
Under review as a conference paper at ICLR 2020

CHARACTERIZE AND TRANSFER ATTENTION IN
GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Does attention matter and, if so, when and how? Our study on both inductive and
transductive learning suggests that datasets have a strong influence on the effects
of attention in graph neural networks. Independent of learning setting, task and
attention variant, attention mostly degenerate to simple averaging for all three
citation networks, whereas they behave strikingly different in the protein-protein
interaction networks and molecular graphs: nodes attend to different neighbors
per head and get more focused in deeper layers. Consequently, attention distribu-
tions become telltale features of the datasets themselves. We further explore the
possibility of transferring attention for graph sparsification and show that, when
applicable, attention-based sparsification retains enough information to obtain good
performance while reducing computational and storage costs. Finally, we point out
several possible directions for further study and transfer of attention.

1 INTRODUCTION

The modeling of graphs has become an active research topic in deep learning (Bronstein et al., 2017).
Dozens of neural network models have been developed for exploiting the structural information of
graphs (Scarselli et al., 2009; Bruna et al., 2014; Henaff et al., 2015; Duvenaud et al., 2015; Niepert
et al., 2016; Defferrard et al., 2016), now collectively referred to as graph neural networks (GNNs).

Built upon the success of attention in NLP (Vaswani et al., 2017), Veličković et al. (2018) proposed
the graph attention networks (GATs) to integrate multi-head self-attention into node feature update
for adaptive weighting, with several extensions (Thekumparampil et al., 2018; Zhang et al., 2018;
Monti et al., 2018; Svoboda et al., 2019; Trivedi et al., 2019). While the use of attention in GNNs is
an attractive direction, several works also report that attention contributes little to the performance of
GNNs (Zhang et al., 2018; Shchur et al., 2019). Considering the high computational cost of attention,
the question is then that does attention help and, if so, when and how?

In this paper, we take a first step towards the question. We first identify the key questions for
understanding attention and propose an analytical paradigm. With extensive experiments, our findings
suggest that, although attention is motivated by inductive learning, its functionality depends highly
on the characteristics of the datasets. The attention distributions across heads and layers are near
uniform for all citation networks (Cora, Citeseer and Pubmed) while they get more concentrated
over layers on the protein-protein interaction networks (PPI) and molecular graphs, with significant
diversity among heads. That the attention distribution is a telltale sign of the nature of graph class is
further verified with a meta graph classification experiment. With attention features as inputs, citation
networks are indistinguishable whereas PPI and molecule graphs are.

Inspired by these findings, we hypothesize that attention carry semantic meanings when they are
non-uniform and can be helpful for transfer learning. This has been the case in the NLP commu-
nity (Radford et al., 2019), and is motivating many research efforts on understanding multi-head
attention (Jain & Wallace, 2019; Clark et al., 2019; Voita et al., 2019). We attempt the idea of
attention based sparsification – sparsifying a graph by retaining edges where attention are higher,
with the intuition being that the resulting graph preserves enough information. We find that not only
such attention-based sparsification is transferable (meaning, it can work on unseen graphs), it also
affords us to train a cheaper model without using attention to fit the downstream task. Finally, we
discuss several possible fruitful directions for further exploration, including theory, interpretability,
and unsupervised learning.

1

Under review as a conference paper at ICLR 2020

2 RELATED WORK

Visualize and understand attention Several works attempted to visualize the learned attention by
coloring edges or nodes based on the attention magnitudes (Veličković et al., 2018; Qiu et al., 2018).
Thekumparampil et al. (2018) studied the averaged attention values between nodes with different or
the same class labels. Shanthamallu et al. (2018) studied the attention GAT learned on two citation
networks Cora and Citeseer with interquartile range metric and showed that they are near uniform.
Knyazev et al. (2019) investigated the effectiveness of attentional pooling and find that attention is
only effective when it is close to optimal. Our work differs in that we propose a general paradigm for
analyzing graph attention, including how to characterize the overall attention statistics and how to
measure the layer-wise and head-wise differences of the learned attention.

Transfer attention In the computer vision community, transferring the attention maps using a
teacher-student network to improve the downstream tasks is a well-studied technique (Zagoruyko &
Komodakis, 2017; Li et al., 2019). Our approach for transferring attention is different from these
works in that we use the trained graph attention network as a graph sparsifier instead of a teaching
signal. Yang et al. (2018) proposed to transfer the relational structure within the data, which is
represented as a set of attention weights, to boost the performance of other tasks. Our transferring
strategy is different from their work because we reduce the sparsity of the affinity matrix by removing
the entries with smaller attention weights. Thus, we can train a cheap graph sparsifier to accelerate
the training and testing speed.

3 BACKGROUND

3.1 GRAPH NEURAL NETWORKS

Let G be an undirected graph with node set V and edge set E , where each node i ∈ V has a feature
h0i ∈ Rn0 . In a wide class of GNNs (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al.,
2018), the basic feature update function for node i ∈ V at the l + 1-th GNN layer takes the form of

hl+1
i = σ

 ∑
j∈N (i)

αl+1
i,j Wl+1hlj

 ,

where σ is an activation function, N (i) is a set containing i and its neighbors, αl+1
i,j ∈ R is the

attention weight of edge (j, i) in updating the feature of node i, Wl+1 ∈ Rnl+1×nl is the projection
matrix, and hli, h

l+1
i are corresponding node features after the l-th and the l + 1-th layer. With a

sparse implementation, it has a time complexity of O(|V|nl+1nl + |E|nl+1).

