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ABSTRACT

Large-scale multimodal contrastive pretraining has demonstrated great utility to
support high performance in a range of downstream tasks by mapping multiple
modalities into a shared embedding space. Typically, this has employed sepa-
rate encoders for each modality. However, recent work suggest that transform-
ers can support learning across multiple modalities and allow knowledge shar-
ing. Inspired by this, we investigate how to build a modality-shared Contrastive
Language-Image Pre-training framework (MS-CLIP). More specifically, we ques-
tion how many parameters of a transformer model can be shared across modalities
during contrastive pre-training, and rigorously study architectural design choices
that position the proportion of parameters shared along a spectrum. We observe
that a mostly unified encoder for vision and language signals outperforms all other
variations that separate more parameters. Additionally, we find that light-weight
modality-specific parallel adapter modules further improve performance. Exper-
imental results show that the proposed MS-CLIP outperforms OpenAI CLIP by
13% relatively in zero-shot ImageNet classification (pre-trained on YFCC100M),
while simultaneously supporting a reduction of parameters. In addition, our ap-
proach outperforms OpenAI CLIP by 1.6 points on a collection of 19 downstream
vision tasks. Furthermore, we discover that sharing parameters leads to semantic
concepts from different modalities being encoded more closely in the embedding
space, facilitating the learning of common semantic structures (e.g., attention pat-
terns) across modalities.

1 INTRODUCTION

Contrastive Language-Image Pre-training (CLIP) has drawn much attention recently in the field of
Computer Vision and Natural Language Processing (Jia et al., 2021; Radford et al., 2021), where
large-scale image-caption data are leveraged to learn generic vision and language representations
through contrastive loss. This allows the learning of open-set visual concepts and imbues the learned
visual feature with a robust capability to transfer to diverse vision tasks.

Prior work in this topic often employs separate language and image encoders, despite architectural
similarities between the encoders for both modalities. For instance, the original CLIP work (Radford
et al., 2021) uses a ViT (Dosovitskiy et al., 2020) based image encoder, and a separate transformer ()
based language encoder. However, Lu et al. (2021) recently discovered that transformer models
pre-trained on language data could generalize well to visual tasks without altering the majority of
parameters, suggesting useful patterns and structures may exist across modalities. In addition, shared
architectures have been used to achieve state-of-art performance on a variety of vision-language
tasks (Zellers et al., 2021; Li et al., 2019; Chen et al., 2019). These observations suggest that a
unified encoder for CLIP may potentially be leveraged to realize performance and efficiency gains.

In this paper, we consequently investigate the feasibility of building a modality-shared CLIP (MS-
CLIP) architecture, where parameters in vision encoder and text encoder can be shared. Through
this framework, we seek answers to the following three questions: (i) In the CLIP training set-
ting, which layers of the encoders for the two modalities should be shared, and which should be
modality-specific? (ii) Within each layer, which sub-module should be shared and which should
not? (iii) Lastly, what is the impact to performance and efficiency when including lightweight
modality-specific auxiliary modules to accommodate specializations in each modality?
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In order to answer these questions, we first perform a comprehensive analysis on the impact of vary-
ing the degree of sharing of components across different layers. Our results show that in order to
maximize performance, the input embedding, layer normalization (LN) (Ba et al., 2016), and out-
put projection should be modality-specific. However, all the remaining components can be shared
across vision and text transformers, including the weights in self-attention and feed-forward mod-
ules. Sharing all these layers even outperforms more complex strategies where we employ greedy
selection of layers or use Neural Architecture Search (NAS) (Dong & Yang, 2019) to search for the
optimal weight sharing policy.

