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ABSTRACT

Machine learning has the potential to assist many communities in using the large
datasets that are becoming more and more available. Unfortunately, much of that
potential is not being realized because it would require sharing data in a way
that compromises privacy. In this paper, we investigate a method for ensuring
(differential) privacy of the generator of the Generative Adversarial Nets (GAN)
framework. The resulting model can be used for generating synthetic data on
which algorithms can be trained and validated, and on which competitions can be
conducted, without compromising the privacy of the original dataset. Our method
modifies the Private Aggregation of Teacher Ensembles (PATE) framework and
applies it to GANs. Our modified framework (which we call PATE-GAN) allows
us to tightly bound the influence of any individual sample on the model, resulting
in tight differential privacy guarantees and thus an improved performance over
models with the same guarantees. We also look at measuring the quality of syn-
thetic data from a new angle; we assert that for the synthetic data to be useful for
machine learning researchers, the relative performance of two algorithms (trained
and tested) on the synthetic dataset should be the same as their relative perfor-
mance (when trained and tested) on the original dataset. Our experiments, on
various datasets, demonstrate that PATE-GAN consistently outperforms the state-
of-the-art method with respect to this and other notions of synthetic data quality.

1 INTRODUCTION

More and more large datasets are becoming available in a wide variety of communities. In the U.S.
medical community, for example, the fraction of providers using electronic health records (EHR)
increased from 9.4% in 2008 to 83.8% in 2015 [19]. The availability of large datasets presents enor-
mous opportunities for collaboration between the data-holders and the machine learning community.
However, many of these large datasets, especially EHR, include sensitive information that prevents
data-holders from sharing the data.

The most common way to mitigate the privacy risk of sharing sensitive records is to de-identify
the records - but it is by now well-known that records that have been de-identified can be easily
re-identified by linking them to other identifiable datasets [28; 12; 22; 20; 13]. (This is especially
true for medical records of patients who have rare diseases.) However, if the purpose of sharing the
data is to develop and validate machine learning methods for a particular task (e.g. prognostic risk
scoring), real data is not necessary; it would suffice to have synthetic data that is sufficiently like the
real data.

Precisely what this means depends on how the synthetic data will be used. For example, the synthetic
data may be used to train models that will be deployed directly on real data. In this setting it is
important that these methods (which we trained entirely on synthetic data) perform as well as if they
had been trained on real data. Another setting to consider is one in which data-holders wish to use
the synthetic data to identify the best method(s) to be used on the real data [10]. In this setting, it
is not important that training on synthetic data leads to good performance on real data, but rather
that comparing two methods on the synthetic data results in conclusions similar to those that would
have been drawn from comparing the two methods on the real data. We evaluate our method in both
settings.
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Generative Adversarial Networks (GAN) [18] provide a powerful method for using real data to
generate synthetic data but it does not provide any rigorous privacy guarantees. Our method mod-
ifies the GAN machinery in a way that does guarantee privacy; the synthetic data is (differentially)
private [11] with respect to the original data. To do this we modify the training procedure of the
discriminator to be differentially private by using a modified version of the Private Aggregation of
Teacher Ensembles (PATE) [23; 24] framework. The Post-Processing Theorem [11] then guarantees
that the GAN generator - which is trained only using the differentially private discriminator - will
also be differentially private and thus so will the synthetic data it generates. We call our proposed
framework PATE-GAN.

Using two Kaggle datasets and two different real-world medical datasets, we evaluate the utility of
the samples generated by PATE-GAN in various settings with various levels of differential privacy.
In line with the settings outlined above, we consider two methods for evaluating the similarity of
synthetic datasets with a real dataset. The first method, first proposed in [14], compares the pre-
dictive performance of models trained on the synthetic datasets and tested on the real dataset. The
second method, which we propose for the first time here, compares the performance rankings of
predictive models on the synthetic datasets with their performance rankings on the real dataset. We
demonstrate that, for both of these methods, PATE-GAN consistently produces synthetic datasets
that are ”more like” the original real dataset than the synthetic datasets produced by the state-of-the-
art benchmark (DPGAN [29]).

The contributions of this paper can be summarized as follows: (1) we modify the PATE framework
and apply it to GANs to generate synthetic data, (2) we demonstrate in the experiments section
that using PATE to enforce differential privacy results in higher quality synthetic data than DPGAN
using various real-world datasets, (3) we propose a novel new metric for evaluating the generated
synthetic data.

2 RELATED WORKS

The most related previous work to this paper is DPGAN [29]. Like us, DPGAN proposes a frame-
work for modifying the GAN framework to be differentially private, also relying on the Post-
Processing Theorem to change the problem of learning a differentially private generator to learning
a differentially private discriminator. Their work uses a technique introduced by [1] that provides
a differentially private mechanism for training deep networks. The key idea is that noise is added
to the gradient of the discriminator during training to create differential privacy guarantees. Our
method is similar in spirit; during training of the discriminator differentially private training data
is used, which results in noisy gradients, however, we use the mechanism introduced in [23] which
we believe gives tighter differential privacy guarantees (via tighter bounds on the effect of a single
sample) than those provided in [1]. This means that for the same privacy guarantees, our method is
capable of producing higher quality synthetic data. For a visual representation of both PATE-GAN
and DPGAN, see the Appendix.