Graph Convolutional Network (GCN) (Kipf & Welling, 2017) and the mean variant of Graph-
SAGE (Hamilton et al., 2017) use static attention 1√

|N (i)|
1√
|N (j)|

and 1
|N (i)| , which we separately

refer to as GCN and uniform attention.

GAT (Veličković et al., 2018) uses a parameterized subnetwork to output the attention weights αi,js.
Rather than using a single attention head as in Eqn. equation 3.1, GAT aggregates the outputs of
multiple heads:

αl+1,k
i,j =

exp
(
score

(
hli, h

l
j

))
∑
j′∈N (i) exp

(
score

(
hli, h

l
j′

)) , hl+1,k
i = σ

 ∑
j∈N (i)

αl+1,k
i,j Wl+1,khlj

 ,

hl+1
i = σ

(
Aggregatel+1

(
hl+1,1
i , · · · , hl+1,Kl+1

i

))
,

where k is the index of the attention head and Kl+1 is the number of attention heads in the l + 1-th
layer. Aggregatel+1 aggregates all head results in the l + 1-th layer and we follow the approach of
Veličković et al. (2018) to use concatenation for intermediate layers and average for the final layer.

Attention variants As in Luong et al. (2015), there are multiple ways to calculate the attention
scores. In this paper, we focus on the following three types of attention, namely concat, dot product,

2

Under review as a conference paper at ICLR 2020

Table 1: Dataset task and learning setting

Cora Citeseer Pubmed PPI CEP HIV

Task Node Classification 3 3 3 3
Graph Prediction 3 3

Setting Transductive Learning 3 3 3
Inductive Learning 3 3 3

and general:

LReLU(aT [Whi||Whj]) (concat), (Whi)
T
Whj (dot product), (Whi)

T
BWhj (general)

GATs uses the concat attention. Zhang et al. (2018) and Ryu et al. (2018) separately explores dot
product and general attention in GNNs. Also, LReLU(·) means the leaky ReLU activation.

Graph-level prediction Based on the node representations generated by GNNs, we can also
compute a graph representation (Li et al., 2018) for graph-level prediction problems like graph
classification and regression:

hG =
∑
v∈V

Sigmoid
(
g
(
hLv
))

ReLU
(
f
(
hLv
))
,

where L is the number of GNN layers, hLv is the representation of node v output by the last layer of
GNN, g(·) calculates the impact of node v on the graph representation, and f(·) is a linear projection.

3.2 TASKS AND DATASETS

We consider the tasks of node classification and graph-level prediction. For modeling, we treat all
graphs as undirected with untyped nodes and edges. Self loops are added to preserve information from
previous node features. As in Veličković et al. (2018), we consider four datasets – citation networks
Cora, Citeseer (Sen et al., 2008), Pubmed (Namata et al., 2012) and PPI (Zitnik & Leskovec, 2017).
Additionally, we include two more datasets of molecular graphs for graph-level prediction.

The Harvard Clean Energy Project (CEP) (Hachmann et al., 2011) estimates the photovoltaic efficiency
of organic molecules. We use a subset of it pre-processed by Duvenaud et al. (2015); Ryu et al. (2018).
The HIV dataset was initially introduced by the Drug Therapeutics Program (DTP) AIDS Antiviral
Screen HIV for testing the ability of compounds to inhibit HIV replication. It was later included in
the MoleculeNet benchmark (Wu et al., 2018) as a binary classification task. For both datasets, the
node features are extracted based on DeepChem (Ramsundar et al., 2019) and RDKit (Landrum),
which includes atom type, degree, and many other chemical properties.

Since GAT was partially motivated to work on unseen data, we consider two learning settings:
transductive learning and inductive learning. In the transductive learning setting, the model can access
the features of all nodes in the graph. However, only a fraction of the nodes are labeled in the training
phase and the model is asked to predict the missing labels. In the inductive learning setting, we have
two mutually exclusive sets of nodes separately for training and testing. The model is trained only on
the features and labels of the nodes in the training set and is asked to predict the labels of the nodes
in the testing set. A summary of the tasks and learning settings can be found in Table 1. We leave
more detailed information like dataset statistics, training/testing split and features in Appendix A.

4 METHODOLOGY

The introduction of multi-head attention into multi-layer GNNs poses many interesting questions, we
investigate five in this paper. Q1: In the GAT model, all nodes have different attention distributions
on their incoming edges. How should we characterize the overall statistics of these learned attention
distributions? Q2: How do attention distributions differ across different heads and layers? Q3: How
does the choice of dataset, attention variant, and learning setting affect the learned attention? Q4:

3

Under review as a conference paper at ICLR 2020

Table 2: Discrepancy between learned and static attention
Cora Citeseer Pubmed PPI CEP HIV

uniform vs learned 0.0083 0.0020 0.0059 0.5442 0.1754 0.2376
GCN vs learned 0.1118 0.0796 0.1999 0.5791 0.1759 0.2258

Is the statistics of the learned attention related to the intrinsic properties of the graph? Q5: How to
transfer attention for further usage?

