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Abstract

Graph Neural Networks (GNNS) have proven their versatility over diverse sce-1

narios. With increasing considerations of societal fairness, many studies focus2

on algorithmic fairness in GNNs. Most of them aim to improve fairness at the3

group level, while only a few works focus on individual fairness, which attempts to4

give similar predictions to similar individuals for a specific task. We expect that5

such an individual fairness promotion framework should be compatible with both6

discrete and continuous task-specific similarity measures for individual fairness,7

and balanced between utility (e.g., classification accuracy) and fairness. Fair-8

ness promotion frameworks are generally desired to be computationally efficient9

and compatible with various GNN model designs. With previous work failing to10

achieve all of these goals, we propose a novel method GFairHint for promoting11

individual fairness in GNNs, which learns fairness hint through an auxiliary link12

prediction task. We empirically evaluate our methods on five real-world graph13

datasets that cover both discrete and continuous settings for individual fairness14

similarity measures, with three popular backbone GNN models. The proposed15

method achieves the best fairness results in almost all almost all combinations of16

datasets with various backbone models, while generating comparable utility results,17

with much less computation cost compared to the previous state-of-the-art (SoTA)18

model.19

1 Introduction20

Graph Neural Networks (GNNs) have shown great potential in modeling graph structured data for21

various tasks such as node classification, graph classification and link prediction [42]. Specifically,22

there are many real-world applications for the node classification task, e.g., recruitment [21, 44],23

recommendation system [23, 40, 41], and loan default prediction [12, 38]. As GNNs play important24

roles in these decision-making processes, researchers pay increasing attention to fairness in graph-25

structured data and GNNs [25, 7, 21]. Due to the message-passing mechanism, where nodes learn26

representations by aggregating information from their neighbors, the concern for fairness is crucial27

for GNNs [8, 39, 18]. Taking social network as an example, users tend to connect with other users28

in the same demographic group. The message-passing mechanism would potentially lead GNNs29

to performance differently for different demographic groups or ignore task-specific similarity for30

individual users.31

There are two main types of algorithmic fairness [26]. Group fairness attempts to treat different32

groups equally and individual fairness, which is the focus of our work, intends to give similar33

predictions to similar individuals for a specific task. A core question for individual fairness is how34

to define the task-specific similarity metric. Dwork et al. [9] originally envisioned that the metric35

would be provided by human experts “as a (near ground-truth) approximation agreed upon by the36

society”. Lahoti et al. [20] argues that it is very difficult for experts to measure individuals based on37
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a quantitative similarity metric when in operationalization. They further suggests it is much easier38

to make pairwise judgments which results in discrete (e.g., 0-1) similarity measure between two39

individuals. For cases where there is no task-specific similarity metric at hand, other works [28, 6, 15]40

use simplified notions by developing continuous similarity metrics (such as a weighted Euclidean41

distance) over a feature space of data attributes.42

We highlight several desiderata for prompting individual fairness in GNNs or fairness in machine43

learning systems in general. (1) The proposed method for individual fairness should be compatible44

to both discrete and continuous similarity measures as described above. Generally, (2) we want the45

models to achieve a good balance between utility (e.g., classification accuracy) and fairness when46

making predictions. (3) We wish that the additional computation cost introduced to promote fairness47

is reasonably small. (4) We want the fairness promotion method to be compatible with different GNN48

model architectures and various designs for specific tasks.49

In this study, we propose an individual fairness representation learning framework to improve50

individual FAIRness for GNNs via fairness HINT (GFairHint), with the above desired properties.51

We consider the setting in which similarity measures are available for each pair of individuals, either52

discrete or continuous. As shown in Figure 1, in addition to the original input graph, we create53

a fairness graph where the edge between two nodes is weighted by the given similarity measure54

and does not exist when the similarity value is 0 or below a certain threshold. We then learn a55

fairness representation for each node from the constructed fairness graph via link prediction, where56

we encourage the model to recover randomly masked edges. The learned fairness representation57

is then used as a fairness hint by concatenating with the node embeddings from the original graph,58

which is parallelly trained for maximizing utility with another GNN model.59

To show the effectiveness of the proposed method, we conduct extensive empirical evaluations on five60

node classification datasets, with either continuous similarity measure derived from input space or61

discrete one provided by external annotators. We also experiment with three popular GNN backbone62

models We summarize our main contributions as follows:63

• We propose a novel plug-and-play framework for promoting individual fairness in GNNs64

which learn fairness hint through an auxiliary link prediction task.65

• The proposed method meets the above-listed desiderata for promoting fairness, as it is66

compatible with two different settings for individual fairness similarity measures, achieves67

comparable accuracy while making more fair predictions, computationally efficient, and68

easy-to-integrate with different model designs.69

• We empirically show that the proposed method achieves the best fairness results in almost70

all comparisons, even the best utility results in most comparisons, and comparable utility71

performance in the other comparisons.72

2 Related Works73

Fairness for Graph-structured Data Most previous efforts focus on promoting group fairness in74

graphs [31, 22, 39, 1, 4, 2], which encourages to treat different groups defined by sensitive attributes75