The proposed model modifies the PATE framework [23; 24] for use in a generative model setting
(specifically for use with GANs). The key to the GAN framework is that the discriminator is a
differentiable module trained to classify samples as either real or generated. The PATE framework
provides a differentially private mechanism for classification by training multiple teacher models
on disjoint partitions of the data. To classify a new sample each teacher’s output is evaluated on
the sample and then all outputs are noisily aggregated. This noisy aggregation, though, results
in a classifier that is not differentiable with respect to the parameters of the generator. In order
to overcome this problem we follow the idea of the student model, also proposed in [23], that
involves taking some public unlabelled data, labelling it using the standard PATE mechanism and
then training the student using the resulting labelled data. Because access to any public data is often
an unreasonable assumption in synthetic data generation, we adapt this training paradigm in a way
that does not require public data by training the student using only outputs from the (differentially
private) generator.

Some previous works generate synthetic data using summary statistics of the original data [21] or
based on specific domain-knowledge [5]; however, those methods are limited to low-dimensional
feature spaces and specific fields. [8] generates synthetic patient records using a GAN framework.
However, [8] focuses only on generating discrete variables, whereas PATE-GAN is capable of gener-
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ating mixed-type (continuous, discrete, and binary) variables. Furthermore, [8] does not provide any
differential privacy guarantees and instead uses ad-hoc notions of privacy which are only validated
empirically.

3 BACKGROUND

Let us denote the feature space by X , the label space by Y and write U = X ×Y . Let the dimension
of U be d. Suppose that X and Y are random variables over X and Y . We write U = (X, Y ) and
x, y,u to denote realizations of X, Y and U, respectively. The dataset D consists of N samples of
u, assumed i.i.d. according to PU denoted as D = {ui}Ni=1 = {(xi, yi)}Ni=1.

3.1 DIFFERENTIAL PRIVACY

We first provide some preliminaries on differential privacy [11] before describing PATE-GAN; we
refer interested readers to [11] for a thorough exposition of differential privacy. We will denote an
algorithm byM, which takes as input a dataset D and outputs a value from some output space, O.
Definition 1. (Neighboring Datasets) Two datasets D,D′ are said to be neighboring if

∃x ∈ D s.t. D \ {x} = D′. (1)

Definition 2. (Differential Privacy) A randomized algorithm, M, is (ε, δ)-differentially private if
for all S ⊂ O and for all neighboring datasets D,D′:

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ (2)

where P is taken with respect to the randomness ofM.

Differential privacy provides an intuitively understandable notion of privacy - a particular sample’s
inclusion or exclusion in the dataset does not change the probability of a particular outcome very
much: it does so by a multiplicative factor of eε and an additive amount, δ.

The following theorem, a proof of which can be found in [11], allows us to move the burden of
differential privacy to the discriminator; the differential privacy of the generator will follow by the
theorem.
Theorem. (Post-processing) LetM be an (ε, δ)-differentially private algorithm and let f : O → O′
where O′ is any arbitrary space. Then f ◦M is (ε, δ)-differentially private.

3.2 PRIVATE AGGREGATION OF TEACHER ENSEMBLES (PATE)

In this section we describe the PATE mechanism first defined in [23] and later improved upon by
[24]. The PATE mechanism provides a differentially private method for classification, a core com-
ponent of the GAN framework; the discriminator is a classifier trained to identify whether samples
are real/fake.

In order to build a differentially private classifier, the dataset is first divided into k disjoint subsets
D1, ...,Dk. k classifiers, T1, ..., Tk (referred to as teachers) are then trained separately on the k
sub-datasets (i.e. Ti is only trained on Di). Given a new input feature vector x to classify, the
differentially private output is given by passing x to each of the k teachers, and then performing a
noisy aggregation of the resulting outputs.

Formally, given the k teachers, m possible classes and an input feature vector, x, set

nj(x) = |{Ti : Ti(x) = j}| for j = 1, ...,m (3)

so that nj(x) is the number of teachers that output class j for x. The output of the PATEλ mechanism
for input x is then defined as

PATEλ(x) = arg max
j∈[m]

(nj(x) + Yj) (4)

where Y1, ..., Ym are i.i.d. Lap(λ) random variables. The following result, found in [23], follows
from [11].
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Theorem. The output of a single query to the PATEλ mechanism is ( 1
λ , 0)-differentially private.

In order to apply this framework in the GAN framework, however, we require that the discriminator
be differentiable, which the output of this classification mechanism is not (note that accessing the
internal parameters of the teachers would violate differential privacy, the only thing we have access
to in this case is the output). Instead, we draw on the PATE extension (also introduced in [23]) in
which a student model is trained. This student model (after being trained) is free to access, not only
its outputs given inputs but also its internal parameters. The model itself is differentially private.

Formally, the student, S, is a classifier that is trained by taking some public, unlabelled data,
P = {xi}Ki=1, passing each sample, xi, through the (standard) PATE mechanism, to receive a dif-
ferentially private label, ŷi, and forming a new (noisy-)teacher-labelled dataset P̂ = {(xi, ŷi)}Ki=1
on which the student is then trained.

Importantly, we can make the student differentiable - it can be modelled using any classifier, such
as a neural net. Moreover, querying the student is “free” - there is no privacy cost associated with
passing an input to the student and receiving an output, the only privacy cost is in acquiring the data
on which to train the student. We state the following result which follows from the analysis in [23].

Theorem. The student, S, trained on the dataset P̂ where labels were generated according to the
PATEλ mechanism using λ = K

2ε , is (ε, 0)-differentially private with respect to the original data D.