To answer Q1, we propose multiple metrics for characterizing attention distributions. For Q2, we
examine the metrics at different layers and compare the change of them over layers. To answer Q3,
we run experiments to see how varying the dataset, attention variant and the learning setting impacts
the learned attention. Previous works (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al.,
2018) only perform transductive learning on the citation networks and inductive learning on PPI.
To fill in the gap, we perform transductive learning on PPI and inductive learning on the citation
networks (see data processing strategy in Appendix B.1). We show that learning tasks are largely
irrelevant. To answer Q4, we propose a new task called Meta Graph Classification which asks the
model to distinguish the type of the graphs by the characteristics of the attention distributions. For
Q5, we transfer attention for graph sparsification and examine whether we can preserve enough
task-related information with a significant number of edges removed.

5 CHARACTERIZING ATTENTION

5.1 ANALYZING ATTENTION METRICS

Experiment settings Our attention study is completely based on the GAT architecture except that
we try different types of attention mentioned in Section 3.1. We follow the experiment settings of
the original authors whenever possible and perform a hyperparameter search otherwise. To make a
fair comparison between attention variants, we use the same hidden size for each layer output across
attention variants. The detailed settings can be found in Appendix B.2. Unless explicitly mentioned,
we perform 100 random runs for Cora, Citeseer and Pubmed and 10 random runs for PPI, CEP and
HIV. The test performance is mostly consistent across attention variants and is comparable to the
original reported numbers, which we report in Appendix B.4.

Learned attention v.s. static attention Attention-free GNNs employ static weights in updating
node features. The first question is then how does learned attention differ from these static weights? If
the learned attention are almost the same as the static ones, then there is no point in performing costly
attention computation and we do not need to proceed with the analysis. We quantify the discrepancy
between learned attention and the static one with 1

2|V|
∑
i∈V

∑
j∈N (i) |αlearned

i,j −αstatic
i,j |. With a range

of [0, 1], the larger the value, the larger the discrepancy is. Table 2 shows the discrepancy between
the static attention and the learned attention for the first head with the ‘concat’ variant. Surprisingly,
the discrepancy against the uniform attention is very small for the three citation networks, suggesting
that each node attends similarly to different neighbors.

Head-wise and layer-wise differences Figure 2 visualizes the attention of a node over its incoming
edges in Cora and PPI, based on three heads in the last layer. We can find that different heads behave
distinctively in the PPI case and they are all uniform in the Cora case. We summarize the change of
attention over heads and layers with several metrics. To quantify the variance between two head-wise
distributions, we compute the averaged L1 norm of the difference between the mean distribution over
all heads and the learned distribution for each head.

αmean
i,j =

1

K

K∑
k=1

αki,j , j ∈ N (i), Head-wise Variance =
1

2K

1

|V|

K∑
k=1

∑
i∈V

∑
j∈N (i)

|αki,j − αmean
i,j |.

To probe the concentration of attention, we compute the maximum pairwise difference of them within
one-hop neighborhoods. To verify whether attention are on self loops when they are concentrated
and GNNs degenerate to MLPs, we monitor the self-loop attention values. We average the metrics

4

Under review as a conference paper at ICLR 2020

Figure 1: Comparison of the learned attention across layers, datasets and attention variants

Figure 2: Visualization of the learned attention
of one node. Nodes are colored by labels and
edges are colored by attention magnitude.

Figure 3: Attention learned by training on Cora
and PPI with inductive and transductive settings
respectively.

over all nodes and heads for a layer in each run, and compute the mean and standard deviation of the
averaged metrics in all runs.

Varying settings and attention variants We leverage the defined metrics to compare the learned
attention by different attention variants. Figure 1 visualizes the head-wise and layer-wise metrics
for Cora, Pubmed, PPI and CEP. Independent of the attention variant, the learned attention change
little across layers for Cora and Pubmed while the increasing max pairwise difference indicates that
they get more concentrated with deeper layers for PPI and CEP. Besides, these attention do not
get concentrated on self loops based on relatively stable values. We also experiment with different
training settings on these graphs. Figure 3 shows the learned attention when training inductively
on Cora while training transductively on PPI. We observe the similar phenomenon of the learned
attention, which eliminates the effect of training settings.

5.2 META GRAPH CLASSIFICATION

Previous experiments suggest that the attention learned are highly graph-dependent and their charac-
teristics can be predicted with proper knowledge of graph semantics. To verify it, we attempt to infer
the graph types based on the attention learned. Specifically, we perform graph classification with
attention-based features.

5

Under review as a conference paper at ICLR 2020

Table 3: Graph Classification Accuracy
Concat General Dot product

All Layers 94.1± 0.5% 95.6± 0.7% 95.5± 0.4%
First Layer 81.3± 1.1% 88.4± 0.8% 91.3± 0.6%
Second Layer 83.5± 0.6% 89.7± 0.6% 85.3± 0.5%

Figure 4: t-SNE visualization of ‘concat’ attention based features. From left to right, the features are
from all layers, the first, and the second layer, respectively. See Appendix B.5 for more results.

Synthetic dataset We construct a synthetic dataset for graph classification with two steps. First,
we collect 480 samples/subgraphs of 20 to 30 nodes from each dataset. For HIV and CEP, we choose
480 graphs and construct a balanced subset. For the rest four datasets, we sample 480 graphs for each
using random walk as in the case of inductive learning on citation networks. Second, we separately
train a 2-layer GAT for each collected dataset and compute the attention metrics for each layer. The
mean and standard deviation of the metrics are then used as the graph features. We leave more details
in Appendix B.5.