Finally, we explore whether introducing lightweight modality-specific components to the shared
backbone may yield a better balance between cross-modality modeling and specializations within
each modality. Studied designs include: (i) Early Specialization. The first layers in vision Trans-
former and text Transformer are replaced by extra modules that are specialized for each modality,
respectively. This includes a set of lightweight cascaded residual convolutional neural networks
(CNNs) for vision, and an additional Transformer layer for language. These early layers allow the
representations in each modality to lift to higher level patterns before merging, and introduce shift
invariance early in the visual branch. (ii) Efficient Parallel Branch. For the visual modality, we
explore a lightweight multi-scale CNN network, parallel to the main modality-shared branch, and
incorporate its multi-scale features to the main branch through depth-wise convolutional adaptors.
This parallel branch enables augmenting the main branch with the benefits convolutions can instill
from better modeling of spatial relationships.

We pre-train our MS-CLIP on the major public image-caption dataset YFCC100M (Thomee et al.,
2016), and rigorously evaluate on 19 downstream datasets that encompass a broad variety of vi-
sion tasks. The experimental results demonstrate that MS-CLIP can out-perform original CLIP
with fewer parameters on the majority of tasks, including zero-shot recognition, few-shot learning,
and linear probing. Moreover, in order to better understand the success of MS-CLIP, we conduct
studies on the learned embedding space, namely with a measurement on multi-modal feature fu-
sion degree (Cao et al., 2020) and quantitatively assess to what degree semantic structures (e.g.,
attention patterns) are shared across modalities.Our results reveal that sharing parameters can pull
semantically-similar concepts from different modalities closer and facilitate the learning of common
semantic structures (e.g., attention patterns).

The paper is subsequently organized as follows: in Section 2, we cover datasets and describe the
shareable modules and modality-specific designs. In Section 3, we present a rigorous study varying
amount of parameters shared across modalities and measure the impact to downstream performance
and efficiency. In Section 4 we measure the impact of modality-specific designs to performance, and
compare to model architectures with the adapters absent. Section 5 covers related work, and Section
6 concludes.

2 METHODS

2.1 SHARABLE MODULES

Following Radford et al. (2021), we use ViT-B/32 as the basic vision encoder, and the transformer
encoder as the basic text encoder, as shown in Fig.1a. We adjust the hidden dimension of text trans-
former from 512 to 768 to match the token width in the vision transformer. The resulted additional
baseline method is noted as CLIP (ViT-B/32, T768). After the adjustment, the vast majority of
parameters between the two encoders can be shared, such as the attention modules, feedforward
modules, and LayerNorm (LN) layers. Modules that cannot be shared include the input embedding
layer (where the vision encoder deploys a projection layer to embed image patches, while the text
encoder encodes word tokens), and the output projection layer. Both encoders have 12 transformer
layers.

2.2 MODALITY-SPECIFIC AUXILIARY MODULE

In this section we describe the two variations of lightweight modality-specific auxiliary modules
used in our study.
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Early Specialization In the field of multi-modal learning, it is found beneficial to employ different
specialized feature extractors for different modalities and unify them together with the same module
in latter layers (Castrejon et al., 2016; Hu & Singh, 2021). Motivated by above, we begin the
modality-specific design with making only the first layer specialized for visual and text, leaving
other layers shared. Concretely, on vision side, we employ a series of convolutional networks with
residual connection as our specialization layer, in which the feature resolution is down-sampled
and the channel dimension is increased. The detailed configuration is shown in Tab.1. That is
inspired by a recent work (Xiao et al., 2021) where they replace the first layer in ViT with several
convolution layers. Here we add residual connection to make it more stable for large-scale training.
On the language side, since the Transformer has been a de-facto model for language, we keep the
Transformer layer and of course, the parameters are not shared.