4 PROPOSED METHOD: PATE-GAN

The proposed method builds on GAN and PATE frameworks. We replace the GAN discriminator
with a PATE mechanism so that our discriminator is differentially private, but require the (differen-
tiable) student version to allow back-propagation to the generator. We modify the implementation
of the student, noting that the training paradigm presented in [23] is not appropriate for this setting
due to the lack of publicly available data. Before training, we partition the dataset into k subsets,
D1, ...,Dk, with |Di| = |D|

k for ∀i.

4.1 GENERATOR

The generator, G, is as in the standard GAN framework. Formally it is a function G(·; θG) :
[0, 1]d → U , parametrized by θG that takes random noise, z ∼ Unif([0, 1]d), as input and out-
puts a vector in U = X × Y . The generator will be trained to minimize its loss with respect to the
student-discriminator. Given n i.i.d. samples of Unif([0, 1]d), z1, ..., zn, the empirical loss of G at
θ for fixed S is defined by

LG(θG;S) =

n∑
j=1

log(1− S(G(zj ; θG))). (5)

We will denote by PG the distribution induced by G over U .

4.2 DISCRIMINATOR

In the standard GAN framework, there is a single discriminator, D, that is trained in a directly
adversarial fashion with G, where at each iteration either G is trying to improve its loss with respect
to D or D is trying to improve its loss with respect to G. In our proposed model, however, we
replaceD with the PATE mechanism. This means we introduce k teacher-discriminators, T 1, ..., T k,
and a student discriminator, S. A noticeable difference is that the adversarial training is no longer
symmetrical: the teachers are now being trained to improve their loss with respect to G but G is
being trained to improve its loss with respect to the student S which in turn is being trained to
improve its loss with respect to the teachers.

4.2.1 TEACHER-DISCRIMINATORS

Formally, the teacher-discriminators (which we will refer to simply as teachers) are functions
T1(·; θ1T ), ..., Tk(·; θkT ) : U → [0, 1] each parametrized by θiT . The teachers are given either a
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real sample from their corresponding partition of the dataset (i.e. Ti may receive a sample from Di)
as input or a sample from the generator. The teachers are then trained to classify them.

Given n i.i.d. samples of Unif([0, 1]d), z1, ..., zn, we define the empirical loss of teacher i with
weights θiT for fixed G by

LiT (θiT ) = −
[ ∑
u∈Di

log Ti(u; θiT ) +

n∑
j=1

log(1− Ti(G(zj); θ
i
T ))
]
. (6)

Each teacher is trained in the same way the discriminator is trained in a standard GAN framework,
except that here the teacher only ever sees its partition of the real data.

4.2.2 STUDENT-DISCRIMINATORS

The main innovation of our paper comes from our implementation of the student-discriminator
(which we will refer to simply as the student) in this setting. The differential privacy guarantee
provided by the standard student model is only with respect to the original data, D, and not the
public data, P , used to train the student. In our setting, where the entire focus is on generating
synthetic data because no data is publicly available, we must propose a novel methodology to train
the student without public data.

We first note, that the student training paradigm described in [23] would involve training the student
using data similar to that used to train the generator - i.e. by taking an equal number of samples from
each and then labelling those using the standard PATEλ mechanism (where here “labelling” refers
to assigning them a real/fake label - not the label y present in the data). We consider the implications
of training the student on teacher-labelled generated samples only.

We first observe that during training of the generator, the discriminator is only evaluated on samples
from the generator itself, and not the real data, so by training the student only on generated samples
we are in fact training it on the distribution we need it to perform well on. However, we note that
if the student only sees unrealistic samples from the generator (i.e. generated samples that most
teachers label as fake), then the student will not contain any information that the generator can use
to improve its generated samples. It is therefore important that some of the generated samples the
student is trained on are realistic. We then note that if Supp(PU ) ⊂ Supp(PG) then some of the
generated samples will be realistic.

In order to ensure Supp(PU ) ⊂ Supp(PG), we normalize the data into [0, 1]d and then initialize
the parameters of the generator randomly using Xavier initialization. It follows that Supp(P) ⊂
[0, 1]d ⊂ G([0, 1]d) = G(Supp(Z)) = Supp(G(Z)) when Z ∼ Unif([0, 1]d).

We create our training data for the student by taking n i.i.d. samples of Unif([0, 1]d), z1, ..., zn,
generating n samples using the generator, û1, ..., ûn with ûj = G(zj), and using the teachers to
label these using PATEλ, setting rj = PATEλ(ûj). We train the student, S(·; θS) : U → [0, 1], to
maximize the standard cross-entropy loss on this teacher-labelled data, i.e.

LS(θS) =

n∑
j=1

rj logS(ûj ; θS) + (1− rj) log(1− S(ûj ; θS)). (7)

Although a priori the above mechanism does not appear to depend on the number of teachers, it
should be noted that for fixed λ, more teachers results in the teacher-labelled dataset being less
noisy - the noise being added is smaller relative to the counts nj . This introduces a trade-off - for a
small number of teachers, the noise may be too large and thus render the output meaningless; with
a larger number of teachers, less data can be used to train each teacher, which may also render the
output meaningless, even though the noise has a smaller effect. Finding the right balance in this
problem is key. In our experiments, we use d real and d generated samples to train each teacher
where d is the dimension of the input space. Although the utility of a single teacher may be low,
by aggregating (even noisily) the resulting classifier actually has high utility. Moreover, by using
a minimal number of samples for each teacher, the effect of any individual sample on the output is
small (because there are more teachers and each sample can effect at most 1 teacher) which means
that our differential privacy guarantees are tighter - if we used fewer teachers, the mechanism still
assumes that, in the worst case, the presence (or absence) of a single sample can completely flip a
teacher’s vote and so we still need to add the same noise.
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We train G, T 1, ..., T k and S iteratively1, with each iteration of G consisting of first performing nT
updates on all teachers, then performing nS updates of the student. We perform generator iterations
until our privacy constraint, ε, has been reached. A block diagram of PATE-GAN can be found in
the Appendix.