We train a logistic regression classifier for graph classification, where 20% of the graphs are used for
training and the rest are used for testing. We have separately experimented with attention metrics
from all layers, the first layer, and the second layer. The classification performance is reported in
Table 3, with all experiments repeated for 10 times.

In the experiments, we find that more than 80% of the incorrect classifications happen within citation
subgraphs. This is also verified by our t-SNE (van der Maaten & Hinton, 2008; Pedregosa et al.,
2011) visualization of the attention metrics in Figure 4. We can see that the attention metrics of
citation networks tend to be indistinguishable while the attention metrics of other datasets are better
separated and clustered.

6 ATTENTION-BASED GRAPH SPARSIFICATION

6.1 PPI SPARSIFICATION FOR GAT PREDICTION

We consider two intuitive heuristics for attention based sparsification: 1) local top-k sparsification
selects up to k incoming edges for each node with highest attention values; 2) global threshold
sparsification selects edges whose attention value exceeds a pre-specified threshold over the entire
graph. Across all GNN layers, we perform attention-based sparsification for each attention head to
get a subset of edges. We then take the union of the edge subsets to get the edge set for the sparsified
graph. All self loops are selected to preserve the information of original node features.

Inspired by recent research on sampling based training of GNNs (Hamilton et al., 2017; Huang
et al., 2018), we consider two baseline random sparsification for comparison: 1) uniform neighbor
sparsification uniformly samples at most k incoming edges for each node without replacement and
we compare it against local top-k sparsification; 2) uniform graph-wise sparsification uniformly

6

Under review as a conference paper at ICLR 2020

Figure 5: Comparison of attention based sparsification against baseline random sparsification.
The result of training on unsparsified graphs is included for reference. For local top-k sparsifi-
cation we consider 1 ≤ k ≤ 8. For global threshold sparsification, we consider threshold in
{0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005}.

Figure 6: Sparsify graphs with one GAT and predict on sparsified graphs with another GNN

samples a proportion of edges over the entire graph(s) without replacement and we compare it against
threshold sparsification.

We first experiment attention-based graph sparsification with PPI, which tends to have sharp attention-
based on our previous study and is relatively dense (56944 nodes and 1644208 edges with self loops
and bi-directional edges added). Despite similar sharp attention, molecules are not good candidates
for the experiment as they are already sparse and on average each atom only has less than three
neighbors. As illustrated in figure 6, after training a GAT on PPI, we perform attention-based
sparsification and re-train a GAT on the sparsified training and validation graphs.

Figure 5 compares the results of attention-based sparsification with concat variant against random
sparsification. 1) With a similar degree of sparsification, the attention-based sparsification consistently
performs better than the baseline in terms of test metric and its variance across runs; 2) We can reach
a test accuracy comparable to the original result with only 40% ∼ 50% edges left in the training and
validation graphs.

6.2 SPARSIFICATION WITH GENTLE ATTENTION

What if the attention are neither uniform nor sharp? Our previous study shows that the attention in
Pubmed are not completely uniform in the last GAT layer with dot product and general attention
variants so we use it as a testbed for the study. In cases where attention are not very sharp, threshold
sparsification is not very useful and we consider only top-k sparsification.

Table 4 compares top-k sparsification with dot product attention against uniform neighbor sparsifica-
tion. With similar proportion of edges left in the training and validation graphs, the top-k sparsification
consistently outperforms uniform neighbor sparsification and achieves a performance comparable to
that of training on the raw graphs.

7

Under review as a conference paper at ICLR 2020

Table 4: Attention-based sparsification against random sparsification on Pubmed
Sparsification % edges left Test score

None 100% 78.20± 0.70%

local top-k (k=1) 57.37± 0.78% 77.57± 0.12%
local top-k (k=2) 71.44± 0.74% 78.33± 0.29%

uniform neighbor 59.13% 74.40± 0.36%
uniform neighbor 72.72% 75.47± 1.03%

Table 5: Varying GAT hidden sizes for local top-1 sparsified prediction with GraphSAGE on PPI. For
reference, originally GraphSAGE can reach a test score of 0.9802 without graph sparsification. Using
baseline sparsification methods, we reach at best a test score of 0.5431 with about 30% edges left.

hidden GAT test score # GAT parameters % edges left GraphSAGE test score

4 0.5208 27574 29.55% 0.9700
16 0.7718 107686 30.06% 0.9776
64 0.9704 520294 30.95% 0.9802

6.3 SPARSIFICATION WITH HARD PREDICTION

As the attention-based sparsification does manage to preserve enough task-related information, it has
the potential to speed up the computation by significantly reducing the number of edges. The most
aggressive approach is to use a light GAT with a lot fewer parameters for graph sparsification and an
attention-free GNN for prediction on the sparsified graphs.