Efficient Parallel Branch In image representation, multi-scale information has always been es-
sential. However, vanilla vision Transformer (Dosovitskiy et al., 2020) first patchify the image and
use a set of patch features of fixed size all along. In recent works that introduce multi-scale into
ViT (Liu et al., 2021a; Wu et al., 2021), they gradually reduce the patch size and increase the di-
mension of channel stage by stage. Nevertheless, if sharing the weight with language Transformer,
above methods can not be incorporated because of varied channel dimension. Motivated by Feicht-
enhofer et al. (2019), we propose to have an auxiliary parallel branch alongside the shared vision
Transformer. It consists of one convolution layer and four residual convolution layers, to lower the
resolution and widen the channel. Different from plain residual convolution in Early Specialization,
here we utilize the bottleneck design in ResNet (He et al., 2016) to save parameters. The main func-
tion of parallel branch is to provide multi-scale feature to shared branch. Therefore, we also employ
one adapter after each parallel layer to integrate feature in different scales into different layer of
shared Transformer. For efficiency, we adopt depth-wise convolutions (DWConv) and point-wise
convolution (PWConv) in adapters to adjust the feature map size and depth. The adapter can be
formulated as:

H
′

p = bn(PWConv(DWConv(Hp)))

H
′
= ln(bn(DWConv(H)) +H

′

p)
(1)

where Hp is the multi-scale feature in parallel branch and H
′

is adapter’s output. bn and ln denote
batch normalization and layer normalization. It’s noted the CLS token is not fused with parallel
branch and keeps unchanged. Detailed configuration is shown in Tab.2.

Table 1: Setting of Early Specialization

Module Dim In Dim Out

3*3 Conv 3 48
Residual 3*3 Conv 48 96
Residual 3*3 Conv 96 192
Residual 3*3 Conv 192 384
Residual 3*3 Conv 384 768

1*1 Conv 768 768

Total # Parameters 4.1M

Table 2: Setting of Efficient Parallel Branch.

Parallel Adapter Fusion
Module Module Layer Id

3*3 Conv 16*16 DWConv 2
Bottleneck 3*3 Conv 8*8 DWConv 4
Bottleneck 3*3 Conv 4*4 DWConv 6
Bottleneck 3*3 Conv 2*2 DWConv 8
Bottleneck 3*3 Conv 1*1 DWConv 10

Total # Parameters 3.9M

3 INVESTIGATING MODALITY SHARING OF VISION/TEXT TRANSFORMER

Here we explore how varying the degree of sharing weights across modalities impacts performance.
We use the models mentioned in Sec. 2.1 for initial investigation.

3.1 PRETRAINING DATASET

We use YFCC100M (Thomee et al., 2016) as the pre-training dataset. Following the filtering process
in Radford et al. (2021), we only keep image-text pairs where caption is in English. This leaves
us around 22 million data pairs. It is noted that YFCC filtered by OPENAI CLIP has 15M image-
caption data. Our filtered YFCC has 22M data because we use a slightly different English dictionary
to exclude non-English words.
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Figure 1: Overview of MS-CLIP, compared with original CLIP.

Table 3: Experimental results of sharing different components in Transformer layer.

Text # Params Shared Non-Shared Zero-shot
Width Module Module Acc(%)

512 150M - Attn, FFN, LN1, LN2 32.15
768 209M - Attn, FFN, LN1, LN2 31.85
768 125M Attn, FFN, LN1, LN2 - 28.40
768 125M Attn, FFN, LN1 LN2 27.57
768 125M Attn, FFN, LN2 LN1 32.16
768 125M Attn, FFN LN1, LN2 32.99

3.2 TRAINING CONFIGURATIONS

Similar to the original CLIP paper Radford et al. (2021), we maintain separate attention masks
for image and text: vision transformer allows every patch to attend to others with a bi-directional
mask, while text transformer only allows tokens to attend to previous tokens with a uni-directional
mask. We train all the models for 32 epochs. The optimizer is Adam with decoupled weight decay
regularization (Loshchilov & Hutter, 2017). The learning rate is decayed from 1.6e-3 to 1.6e-4,
with a consine scheduler and a warm up at first 5 epochs. We train our models on 16 NVIDIA V100
GPUs with the batch size per GPU to be 256.

