] 83.9 86.4
ModelNet40-FS [43] 91.2 95.0
ShapeNetPart [47] 85.4 86.5

With and without Pre-training. We report289

Point-M2AE on downstream tasks with and290

without the pre-training in Table 9. For ‘w/o’,291

we randomly initialize our network and adopt292

the same training settings with fine-tuning. As293

shown, the hierarchical pre-training can largely294

boost the performance on four datasets respec-295

tively by +1.5%, +2.5%, +3.8%, and +1.1%,296

indicating the significance of our pre-training297

scheme.298

5 Conclusion299

We propose Point-M2AE, a multi-scale masked autoencoder for self-supervised pre-training on300

3D point clouds. With a hierarchical architecture, Point-M2AE learns to produce powerful 3D301

representations by encoding multi-scale point clouds and reconstructing the masked coordinates302

from a global-to-local upsampling scheme. Extensive experiments have shown the state-of-the-art303

performance of Point-M2AE on downstream tasks and our superiority to be a strong 3D represen-304

tation learner. Limitations. Although we have experimented Point-M2AE on various 3D tasks, its305

performance on open-world 3D object detection and scene segmentation has yet not been discussed.306

Our future work will focus on this direction to apply Point-M2AE for wider 3D applications. Societal307

Impact. We do not foresee negative social impact from the proposed work.308
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