We explore this idea by varying the hidden sizes of attention heads in GAT and use a GraphSAGE for
prediction on PPI. The GraphSAGE has 3 layers and each layer has a hidden size of 512. We consider
the mean aggregator for it with skip connection added. The results are summarized in Table 5.
Our experiments show that a GraphSAGE model can achieve a good performance with training on
sparsified graphs as long as we sparsify test graphs. Surprisingly, while a smaller hidden size in
GAT does harm its own prediction performance, it has little effect on capturing important edges for
GraphSAGE prediction even with top-1 sparsification. We note that the number of parameters in
GraphSage and the baseline GAT is 1.2M and 3.6M, respectively, i.e. a 3-fold reduction.

7 CONCLUSIONS AND DISCUSSIONS

In this work, we propose an analytical paradigm that can summarize the characteristics of multi-head
attention learned over graphs and compare them against topology-based static attention. This allows a
deeper understanding of attention beyond simply comparing the performance of models and motivates
further use of attention like transfer learning. In addition to the attention-based sparsification we
explored, we believe below are several interesting directions that are underexplored:

• Theory. Many efforts have performed to theoretically understand and explain GNNs,
particularly their connection to kernel methods and Weisfeiler-Lehman tests (Morris et al.,
2019; Xu et al., 2019; Maron et al., 2019), but few of them have considered attention.
• Interpretability. The use of attention can add interpretability. This is particularly valued

in risk-sensitive scenarios like medicine. Several efforts have been made in the chemistry
community (Ryu et al., 2018; Preuer et al., 2019; Xiong et al., 2019).
• Unsupervised learning. Unsupervised representation learning is an important approach

when the training of a model is expensive and the labeled data is scarce. This is partic-
ularly the case for biological networks and molecular graphs due to the need of wet-lab
experiments. The NLP community has witnessed the success of unsupervised learning with
attention (Radford et al., 2019) and we might expect the same for GNNs. Weihua Hu (2019)
demonstrates the effectiveness of training GNNs with unsupervised learning for chemistry
and biology, but did not employ attention.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Aids antiviral screen data. https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+
Antiviral+Screen+Data. Accessed: 2017-09-27.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine, 34:18–42, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In International Conference on Learning Representations, 2014.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does bert look at?
an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems
29, pp. 3844–3852. 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in Neural Information Processing Systems 28, pp. 2224–2232. 2015.

Johannes Hachmann, Roberto Olivares-Amaya, Sule Atahan-Evrenk, Carlos Amador-Bedolla, Roel S
Sánchez-Carrera, Aryeh Gold-Parker, Leslie Vogt, Anna M Brockway, and Alán Aspuru-Guzik.
The harvard clean energy project: large-scale computational screening and design of organic
photovoltaics on the world community grid. The Journal of Physical Chemistry Letters, 2(17):
2241–2251, 2011.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems 30, pp. 1024–1034. 2017.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured data.
arXiv preprint arXiv:1506.05163, 2015.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In Advances in Neural Information Processing Systems 31, pp. 4558–4567.
2018.

Sarthak Jain and Byron C. Wallace. Attention is not explanation. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Boris Knyazev, Graham W. Taylor, and Mohamed R. Amer. Understanding attention in graph neural
networks. In Workshop on Representation Learning on Graphs and Manifolds, International
Conference on Learning Representations, 2019.

Greg Landrum. Rdkit: open-source cheminformatics. http://www.rdkit.org/. Accessed:
2019-05-16.

Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 631–636, 2006.

Junying Li, Deng Cai, and Xiaofei He. Learning graph-level representation for drug discovery. 2017.

Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, and Jun Huan. DELTA: Deep
learning transfer using feature map with attention for convolutional networks. In ICLR. 2019.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. 2018.

9

https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
http://www.rdkit.org/

Under review as a conference paper at ICLR 2020

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-
based neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, 2015.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems 32, 2019.

Federico Monti, Oleksandr Shchur, Aleksandar Bojchevski, Or Litany, Stephan Günnemann, Michaël,
and Bresson. Dual-primal graph convolutional networks. arXiv preprint arXiv:1806.00770, 2018.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, 2019.

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for
collective classification. In Proceedings of the Workshop on Mining and Learning with Graphs,
2012.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In Proceedings of The 33rd International Conference on Machine Learning, pp. 2014–
2023, 2016.

Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Eduard Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

Kristina Preuer, Günter Klambauer, Friedrich Rippmann, Sepp Hochreiter, and Thomas Unterthiner.
Interpretable deep learning in drug discovery. arXiv preprint arXiv:1903.02788, 2019.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Social
influence prediction with deep learning. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery, pp. 2110–2119, 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, Karl Leswing, and Zhenqin Wu.
Deep Learning for the Life Sciences. O’Reilly Media, 2019.

Seongok Ryu, Jaechang Lim, Seung Hwan Hong, and Woo Youn Kim. Deeply learning molecular
structure-property relationships using attention- and gate-augmented graph convolutional network.
arXiv preprint arXiv:1805.10988, 2018.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20:61–80, 2009.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29, 2008.

Uday Shankar Shanthamallu, Jayaraman J. Thiagarajan, and Andreas Spanias. Improving robustness
of attention models on graphs. arXiv preprint arXiv:1811.00181, 2018.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2019.

Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L. Ebert,
Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd R. Golub, Eric S. Lander, and
Jill P. Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. In Proceedings of the National Academy of Sciences, volume
102, pp. 15545–15550, 2005.

10

Under review as a conference paper at ICLR 2020

Jan Svoboda, Jonathan Masci, Federico Monti, Michael Bronstein, and Leonidas Guibas. Peernets:
Exploiting peer wisdom against adversarial attacks. In International Conference on Learning
Representations, 2019.