To calculate the privacy of our algorithm we use the moments accountant method given in [23] to
derive a data-dependent privacy guarantee at run-time. Details of its definition, and key results we
use can be found in the Appendix. We denote the moments accountant of PATE-GAN by α(l). The
moments accountant allows us to more tightly bound the total privacy cost of our mechanism than
standard composition theorems would, and moreover attributes a lower privacy cost to accessing
the noisy aggregation of the teachers when the teachers have a stronger consensus with the intuition
being that when the teachers have a strong consensus, a single teacher (and therefore a single sample)
has a much lower influence on the output than when the votes (n0 and n1) are close. Pseudo-code
for PATE-GAN can be found in Algorithm 1.

We now state the main theorem of the paper, which follows from the theory in [23].
Theorem 1. Algorithm 1, which takes as input δ > 0, a dataset, D, and outputs G and ε is (ε, δ)-
differentially private.

The proof relies on applying the post-processing theorem where the discriminator corresponds to
the mechanism M which takes outputs in O (in our case this corresponds to the weights of the
discriminator), and the generator corresponds to the function f which maps from O to O (which
corresponds to the weights of the generator). For full details of the proof and further details of the
theory required for it, see the Appendix.

Algorithm 1 Pseudo-code of PATE-GAN
1: Input: δ, D, nT , nS , batch size n, number of teachers k, noise size λ
2: Initialize: θG, θ1T , ..., θ

k
T , θS , α(l) = 0 for l = 1, ..., L

3: Partition dataset into k subsets D1, ...,Dk of size |D|k
4: while ε̂ < ε do
5: for t2 = 1, ..., nT do
6: Sample z1, ..., zn

i.i.d.∼ PZ
7: for i = 1, ..., k do
8: Sample u1, ...,un

i.i.d.∼ Di
9: Update teacher, Ti, using SGD

10: ∇θiT −
[∑d

j=1 log(Ti(uj)) + log(1− Ti(G(zj)))
]

11: for t3 = 1, ..., nS do
12: Sample z1, ..., zn

i.i.d.∼ PZ
13: for j = 1, ..., n do
14: ûj ← G(zj)
15: rj ← PATEλ(ûi) for j = 1, ..., n
16: Update moments accountant
17: q ← 2+λ|n0−n1|

4 exp(λ|n0−n1|)
18: for l = 1, ..., L do

19: α(l)← α(l) + min{2λ2l(l + 1), log((1− q)
(

1−q
1−e2λq

)l
+ qe2λl)}

20: Update the student, S, using SGD
21: ∇θS −

∑n
j=1 rj logS(ûj) + (1− rj) log(1− S(ûj))

22: Sample z1, ..., zn
i.i.d.∼ PZ

23: Update the generator, G, using SGD
24: ∇θG

[∑n
i=1 log(1− S(G(zi))

]
25: ε̂← min

l

α(l)+log( 1
δ )

l

26: Output: G

1The teachers can be trained in parallel.

6



Under review as a conference paper at ICLR 2019

5 EXPERIMENTS

In this section, we use a real-world Kaggle dataset (Credit card fraud detection dataset [10]) to eval-
uate PATE-GAN against the state-of-the-art benchmark (DPGAN [29]). Results for three additional
datasets (with various characteristics) MAGGIC [25], UNOS-Heart wait-list [6] and Kaggle cervical
cancer dataset [15] are given in the Appendix due to space limitations. Details of all four datasets
can be also found in the Appendix.

5.1 EXPERIMENTAL SETTINGS

To empirically validate the quality of the generated dataset we introduce three different training-
testing settings. Setting A: train the predictive models on the real training set, test the performance
of the models on the real testing set. Setting B: train on the synthetic training set, test on the real
testing set ([14]), Setting C: train on the synthetic training set, test on the synthetic testing set. Note
that the training set and the testing set are disjoint in both the real and synthetic datasets.

We are interested in two comparisons. If we see a high predictive performance on the real data
for models that were trained on synthetic data (Setting B), we can infer that the synthetic data has
captured the relationship between features and labels well. Moreover, synthetic data that does well
in this setting can be used to train models without ever seeing the real data.

On the other hand, when we consider synthetic data for use in competitions such as Kaggle, we need
synthetic data that allows researchers to do meaningful comparisons on the synthetic data. In this
setting, the researchers will only be able to use the synthetic data as both the training and testing
set, and will need to develop their algorithms using results on the synthetic data. Now it becomes
important that the relative performance of two algorithms when trained and tested on the synthetic
data (Setting C), is similar to their relative performance when trained and tested on the real data
(Setting A). A simple requirement would be that if model 1 is better than model 2 on the real data,
then model 1 is better than model 2 on the synthetic data. This allows researchers to use the synthetic
data to choose the best method(s) to try on the real data (or rather to give to the data-holder to try on
the real data).