3.3 ZERO-SHOT EVALUATION

We use zero-shot accuracy on ImageNet (Deng et al., 2009) validation set as a common evaluation
metric. Following CLIP, we use an ensemble of multiple prompts to extract text features as category
features.

3.4 INITIAL OBSERVATIONS

1. LNs need to be modality-specific. We mainly examine the shareable modules within each
Transformer layer, as the input and output projection layers could not be shared. As shown in Tab.3,
the first model variant shares all components, including two LN layers and transformation weights
in self-attention module and feedforward module, which results in worse performance compared to
CLIP (ViT-B/32) and CLIP (ViT-B/32, T768). Then we make the two LN layers modality-specific,
which yields better performance and even surpasses the non-shared version in both zero-shot ac-
curacy and parameter efficiency. Noted that the number of parameters in LNs is almost negligible
compared with the transformation weights. The sharing is applied in all 12 layers for simplicity.
Our observation echos the finding in FPT (Lu et al., 2021) that only tuning LNs in a mostly-frozen
pretrained language model yield satisfactory performance on vision tasks.

2. Less is more: Sharing all layers is better than some. We further study which layer should be
modality-specific and which should be modality-shared. We conduct experiments on sharing last N
layers where N is ranging from 12 to 0. N = 12 indicates all layers are shared and N = 0 indicates
the non-shared baseline CLIP (ViT-B/32, T768). Tab. 4 suggests that sharing all 12 layers performs
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Table 4: Results of sharing different layers in Transformer.

Share Last X layers 12 11 10 8 6 4 2 0 NAS-Search

Zero-shot Acc(%) 32.99 31.25 32.21 32.39 32.85 30.91 nan 31.85 30.97
# Parameters 125M 132M 139M 153M 167M 181M 195M 209M 174M

Table 5: Layer-wise NMI scores of models.

Layer 0 1 2 3 4 5 6 7 8 9 10 11 Avg.

CLIP (ViT-B/32, T768) 0.586 0.387 0.265 0.252 0.255 0.241 0.239 0.243 0.235 0.23 0.227 0.185 0.278
MS-CLIP (B/32) 0.589 0.332 0.235 0.211 0.2 0.21 0.2 0.202 0.214 0.197 0.192 0.173 0.246

w/ Early Specialization 0.471 0.348 0.215 0.21 0.218 0.221 0.22 0.213 0.19 0.183 0.179 0.161 0.235
MS-CLIP-S (B/32) 0.519 0.536 0.243 0.216 0.199 0.221 0.19 0.247 0.216 0.215 0.224 0.217 0.270
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Figure 2: Overview of MS-CLIP-S.

the best while requires the least number of parameters. We name this model MS-CLIP. Additionally,
inspired by recent work on Neural Architecture Search (NAS) (Zheng et al., 2021; Dong & Yang,
2019), we train a model that learns a policy to control which layer to (not) share via Gumbel Softmax
(Dong & Yang, 2019). Despite its sophistication, it still underperforms MS-CLIP.

3. Shared model exhibits higher multi-modal fusion degree. To probe the multi-modal fusion
degree, following Cao et al. (2020), we measure the Normalized Mutual Information (NMI) be-
tween visual features and text features at each layer. For each image-caption pair, we use K-means
algorithm (K=2) to group all feature vectors from the forward pass of visual input and text input
into 2 clusters. Then, NMI is applied to measure the difference between the generated clusters and
ground-truth clusters. The higher the NMI score is, the easier the visual features and text features
can be separated, and the lower the multi-modal fusion degree is.

NMI scores are then used to probe the multi-modal fusion degree of the shared model (MS-CLIP
(B/32)) vs. non-shared model (CLIP (ViT-B/32, T768)). Here we choose CLIP (ViT-B/32, T768)
instead of CLIP (ViT-B/32) in that the feature dimensions of two modalities have to be the same
for clustering. NMI scores of all 12 layers and the average are listed in the first two rows of Tab.5.
Shared model has lower NMI scores than original CLIP on almost all the layers and the average,
indicating a higher degree of multi-modal fusion.