Kiran K. Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph neural
network for semi-supervised learning. arXiv preprint arXiv:1803.03735, 2018.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International Conference on Learning Representations,
2019.

L.J.P. van der Maaten and G.E. Hinton. Visualizing high-dimensional data using t-sne. Journal of
Machine Learning Research, 9:2579–2605, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30, pp. 5998–6008. 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Elena Voita, Rico Sennrich, and Ivan Titov. The bottom-up evolution of representations in the
transformer: A study with machine translation and language modeling objectives. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing, 2019.

Joseph Gomes Marinka Zitnik Percy Liang Vijay Pande Jure Leskovec Weihua Hu, Bowen Liu.
Pre-training graph neural networks. arXiv preprint arXiv:1903.02788, 2019.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhaojun
Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Pushing the boundaries
of molecular representation for drug discovery with the graph attention mechanism. Journal of
Medical Chemistry, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Zhilin Yang, Jake Junbo Zhao, Bhuwan Dhingra, Kaiming He, William W Cohen, Ruslan Salakhut-
dinov, and Yann LeCun. GLoMo: Unsupervisedly learned relational graphs as transferable
representations. In NIPS. 2018.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. In ICLR. 2017.

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan: Gated atten-
tion networks for learning on large and spatiotemporal graphs. In The Conference on Uncertainty
in Artificial Intelligence, 2018.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):190–198, 2017.

11

Under review as a conference paper at ICLR 2020

A DATASETS

A.1 DATASET SUMMARY

Table 6 and 7 summarize the statistics about the raw graph datasets. When computing the number of
edges and node degrees, we have not considered self loops. Also when we model directed graphs
as undirected graphs, the number of edges will get doubled. For transductive learning, the number
of edges is considered to be the same for training/validation/test as all edges may be involved in
message passing.

Table 6: Statistics and properties for single graph datasets
Datasets

Properties Cora Citeseer Pubmed

node feats 1433 3703 500
classes/labels 7 6 3

graphs 1 1 1
nodes 2708 3327 19717
isolates 0 48 0
edges 5278 4552 44324
mean degree 1.95 1.37 2.25

train nodes 140 (5.2%) 120 (3.6%) 60 (0.3%)
train edges 5278 4552 44324

val nodes 300 (11.1%) 500 (15.0%) 500 (2.5%)
val edges 5278 4552 44324

test nodes 1000 (36.9%) 1000 (30.1%) 1000 (5.1%)
test edges 5278 4552 44324

Table 7: Statistics and properties for multi-graph datasets
Datasets

Properties PPI CEP HIV

node feats 50 58 75
classes/label size 121 (binary multi-label) 1 (regression) 1 (binary)

graphs 24 29978 41913
nodes 56944 829135 1069968
isolates 256 0 2351
edges 793632 1000952 1151942
average degree 13.9 1.2 1.1

train graphs 20 17986 (60.0%) 33530 (80.0%)
train nodes 44906 (78.9%) 497311 (60.0%) 846823 (79.1 %)
train edges 613184 (77.3%) 600365 (60.0%) 906666 (78.7 %)

val graphs 2 5995 (20.0%) 4191 (10.0%)
val nodes 6514 (11.4%) 165916 (20.0%) 117216 (11.0%)
val edges 99460 (12.5%) 200269 (20.0%) 128751 (11.2%)

test graphs 2 5997 (20.0%) 4192 (10.0%)
test nodes 5524 (9.7%) 165908 (20.0%) 105929 (9.9%)
test edges 80988 (10.2%) 200318 (20.0%) 116525 (10.1%)

12

Under review as a conference paper at ICLR 2020

A.2 ADDITIONAL DETAILS

Graph Construction For citation networks, the nodes correspond to documents and the edges
correspond to citations between pairs of documents. For PPI, the nodes represent proteins and the
edges represent physical interactions between them. For molecules, the nodes correspond to atoms
and the edges correspond to chemical bonds.

Node featurization and labeling For citation networks, nodes have bag-of-words features and
labels for the topic of documents. For PPI, the node features include positional gene sets, motif
gene sets and immunological signatures and the node labels are gene ontology sets (Hamilton et al.,
2017), collected from the Molecular Signatures Database (Subramanian et al., 2005). For the CEP
dataset, the node features consist of one hot encodings of atom type, node degree, the total number of
hydrogens attached to it, the number of implicit hydrogens attached to it, and its aromaticity indicator.
For the HIV dataset, in addition to those features we also consider the formal charge of the atom, the
number of radical electrons of the atom and the atom’s hybridization.

Dataset splits For Cora, Citeseer, Pubmed, and PPI, we consider a deterministic dataset split for
training, validation and test. For CEP, we randomly split the dataset in each run, where approximately
the proportion of graphs used for training, validation and test is separately 60%, 20% and 20%. The
statistics of the CEP dataset in table 7 is obtained in one random run. For the HIV dataset, we use the
scaffold split (Wu et al., 2018; Li et al., 2017), which structurally separates molecules into training,
validation and test subsets and poses a greater challenge for generalization.

Imbalanced dataset The HIV dataset is highly imbalanced, with only 1487 compounds are positive,
constitute approximately 3.5% of the dataset.