For both comparisons, we use 12 different predictive models, shown in Table 1. We use two perfor-
mance metrics to measure the capability of each model in predicting the label: (1) area under the re-

AUROC AUPRC
GAN PATE-GAN DPGAN GAN PATE-GAN DPGAN

Logistic Regression 0.8950 0.8728 0.8720 0.4069 0.3907 0.3923

Random Forests [4] 0.9075 0.8980 0.8730 0.3219 0.3157 0.2926

Gaussian Naive Bayes [27] 0.8861 0.8817 0.8522 0.1963 0.1858 0.1601

Bernoulli Naive Bayes [27] 0.8997 0.8968 0.8891 0.2169 0.2099 0.2069

Linear SVM [9] 0.7611 0.7523 0.7502 0.4473 0.4466 0.4464

Decision Tree [26] 0.9102 0.9011 0.8647 0.4071 0.3978 0.3672

LDA [2] 0.8710 0.8510 0.8487 0.1956 0.1852 0.1788

AdaBoost [16] 0.9143 0.8952 0.8809 0.4530 0.4366 0.4234

Bagging [3] 0.8951 0.8877 0.8657 0.3303 0.3221 0.3073

GBM [17] 0.8848 0.8709 0.8499 0.3057 0.2974 0.2773

Multi-layer Perceptron 0.9086 0.8925 0.8787 0.4790 0.4693 0.4600

XgBoost [7] 0.9058 0.8904 0.8637 0.3837 0.3700 0.3440

Average 0.8866 0.8737 0.8578 0.3453 0.3351 0.3219

Table 1: Performance comparison of 12 different predictive models in Setting B (trained on synthetic, tested on
real) in terms of AUROC and AUPRC (the generators of PATE-GAN and DPGAN are (1, 10−5)-differentially
private).
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ceiver operating characteristics curve (AUROC), (2) area under the precision recall curve (AUPRC).
Throughout the experiments we fix δ = 10−5 for use as input to PATE-GAN and DPGAN. We also
report the performance of the original GAN framework (”GAN”), which serves to indicate an upper
bound on performance and allows us to see how much performance is lost due to the two differential
privacy mechanisms (PATE-GAN and DPGAN). The details of hyper-parameter optimization and
benchmark implementations can be found in the Appendix.

5.2 RESULTS WITH SETTING B

In this subsection, we evaluate PATE-GAN and DPGAN in Setting B (trained on synthetic, tested
on real) to understand whether or not the models are capturing the feature-label relationships well.
Intuitively, if a synthetic dataset is such that a model trained on it performs well when performance
is measured on real data, then the relationship between feature and label in the synthetic data is
similar to that in the real data. Table 1 shows that the synthetic samples generated by PATE-GAN
conserve the original relationship between feature and label better than DPGAN (as can be seen
from the table, we outperform DPGAN in all cases).

5.3 VARYING THE PRIVACY CONSTRAINT (ε)

epsilon (with delta = 10-5)
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Figure 1: Average AUROC performance across 12 different predictive models trained on the synthetic dataset
generated by PATE-GAN and DPGAN with various ε (with δ = 10−5) (Setting B).

In Fig. 1, we investigate the trade off between privacy constraint and utility. In the table we report
the average performance of AUROC over the 12 different predictive models for PATE-GAN and
the benchmark for various ε (with δ = 10−5). As can be seen in Fig. 1, PATE-GAN is consistently
better than DPGAN over the entire range of tested ε. We believe this is because the PATE mechanism
allows us to more tightly bound the influence of a single sample on the discriminator, and hence we
can provide tighter differential privacy guarantees - when the differential privacy guarantee is fixed,
this results in higher quality synthetic data.

5.4 SETTING A VS SETTING C: PRESERVING THE RANKING OF PREDICTIVE MODELS

As discussed at the beginning of this section, it is important that the synthetic dataset respects the
ranking of models (in terms of their prediction performances). Suppose that we have L predictive
models, f1, f2, ..., fL2. Furthermore, suppose that the performance of model i when trained and
tested on the real data (Setting A) is Ai ∈ R and that the performance of model i when trained and
tested on the synthetic data (Setting C) is Ci ∈ R. Then we define the agreed ranking probability by

po({Ai}Li=1, {Ci}Li=1) =
1

L(L− 1)

L∑
j=1

∑
k 6=j

I
(

(Aj −Ak)× (Cj − Ck) > 0
)

(8)

where I is an indicator function. Note that the summand is 1 when the ordering of algorithms j and
k are the same in both settings, and is 0 when the ordering in one setting differs from the ordering
in the other.

2For the results in Table 2, we use the same 12 predictive models as used in Table 1
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PATE-GAN DPGAN PATE-GAN DPGAN
ε = 0.01 0.6909 0.5273 ε = 1 0.8364 0.8000

ε = 0.05 0.7455 0.6909 ε = 5 0.8909 0.8364

ε = 0.1 0.7818 0.7455 ε = 10 0.9091 0.8909

ε = 0.5 0.8000 0.7818 ε = 50 0.9091 0.9091

Table 2: Agreed ranking probability of PATE-GAN and the benchmark when comparing Setting A and Setting
C with various ε (with δ = 10−5) in terms of AUROC. The agreed ranking probability of Original GAN is
0.9091 which is the same as PATE-GAN with ε = 50.