4 EXPERIMENTS

Given the results in Section 3 demonstrating the robust results from sharing most parameters across
modalities, we further explore whether introducing lightweight modality-specific components to the
shared backbone may yield a better balance between cross-modality modeling and specializations
within each modality. We name the MS-CLIP equipped with both modality-specific designs as
MS-CLIP-S, where ”S” means supreme. A detailed diagram of MS-CLIP-S is shown in Fig. 2

We first introduce the pre-training setting and details. Then we validate the representation capability
of MS-CLIP-S from both zero-shot recognition and linear probing. Finally we analyze MS-CLIP-S
both quantitatively and qualitatively.
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Table 6: Experimental results of zero-shot recognition on ImageNet validation.

Module # Parameters Zero-shot
Name Acc(%)

CLIP (ViT-B/32) 150M 32.15
CLIP (ViT-B/32, T768) 209M 31.85
MS-CLIP (B/32) 125M 32.99

w/ Early Specialization 129M 35.18
w/ Parallel Branch 129M 34.18

MS-CLIP-S (B/32) 133M 36.66

4.1 SETUP

Training Details: In addition to training details mentioned in Section 3, the weight decay for non-
shared parameters and shared parameters are separately set to 0.05 and 0.2. We found that a higher
weight decay for share parameters works better, because shared parameters are updated twice in
each iteration, and a higher weight decay can mitigate over-fitting.

Evaluation Datasets: In addition to zero-shot Imagenet mentioned in Section 3, we choose 19
public datasets to prove the representation learning capabilities of MS-CLIP: ImageNet, Food-101
(Bossard et al., 2014), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009),
SUN397 (Xiao et al., 2010), Stanford Cars (Krause et al., 2013), FGVC Aircraft (Maji et al., 2013),
Pascal Voc 2007 Classification (Everingham et al.), Describable Texture (dtd) (Cimpoi et al., 2014),
Oxford-IIIT Pets (Parkhi et al., 2012), Caltech-101 (Fei-Fei et al., 2004), Oxford Flowers 102 (Nils-
back & Zisserman, 2008), MNIST (LeCun et al., 1998), Facial Emotion Recognition (Pantic et al.,
2005), STL-10 (Coates et al., 2011), GTSRB (Stallkamp et al., 2012), PatchCamelyon (Veeling
et al., 2018), UCF101 (Soomro et al., 2012), Hateful Memes (Kiela et al., 2020). Those datasets
cover various visual scenarios, including generic objects, memes, scenes and etc. We take the frozen
visual encoder and apply a linear classifier to do logistic regression on top of extracted features.
Models are separately trained on each dataset for one epoch and test the accuracy.

Compared Models: We conduct comprehensive experiments with following settings. (1) CLIP
(ViT-B/32): The same as Radford et al. (2021), this uses ViT-B32 as visual encoder and Text Trans-
former as text encoder with width to be 512. (2) CLIP (ViT-B/32, T768): This model sets the width
of Text Transformer as 768 to unify the dimension of both encoders. (3) MS-CLIP (B/32): Com-
pared with CLIP (ViT-B/32, T768), this model utilizes the modality-shared transformer blocks to
substitute non-shared transformer blocks in visual and text encoders. (4) MS-CLIP (B/32) + Early
Specialization: Based on (3), we specialize the first layer of shared visual&text encoders following
Sec. 2. (5) MS-CLIP (B/32) + Parallel Branch: Based on (3), we add a parallel branch to shared
visual encoder. (6) MS-CLIP-S (B/32): Based on (3), we apply both early specialization and parallel
branch to our shared visual&text encoders.