B EXPERIMENT SETTINGS

B.1 VARYING LEARNING SETTING FOR CITATION NETWORKS AND PPI

Transductive Learning on PPI To perform transductive learning on PPI, we sample two mutually
exclusive subsets of the nodes as the training set and validation set for each graph, leaving the rest
as the test set. We experiment on two splitting settings. In the first setting, we sample about 5%
nodes for training and 18% nodes for validation, similar to the splitting ratio of the transductive
learning setting on Cora. In the second setting, we sample 79% nodes for training and 11% nodes for
validation, similar to the case of inductive learning on PPI.

Inductive Learning on Citation Networks To perform inductive learning on citation networks,
we first sample 120 graphs of 100 nodes for each dataset. We use a random walk based sampling
algorithm described in Algorithm 1, which by the study of (Leskovec & Faloutsos, 2006) performs
best in preserving the properties of static graphs. Separately, 60%, 20%, 20% of the graphs are used
for training, validation and test.

B.2 HYPERPARAMETERS FOR ATTENTION STUDY

For the attention study, we consider the hyperparameters below:

• Transductive learning on Cora and Citeseer: 2-layer GAT with 8 heads in the first layer and
1 head in the second layer, 8 hidden units for each head in the first layer, a dropout of 0.6,
no residual connection, a learning rate of 0.005, L2 regularization with coefficient 0.0005,
cross entropy loss

• Transductive learning on Pubmed: 2-layer GAT with 8 heads in both layers, 8 hidden units
for each head in the first layer, a dropout of 0.6, no residual connection, a learning rate of
0.01, L2 regularization with coefficient 0.001, cross entropy loss

• Inductive/Transductive learning on PPI: no L2 regularization, no dropout, 3-layer GAT
with residual connections added for the last two layers; a learning rate of 0.005 for concat
attention and a learning rate of 0.0001 for other attention variants; the number of attention

13

Under review as a conference paper at ICLR 2020

Algorithm 1 Random Walk Sampling
Require: G = (V, E) the original graph, g size = 100 the target subgraph size

1: step = 0
2: start ∼ Unif(V) . Uniformly choose a starting node.
3: Vsub = {start}, Esub = {(start, start)}
4: src = start
5: while |Vsub| < g size and step < 100 ∗ g size do
6: step = step+ 1
7: back ∼ Bernoulli(0.15), . Return to the starting point with probability 0.15.
8: if back then
9: src = start

10: else
11: dst ∼ Unif({j|(src, j) ∈ E})
12: Vsub = Vsub

⋃
{dst}

13: Esub = Esub
⋃
{(dst, dst), (src, dst), (dst, src)}

14: src = dst
15: Return (Vsub, Esub)

heads in the three layers is separately 8, 8, 6 for general attention and 4, 4, 6 for other
attention variants; 128 hidden units for each head in the first two layers for general attention
and 256 hidden units for each head in other attention variants1; we use a batch size 1 for
general attention and a batch size 2 for other attention variants; binary cross entropy loss

• Inductive learning on Cora, Citeseer, Pubmed: batch size 24, 3-layer GAT with separately
4, 4, 6 attention heads, residual connection is added for the last two layers, 8 hidden units per
head for the first two layers, a learning rate of 0.005, a dropout of 0.6; L2 regularization with
coefficient 0.001 for pubmed and 0.0005 for the rest two citation networks; cross entropy
loss

• CEP: a batch size of 512, 3-layer GAT where each layer has 4 heads and each head has 32
hidden units, a dropout of 0.0, residual connection is added for the last two layers, a learning
rate of 0.001, no L2 regularization; smooth L1 loss

• HIV: a batch size of 64, 2-layer GAT where each layer has 4 heads and each head has 32
hidden units, a dropout of 0.0, residual connection is added for the last two layers, no L2
regularization, an initial learning rate of 0.0005, a decay of learning rate by 0.99 after each
epoch; weighted focal loss with −(wy(1− p)γ log p+(1− y)pγ log (1− p)), where γ = 2
and w = #negative samples/#positive samples

An early stop is performed if the validation score hasn’t been improved for 100 epochs.

B.3 GRAPH-LEVEL PREDICTION

Based on node features updated with a GNN, we can also perform a graph-level prediction. First, a
graph representation can be obtained with:

hG =
∑
v∈V

Sigmoid
(
g
(
hLv
))

ReLU(f
(
hLv
)
)

where L is the number of GNN layers, g : RnL → R and f : RnL → RnG are two linear layers with
bias added. In all cases we consider nG = 128. A graph-level prediction is then computed with a
3-layer MLP where all hidden sizes are equal to nG and a ReLU activation is applied after each of
the first two linear layers.

1With the formulation of score(hi, hj) = (hi)
TBhj , the general attention variant requires a lot more

parameters than the other two attention variants with a same number of hidden units, which can result in an out
of memory error. As a work around, we use a larger number of heads for this variant with a smaller hidden size
per head so that the final output size of layers does not change.