We compare the agreed ranking probability of PATE-GAN and the benchmarks for various ε (with
δ = 10−5)3. As can be seen in Table 2, PATE-GAN achieves the best agreed ranking probability
across all values of ε. We also compare the ranking of variables by their importance (determined
by their absolute Pearson correlation coefficient with the label) on the original dataset and on the
synthetic dataset (generated by PATE-GAN and the benchmark) and report the results using agreed
ranking probability in the Appendix.

5.5 QUANTITATIVE ANALYSIS ON THE NUMBER OF TEACHERS

The number of teachers is a hyper-parameter of PATE-GAN and we choose the number of teachers
among {N/10, N/50, N/100, N/500, N/1000, N/5000, N/10000} where N is the total number
of samples. As we described in the previous section, there is a trade-off between number of teach-
ers and the corresponding quality of the synthetic data. Table 3 quantitatively shows the trade-off
between the number of teachers and the performance (in terms of both AUROC and AUPRC).

# of teachers N/10 N/50 N/100 N/500 N/1000 N/5000 N/10000

AUROC 0.5425 0.6398 0.7638 0.8343 0.8737 0.8655 0.8282
AUPRC 0.1273 0.2484 0.2900 0.3184 0.3351 0.3278 0.3092

Table 3: Trade-off between the number of teachers and the performances (AUROC, AUPRC)

6 DISCUSSION

In this paper we introduced a novel methodology for generating differentially private synthetic data.
Through several experiments we demonstrated the ability of our method to produce high quality
synthetic data while being able to give strict differential privacy guarantees.

In order to apply PATE to the GAN setting, we needed to use the original GAN framework. Extend-
ing PATE to the regression setting so that, for example, a Wasserstein GAN can be used instead, is
an open and interesting question, and a potential direction for future research.

3The ordering of models according to Table 1 is in fact quite consistent - the average agreed ranking prob-
ability (now applied to different folds of the data, rather than real vs. synthetic data) is 0.9273 (for AUROC).
The rankings used are therefore sufficiently stable for this to be a meaningful metric.
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APPENDIX

THEORY REQUIRED FOR THEOREM 1

Theorem 2. Algorithm 1, which takes as input δ > 0, a dataset, D, and outputs G and ε is (ε, δ)-
differentially private.

In order to prove our theorem, we define the moments accountant [1] and state the theorems that the
data-dependent privacy guarantees of the PATE mechanism rely on. For proofs of the results below,
see [23] and the references therein.
Definition 3. (Privacy Loss) Let M be a randomized algorithm taking outputs in a space O and
D,D′ be neighbouring datasets. Let aux denote an auxiliary input. For an outcome o ∈ O, the
privacy loss at o is defined as:

c(o;M, aux,D,D′) = log
P(M(aux,D) = o)

P(M(aux,D′) = o)
. (9)

The privacy loss random variable C(M, aux,D,D′) is defined as c(M(D);M, aux,D,D′), i.e.
the random variable defined by evaluating the privacy loss at an outcome sampled fromM(D).

Definition 4. (Moments accountant) LetM be a randomized algorithm. The moments accountant
is defined as:

αM(l) = max
aux,D,D′

αM(l; aux,D,D′) (10)

where αM(l; aux,D,D′) = logE(exp(lC(M, aux,D,D′))) is the moment generating function of
the privacy loss random variable and the max is taken over neighbouring datasets D,D′.
Theorem 3. (Composability) Suppose that an algorithm M consists of a sequence of adaptive
algorithms M1, ...,Mk where Mi outputs in Oi and takes inputs from Πi−1

j=1Oj as well as the
dataset D. Then for any output sequence o1, ..., ok−1 and any l

αM(l;D,D′) =

k∑
i=1

αMi
(l; o1, ..., oi−1,D,D′) (11)

where αM is conditioned on eachMi’s output being oi.

Theorem 4. (Tail bound) Let M be a randomized algorithm. For any ε > 0, M is (ε, δ)-
differentially private for

δ = min
l

exp(αM(l)− lε). (12)

The following theorem combines Theorems 2, 3 and Lemma 4 from [23].
Theorem 5. (Data-dependent privacy guarantee for PATE) LetM be the PATE mechanism defined
in Section 3 of the paper. Let n0, n1 be as defined in Equation 3 of the paper. Let q = 2+λ|n0−n1|

4 exp(λ|n0−n1|) .
Then

αM(l) ≤ min{2λ2l(l + 1), log((1− q)
(

1− q
1− e2λq

)l
+ qe2λl)}. (13)

Proof of Theorem 2. We use Theorem 5 to bound the moments accountant for each query to the
PATE mechanism during the training of our algorithm (i.e. each time a generated sample is labeled
by the teachers). Theorem 3 then allows us to sum the individual bounds for each query to bound
the moments accountant of the entire algorithm. Theorem 4 then allows us to derive a value for ε
given δ.

12
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DATA DESCRIPTIONS

KAGGLE CREDIT CARD FRAUD DETECTION DATA DESCRIPTION

The Kaggle credit card fraud detection dataset [10] contains transactions made by credit cards in
September 2013 by European cardholders and the label is whether or not the transaction is fraudu-
lent. The total number of features is 29 (binary: 0, continuous: 29) and the number of samples in this
dataset is 284,807. Among the 284,807 samples, 492 (0.2%) samples are fraudulent transactions.