4.2 EXPERIMENTAL RESULTS

Zero-Shot ImageNet: The experimental results are reported in Tab.6. In the first row, we re-
produce the CLIP (ViT-B/32) pre-trained on YFCC, following the officially released code. On
YFCC, Radford et al. (2021) only reported the result of CLIP (ResNet50), which is 31.3% on zero-
shot recognition of ImageNet. It proves that our re-implementation can basically re-produce the
results reported. By comparing 1-st row and last row, we find MS-CLIP-S (B/32) can outperform
CLIP (ViT-B/32) by 4.5% absolutely and 13.9% relatively in zero-shot recognition accuracy on
ImageNet, with less parameters.

Ablation Study: In Tab.6, we further analyze the effect of components in MS-CLIP. By com-
paring 2-nd row and 3-rd row, it is found that directly increasing the text transformer’s capacity is
useless and even a bit harmful. That is also mentioned in Radford et al. (2021). Then comparing
3-rd row and 4-th row, we find that sharing parameters in vision and text transformer improves the
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Table 8: Common Semantic Structure distance

Layer 0 1 2 3 4 5 6 7 8 9 10 11 Avg.

CLIP (ViT-B/32) 0.18 0.203 0.227 0.186 0.178 0.164 0.118 0.103 0.106 0.109 0.105 0.074 0.143
MS-CLIP (B/32) 0.175 0.128 0.153 0.132 0.136 0.136 0.106 0.119 0.092 0.106 0.083 0.058 0.113

+ Early Specialization - 0.107 0.142 0.16 0.12 0.12 0.103 0.103 0.096 0.111 0.11 0.058 0.111
MS-CLIP-S (B/32) - 0.085 0.162 0.105 0.102 0.103 0.105 0.114 0.093 0.094 0.093 0.061 0.101

performance and even can outperform CLIP (ViT-B/32) by 0.8%. It demonstrates that sharing the
parameters enables the visual and text information to benefit and complement each other. Then we
evaluate the proposed auxiliary modality-specific modules one by one. The comparison between
5-th row and 4-th row tells that early specialization can bring 2.1% improvement with only 4M pa-
rameters increased. On the other hand, from 6-th row and 5-th row, we realize that auxiliary parallel
branch on vision can also improve by 1.1%. Those two auxiliary modules can work together to
further boost the accuracy to 36.66%.

Table 7: Linear probing results on 19 datasets

Datasets CLIP MS-CLIP-S
∆(ViT-B32) (B32)

Food-101 71.3 76.0 + 4.7
SUN397 68.1 71.7 + 3.6
Stanford Cars 21.8 27.5 + 5.7
FGVC Aircraft 31.8 32.9 + 1.1
Pascal Voc 2007 84.4 86.1 + 1.7
Describable Texture (dtd) 64.1 69.4 + 5.3
Oxford-IIIT Pets 61.1 62.1 + 1.0
Caltech-101 82.8 81.6 − 1.2
Oxford Flowers 102 90.7 93.8 + 3.1
MNIST 96.5 97.2 + 0.7
Facial Emotion Recognition 54.9 53.6 − 1.3
STL-10 95.4 95.1 − 0.3
GTSRB 67.1 69.9 + 2.8
PatchCamelyon 78.3 81.3 + 3.0
UCF101 72.8 74.6 + 1.8
CIFAR-10 91.0 87.2 − 3.8
CIFAR-100 71.9 66.7 − 5.2
Hateful Memes 50.6 52.4 + 1.8
ImageNet 58.5 63.7 + 5.1

Avg. 69.1 70.7 + 1.6

Linear Probing: Since we al-
ready conduct ablation study un-
der zero-shot recognition, in lin-
ear probing, we only compare
the CLIP (ViT-B/32) and MS-
CLIP-S (B/32). All the results
are listed in Tab. 7. Over-
all, MS-CLIP-S (B/32) outper-
forms CLIP (ViT-B/32) on 14
out of 19 tasks. The average
improvement of 19 tasks in to-
tal is 1.6%. The reason behind
the improvement of visual en-
coder might be that, the inte-
gration of modality-shared mod-
ule and modality-specific mod-
ule enables the visual encoder to
benefit from useful language in-
formation.