14

Under review as a conference paper at ICLR 2020

Table 8: GAT performance with three attention types
Datasets Reference Concat General Dot product

Cora 83.0± 0.7% 83.0± 0.7% 84.2± 0.5% 84.0± 0.5%
Citeseer 72.5± 0.7% 72.5± 0.7% 71.5± 0.9% 71.4± 0.8%
Pubmed 79.0± 0.3% 79.0± 0.3% 78.6± 0.0% 78.2± 0.7%
PPI 0.973± 0.00 0.973± 0.00 0.982± 0.00 0.975± 0.00
PPI trans 5% 0.476± 0.03 0.565± 0.01 0.524± 0.01
PPI trans 79% 0.950± 0.00 0.936± 0.01 0.947± 0.00
Cora inductive 87.6± 1.7% 88.1± 1.7% 88.4± 1.3%
Citeseer inductive 84.2± 0.9% 84.1± 1.5% 84.8± 1.3%
Pubmed inductive 85.3± 1.1% 86.5± 1.2% 86.0± 0.8%
CEP 0.66± 0.12 (Ryu et al., 2018)2 0.43± 0.02 0.39± 0.02 0.44± 0.02
HIV 0.776 (Li et al., 2017) 0.746± 0.02 0.760± 0.01 0.758± 0.02

B.4 TEST PERFORMANCE ACROSS ATTENTION VARIANTS

We evaluate test performance using different metrics for different datasets – accuracy for Cora,
Citeseer, Pubmed, micro-averaged F1 score for PPI, mean absolute error for CEP and roc auc score
for HIV. See table 8 for a summary of the prediction performance, where different attention variants
mostly have similar performance. The reference numbers are from Veličković et al. (2018) unless
stated otherwise. For Cora, Citeseer, Pubmed and PPI, we include the original results of GATs for
reference. For the rest datasets, we include the best performance of previous work for reference
whenever applicable, but some models do not involve attention mechanism.

B.5 GRAPH CLASSIFICATION

Dataset construction 1) As PPI has multiple graphs, we sample the same number of subgraphs
from each original graph. 2) For CEP dataset, we first sort the whole dataset based on the photovoltaic
efficiency and split it into 96 buckets. We sample 5 graphs from each bucket where 3 graphs are used
for training, one graph is used for validation and one graph is used for test. 3) As the HIV dataset
is intrinsically imbalanced, we construct a balanced subset by sampling a same number of positive
samples and negative samples. Also since we are considering a special dataset split, the training,
validation and test subset is separately constructed from the training, validation and test set. 4) For
Cora, Citeseer, Pubmed and PPI, we construct a whole dataset of subgraphs first and then perform a
random split to get the training, validation and test set with a splitting ratio of 60%:20%:20%.

Graph feature extraction For graph feature extraction, we train a 2-layer GAT with 8 heads for
each layer and 64 hidden units for each head. We use a batch size of 16 and perform an early
stop if the validation score no longer improves for 10 epochs. We use the same loss functions
for each dataset as explained in B.2. We also perform a hyperparameter search for learning rate,
dropout, L2 regularization coefficient λ and whether to perform a residual connection. The selected
hyperparameters are as follows:

• Cora: a dropout of 0.1, residual connection is added for the second layer, no L2 regular-
ization, a learning rate of 0.01 for concat attention and a learning rate of 0.005 for other
attention variants
• Citeseer: a dropout of 0.1, residual connection is added for the second layer, a learning rate

of 0.01, no L2 regularization
• Pubmed: a dropout of 0.1, residual connection is added for the second layer, no L2 regular-

ization, a learning rate of 0.005 for general attention and a learning rate of 0.01 for other
attention variants
• PPI: no dropout, residual connection is added for the second layer, no L2 regularization,

a learning rate of 0.005 for concat attention and a learning rate of 0.01 for other attention
variants

2The original work only has a bar plot and we contacted the authors for the numbers.

15

Under review as a conference paper at ICLR 2020

• CEP: no dropout, a learning rate of 0.005; a residual connection is added for the second
layer only with general attention; L2 regularization with coefficient 0.001 is used except for
concat attention
• HIV: a residual connection is added for the second layer, no L2 regularization is used; a

dropout of 0.6 is used only for concat attention; a learning rate of 0.005 is used for dot
product attention and a learning rate of 0.01 is used for the rest attention variants

t-SNE visualization of attention metrics In the text we included the t-SNE visualization of
attention based features for concat attention only. Here we include the results for all three variants
for comparison in figure 7, 8 and 9. Across all attention variants, we observe a similar pattern that
the attention metrics for citation subgraphs get blurred while those for the rest datasets are better
separated and clustered.

16

Under review as a conference paper at ICLR 2020

Figure 7: t-SNE visualization of concat attention based features. From left to right, the features are
separately from all layers, the first layer and the second layer.

Figure 8: t-SNE visualization of dot product attention based features. From left to right, the features
are separately from all layers, the first layer and the second layer.

Figure 9: t-SNE visualization of general attention based features. From left to right, the features are
separately from all layers, the first layer and the second layer.

17

	Introduction
	Related work
	Background
	Graph neural networks
	Tasks and datasets

	Methodology
	Characterizing attention
	Analyzing attention metrics
	Meta graph classification

	Attention-based graph sparsification
	PPI sparsification for GAT prediction
	Sparsification with gentle attention
	Sparsification with hard prediction

	Conclusions and Discussions
	Datasets
	Dataset summary
	Additional details

	Experiment settings
	Varying learning setting for citation networks and PPI
	Hyperparameters for Attention Study
	Graph-level prediction
	Test performance across attention variants
	Graph classification