MAGGIC DATA DESCRIPTION

The Meta-analysis Global Group in Chronic Heart Failure (MAGGIC) dataset [25] is a collection
of 30 different datasets from 30 different medical studies containing patients who experienced heart
failure. We set the label of each patient as 1-year all-cause mortality, excluding all patients who
are censored before 1-year. The total number of features is 29 (binary: 20, continuous: 9) and the
number of patients in this dataset is 30,389. Among the 30,389 patients, 5,723 (18.8%) patients died
within 1 year.

UNOS DATA DESCRIPTION

The United Network for Organ Transplantation (UNOS) dataset [6] provides information about all
patients in the U.S. who have received a transplantation or were on the wait-list during the period
1985-2015. In this paper, we focus on the patients who were on the heart transplant wait-list. The
objective is to predict 1-year all-cause mortality. The total number of features is 20 (binary: 18,
continuous: 2) and the number of patients in this dataset is 23,706. Among the 23,706 patients,
12,606 (53.2%) patients died within 1 year.

KAGGLE CERVICAL CANCER DATA DESCRIPTION

The Kaggle cervical cancer dataset [15] was collected at ’Hospital Universitario de Caracas’ in
Caracas, Venezuela. It contains demographic information, habits, and historic medical records. The
total number of features is 35 (binary: 24, continuous: 11) and the number of patients in this dataset
is 858. Among the 858 patients, 55 (6.4%) patients have positive biopsy.

HYPER-PARAMETER OPTIMIZATION

In all experiments, the depth of the generator and discriminator (student-discriminator in our case) in
both PATE-GAN and the DPGAN benchmark [29] is set to 3. The depth of the teacher discriminators
is set to 1. The number of hidden nodes in each layer is d, d/2 and d (where d is the feature
dimension), respectively. We use relu as the activation functions of each layer except for the output
layer where we use the sigmoid activation function and the batch size is 64 for both the generator
and discriminator. We set nT = nS = 5. Using cross validation, we select the number of teachers,
k, among N/10 N/50 N/100 N/500 N/1000 N/5000 N/10000. The learning rate is 10−4 and we use
Adam Optimizer to minimize the loss function.

We use tensorflow to implement PATE-GAN and DPGAN. For DPGAN we use the code from
the following link: https://github.com/illidanlab. We use the sklearn package in
python to implement the 12 predictive models: Logistic Regression (LogisticRegression), Random
Forests (RandomForestClassifier), Gaussian Naive Bayes (GaussianNB), Bernoulli Naive Bayes
(BernoulliNB), Linear Support Vector Machine (svm), Decision Tree (DecisionTree), Linear Dis-
criminant Analysis Classifier (LinearDiscriminantAnalysis), Adaptive Boosting (AdaBoost) (Ad-
aBoostClassifier), Bootstrap Aggregating (Bagging) (BaggingClassifier), Gradient Boosting Ma-
chine (GBM) (GradientBoostingClassifier), Multi-layer Perceptron (MLPClassifier), and XgBoost
(XGBoostRegressor).
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ADDITIONAL RESULTS

PRESERVING THE RANKING OF VARIABLE IMPORTANCE IN KAGGLE CREDIT DATASET

We compare the ranking of variables by their importance (determined by their absolute Pearson
correlation coefficient with the label) on the original dataset and on the synthetic dataset (generated
by PATE-GAN and the benchmark) and report the results using agreed ranking probability. As can
be seen in Table 4, PATE-GAN achieves consistently better agreed ranking probability across all
values of tested ε (with δ = 10−5).

PATE-GAN DPGAN PATE-GAN DPGAN
ε = 0.01 0.8810 0.7963 ε = 1 0.9048 0.8783

ε = 0.05 0.8968 0.8148 ε = 5 0.9127 0.8915

ε = 0.1 0.8968 0.8333 ε = 10 0.9153 0.8942

ε = 0.5 0.9021 0.8545 ε = 50 0.9153 0.9021

Table 4: Agreed ranking probability of PATE-GAN and the benchmark to order the features by variable impor-
tance in terms of absolute Pearson correlation coefficient

MAGGIC DATASET RESULT

AUROC AUPRC
GAN PATE-GAN DPGAN GAN PATE-GAN DPGAN

Logistic Regression 0.6645 0.6413 0.6415 0.3113 0.2951 0.2967

Random Forests 0.6492 0.6397 0.6147 0.2953 0.2891 0.2660

Gaussian Naive Bayes 0.6770 0.6726 0.6431 0.3258 0.3153 0.2896

Bernoulli Naive Bayes 0.6647 0.6618 0.6541 0.3008 0.2938 0.2908

Linear SVM 0.6410 0.6301 0.6322 0.2911 0.2904 0.2902

Decision Tree 0.6689 0.6598 0.6234 0.3163 0.3070 0.2764

LDA 0.6656 0.6433 0.6456 0.3118 0.2950 0.3014

AdaBoost 0.6524 0.6333 0.6190 0.3054 0.2890 0.2758

Bagging 0.6454 0.6380 0.6160 0.2912 0.2830 0.2682

GBM 0.6609 0.6470 0.6260 0.3106 0.3023 0.2822

Multi-layer Perceptron 0.6390 0.6229 0.6091 0.2921 0.2824 0.2731

XgBoost 0.6604 0.6450 0.6183 0.3133 0.2996 0.2736

Average 0.6574 0.6446 0.6286 0.3054 0.2952 0.2820

Table 5: Performance comparison of 12 different predictive models in Setting B (trained on synthetic, tested on
real) in terms of AUROC and AUPRC (the generators of PATE-GAN and DPGAN are (1, 10−5)-differentially
private). GAN is (∞,∞)-differentially private and is given to indicate an upper bound of PATE-GAN and
DPGAN.
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UNOS HEART WAIT DATASET RESULT