4.3 FURTHER ANALYSIS

NMI Score In Sec. 3, we al-
ready explain how to measure
NMI score and reports the NMI
scores of CLIP (ViT-B/32, T768)

and MS-CLIP (B/32). We further measure the NMI scores of MS-CLIP (B/32) + Early Specializa-
tion and MS-CLIP-S (B/32). The result shows that introducing early specialization can further im-
prove the multi-modal fusion degree. But adding parallel branch leads to a decrease of multi-modal
fusion degree. That might be due to the integration of modality-specific multi-scale visual features.
From the Tab. 6, adding parallel branch indeed improves the transferable representation, which
means NMI score may not be a direct indicator of representation quality. In following subsection,
we introduce another metric to analyze the knowledge learnt in MS-CLIPs.

Multi-modal Common Semantic Structure To understand why modality-shared Transformer
blocks and proposed auxiliary modality-specific modules can improve the representation, we dig
deeper into the what our modules have learnt after training. Our hypothesis is that MS-CLIPs should
better capture the common semantic structures existing inside concepts in different modalities. To
quantitatively measure it, we probe the attention weights during inference and measure the similar-
ity between attentions in visual and attentions in text. To be more specific, the dataset we use is
Flick30K-Entity (Plummer et al., 2015), where there are multiple objects in each image grounded
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Figure 4: Visualized attention maps of shared attention head.

to corresponding concepts in caption. Given an image, assume there are grounded objects (visual
concepts) {vc1, vc2, ..., vcn} and corresponding grounded text concepts {tc1, tc2, ..., tcn}, in which
tci refers to vci. In the h-th head of l-th attention layer, we take the raw visual attention map M lh

and raw text attention map Klh. In order to get the relationship between concepts, we map the text
concept tci to its last token ti, and map the visual concept vci to its center patch vi. Through this
mapping, we can treat the attention value between tci and tcj as Klh

ij , and attention value between
vci and vcj as M lh

ij . Then for each concept pairs {i, j} in both vision and text, we normalize the
attention value over starting concept i with softmax function, and average the normalized attention
values over all heads in that attention layer. Further, we compute the l1 distance between attention
values of the same concept pair in different modalities. Finally, we sum the l1 distances of all the
concept pairs and treat it as the Common Semantic Structure (CSC) distance of that attention layer.
A lower CSC distance means more common attention patterns learnt in Transformer across two
modalities. The whole process can be formulated as:

dislij = |
H∑

h=1

1

H
softmaxi(M

lh
ij )−

H∑
h=1

1

H
softmaxi(K

lh
ij )| (2)

CSCl = disl =

n∑
i=1

n∑
j=1

(dislij) (3)
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Figure 3: Diagram of comput-
ing Common Semantic Struc-
ture distance

The layer-wise CSC distance of CLIP (ViT-B/32), MS-CLIP
(B/32), MS-CLIP (B/32) + Early Specialization and MS-CLIP-
S (B/32) are reported in Tab. 8. It is worth noting we use 10k
image-caption pairs from Flick30k-Entity to compute, which is
large enough for getting a stable CSC distance. Since the first
layer of MS-CLIP (B/32) + Early Specialization and MS-CLIP-
S (B/32) doesn’t contain attention module in vision branch, we
average the last 11 layers’ CSC distance to evaluate it. We can
find that both the modality-shared Transformer blocks and pro-
posed auxiliary modality-specific modules can lower the CSC dis-
tance and learn more semantic structure similarity of vision and
text. It is natural that sharing parameters can enforce the attention
to learn more common information. As for proposed modality-
specific modules, we suspect that those well designed models can
account for the discrepancy of separate modalities and make the
remaining shared modules focus more on the common patterns.

Visualization of Shared Attention Head In order to intuitively
understand how shared attention module works, we visualize the

visual attention patterns and text attention patterns of the same shared attention head during infer-
ence. More precisely, for vision, we visualize the attention weights between CLS token and all
patches. For text, we visualize attention weights between EOS token and all other tokens. The rea-
son is that both CLS token and EOS token will be used as output global feature. The model we use is
MS-CLIP-S (B/32). We surprisingly find some heads being able to highlight the same concepts from
different modalities. Some samples are visualized in Fig. 3. Take Fig. 3(a) as an example. Given
the image and caption respectively as input, the 1st head of 9-th attention layer gives the highest
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attention value to the region of ”cat” in image and token ”cats” in text. It validates that the attention
heads in MS-CLIP can learn the co-reference between concepts across vision and language.

5 RELATED WORK

5.1 VISION AND LANGUAGE MODELLING

This work is built on the recent success of learning visual representation from text supervision.
VirTex (Desai & Johnson, 2021) proposes to learn visual encoder from image captioning objectives.
LocTex (Liu et al., 2021b) introduces localized textual supervision to guide visual representation
learning. Both studies are conducted on a relatively small scale. A more recent work CLIP (Radford
et al., 2021) demonstrates that generic multimodal pre-training could benefit from extremely large
scale training (i.e., a private dataset with 400 million image-caption pairs) and obtain strong zero-
shot capability. It adopts a simple but effective contrastive objective that attracts paired image and
caption and repels unpaired ones. ALIGN (Jia et al., 2021) has a similar model design except for
using EfficeintNet (Tan & Le, 2019) as their visual encoder, and is pre-trained on an even larger
dataset. Besides recognition task, Gu et al. (2021) distills the learnt CLIP knowledge into object
detector to perform zero-shot objec detection task. In terms of text prompts, CoOp (Zhou et al.,
2021) introduce to model context in prompts with continuous learnable representation to avoid the
ad-hoc prompt engineering. Our work focuses on the shareability of transformers in vision and text
in large-scale contrastive pre-training and are orthogonal to above mentioned works.

5.2 PARAMETER-SHARING ACROSS MODALITIES

Humans reason over various modalities simultaneously. Sharing modules for multi-modal process-
ing has attracted increasing interests recently from the community. Among them, the one most
related to us is VATT (Akbari et al., 2021). VATT introduces a transformer shared by video, text
and audio and is pre-trained on a contrastive objective. The proposed model naively reuses the en-
tire network for all modalities and yields results worse than the non-shared counterpart. Lee et al.
(2020) proposes to share the parameters of Transformers across both layers and modalities to ex-
tremely save parameters. They focuses on video-audio multi-modal downstream task and has an
additional multi-modal Transformer for modality fusion. In this work, we focus on the transferable
visual representation and zero-shot capability with no fusion part. In multi-task mulit-modal learn-
ing, Hu & Singh (2021) introduces a shared Transformer decoder to handle multiple tasks. In terms
of multimodal fusion, Nagrani et al. (2021) utilizes a set of shared tokens across different modalities
to enable the information sharing.

6 CONCLUSION

We propose MS-CLIP, a modality-shared contrastive language-image pre-training approach, where
most parameters in vision and text encoders are shared. To explore how many parameters of a trans-
former model can be shared across modalities, we carefully investigate various architectural design
choices through plenty of experiments. In addition, we propose two modality-specific auxiliary
designs: Early Specialization and Auxiliary Parallel Branch. Experiments on both zero-shot recog-
nition and linear probing demonstrate the superior of MS-CLIP over CLIP in both effectiveness and
parameter efficiency. Finally, we analyze the reasons behind and realize that sharing parameters
can map two modalities into a closer embedding space and promote the common semantic structure
learning across modalities.
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