AUROC AUPRC
GAN PATE-GAN DPGAN GAN PATE-GAN DPGAN

Logistic Regression 0.6407 0.6155 0.5548 0.6691 0.6450 0.5901

Random Forests 0.6159 0.5950 0.5574 0.6436 0.6129 0.5768

Gaussian Naive Bayes 0.6323 0.6015 0.5343 0.6648 0.6371 0.5824

Bernoulli Naive Bayes 0.6213 0.6045 0.5763 0.6501 0.6363 0.6077

Linear SVM 0.6244 0.5979 0.5581 0.6486 0.6254 0.5892

Decision Tree 0.6209 0.6019 0.5590 0.6496 0.6284 0.5819

LDA 0.6403 0.6077 0.5530 0.6682 0.6406 0.5882

AdaBoost 0.6222 0.5928 0.5527 0.6404 0.6194 0.5826

Bagging 0.6084 0.5858 0.5493 0.6325 0.6074 0.5693

GBM 0.6374 0.6040 0.5585 0.6679 0.6352 0.5920

Multi-layer Perceptron 0.6328 0.5927 0.5562 0.6629 0.6240 0.5856

XgBoost 0.6362 0.5956 0.5533 0.6676 0.6267 0.5880

Average 0.6277 0.5996 0.5552 0.6554 0.6282 0.5862

Table 6: Performance comparison of 12 different predictive models in Setting B (trained on synthetic, tested on
real) in terms of AUROC and AUPRC (the generators of PATE-GAN and DPGAN are (1, 10−5)-differentially
private). GAN is (∞,∞)-differentially private and is given to indicate an upper bound of PATE-GAN and
DPGAN.
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KAGGLE CERVICAL CANCER DATASET RESULT

AUROC AUPRC
GAN PATE-GAN DPGAN GAN PATE-GAN DPGAN

Logistic Regression 0.9188 0.9102 0.8945 0.5949 0.5605 0.4672

Random Forests 0.9515 0.9373 0.9237 0.6366 0.6361 0.5735

Gaussian Naive Bayes 0.9393 0.8890 0.7973 0.5605 0.4422 0.3702

Bernoulli Naive Bayes 0.8421 0.8331 0.8296 0.2491 0.2211 0.2160

Linear SVM 0.9282 0.9086 0.9050 0.6031 0.5921 0.5665

Decision Tree 0.9451 0.9434 0.9283 0.6455 0.6094 0.5734

LDA 0.9358 0.9155 0.8667 0.6518 0.6061 0.5629

AdaBoost 0.9361 0.8898 0.7989 0.6881 0.5587 0.4281

Bagging 0.9425 0.9275 0.9080 0.6257 0.5871 0.5809

GBM 0.9398 0.9333 0.9017 0.6927 0.6165 0.5422

Multi-layer Perceptron 0.9005 0.9064 0.7933 0.5675 0.5246 0.3746

XgBoost 0.9408 0.9351 0.8919 0.6784 0.5978 0.5657

Average 0.9268 0.9108 0.8699 0.5994 0.5460 0.4851

Table 7: Performance comparison of 12 different predictive models in Setting B (trained on synthetic, tested on
real) in terms of AUROC and AUPRC (the generators of PATE-GAN and DPGAN are (1, 10−5)-differentially
private). GAN is (∞,∞)-differentially private and is given to indicate an upper bound of PATE-GAN and
DPGAN.
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BLOCK DIAGRAMS

PATE-GAN

The two figures below indicate the iterative training procedure carried out by PATE-GAN; the figures
correspond to a single generator update.

Generator

Teacher 1

𝑢ො𝑧

𝒟ଵ

Random Noise

Generated 
samples

Real 
samples

Teacher 2

Teacher k

…

𝒟ଶ

𝒟

Entire Data

Real 
samples

Real 
samples

Label 0 Label 1

Classifiers

Figure 2: Block diagram of the training procedure for the teacher-discriminator during a single generator
iteration. Teacher-discriminators are trained to minimize the classification loss when classifying samples as
real samples or generated samples. During this step only the parameters of the teachers are updates (and not
the generator).

Generator

Teacher 1

𝑢ො𝑧

Random Noise

Generated 
samples

Teacher 2

Teacher k

…

Teacher votes 
Aggregation

Student

Noisy 
Labels

Votes of 
Teachers

Add noise on 
Aggregation

Student
Loss

Back
propagation

Back propagation

Classifier

Alternative of 
public data

Figure 3: Block diagram of the training procedure for the student-discriminator and the generator. The student-
discriminator is trained using noisy teacher-labelled generated samples (the noise provides the DP guarantees).
The student is trained to minimize classification loss on this noisily labelled dataset, while the generator is
trained to maximize the student loss. Note that the teachers are not updated during this step, only the student
and the generator.

17



Under review as a conference paper at ICLR 2019

DPGAN [29]

Generator Discriminator

𝑢ො𝑧

𝑢

Discriminator
Loss

Add noise on 
gradients

Noisy
back-propagation

back-propagation

Random Noise
Generated 
samples

Real samples

Figure 4: Block diagram of the DPGAN benchmark. It uses the standard WGAN framework. To guarantee
differential privacy of the generator (with Post-processing Theorem), noise is added to the gradient of the
discriminator during training to create a differentially private discriminator.
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