(e.g., demographics) equally. Another line of research works on counterfactual fairness [19, 24],76

which aims to generate the same prediction results for each individual and its counterfactuals.77

Few research studies work on individual fairness in graphs, more specifically fairness through78

awareness [9, 26]. Individual fairness intends to render similar predictions to similar individuals79

for a specific task. Kang et al. [15] propose a framework called InFoRM to debias a graph mining80

pipeline from the input graph (preprocessing), the mining model (processing), and the mining results81

(postprocessing), but not specifically for GNN models. Song et al. [35] identify a new challenge to82

enforce individual fairness informed by group equality. The work that is closed to ours is REDRESS83

[6]. They propose to model individual fairness from a ranking-based perspective and design a84

ranking-based loss accordingly. However, their method does not generalize well to the case where85

the similarity measure is discrete, especially 0-1. Moreover, despite their effort on reducing the86

computation cost and the effectiveness of ranking-based loss, high computation cost is unavoidable87

when computing the rank.88
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Individual Fairness There are other works focusing on individual fairness, but not specifically for89

graph-structured data. The definition of individual fairness, similar predictions for similar individuals,90

can be formulated by the Lipschitz constraint, which inspires works such as PFR [20] to learn fair91

representation as input (preprocess). Because it is computationally difficult to enforce Lipschitz92

constraint, Yurochkin and Sun [43] propose an in-process method with a lifted constraint version and93

Petersen et al. [30] propose a post-processing method with Laplacian smoothing. We note that both94

PFR and InFoRM can be adapted to promote individual fairness with GNN models, but it is shown95

that REDRESS [6] largely outperforms these two methods.96

3 Proposed Method - GFairHint97

3.1 Overall Structure98

The generic definition of individual fairness is individuals who are similar should have similar99

outcomes [9]. For graph data and GNN models, we represent the similarity measure as an oracle100

similarity matrix SF , where the value of (i, j)-th entry is the similarity between the input node i101

and j. We assume the oracle similarity matrix is given before training.102

Our proposed GFairHint framework consists of three steps. First, we construct a fairness graph, GF ,103

with the same set of nodes in the original input graph. The edges of GF represent that two nodes have104

a high similarity value in SF . Next, we obtain the individual fairness hint through a representation105

learning method that learns fair representations for the nodes in GF . Specifically, the representation106

learning model predicts whether two nodes in GF have an edge through a GNN link prediction model107

whose final hidden layer output is used as the fairness hint. Finally, the node fairness hint is fed into108

GNN model for original tasks. The entire framework is visualized in Figure 1, and we introduce each109

step in detail as follows.110

Figure 1: The proposed individual fairness promotion framework, GFairHint. The loss function for
GFairHint can be a single utility loss (cross entropy loss) or the combinations of utility loss and other
fairness loss (e.g., ranking-based loss).

3.2 Construction of Fairness Graph111

We show how to construct fairness graphs from two different sources of the oracle similarity matrix112

SF , i.e., input feature and external annotation.113

Input Feature Oracle Similarity Matrix Although the similarity for individual fairness was114

originally envisioned to be provided by human experts [9], it is often impractical to obtain for real-115

world tasks. Previous works [6, 28] obtain the oracle similariy matrix SF from input feature space116

i.e., the entry sij in SF is the cosine similarity between the features of node i and j. To construct the117

fairness graph, GF , for each node, we only connect this node to the top-k similar nodes from SF .118
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External Oracle Similarity Matrix Following Lahoti et al. [20] on operationalizing individual119

fairness, we consider the case when external pairwise judgments are available on whether two120

individuals i, j should be treated similarly given a specific task. The entry SF
ij in SF is 1 when121

individual i and j are deemed to be treated similarly and 0 otherwise. In this case, SF is the adjacency122

matrix for the fairness graph GF . They further propose an alternative type of judgements that map123

individuals into discrete equivalence classes. Any pair of individuals i, j is linked in the fairness124

graph, GF , only if they belong to the same class. For example, if neighborhood i and j are both125

annotated as the highest safety level, they will be linked in GF .126

3.3 Fairness Representation Learning Model127

We then learn the fairness hint from the constructed fairness graph GF through an auxiliary link128

prediction task and later incorporate it into the GNN model for the original tasks. We use Graph129

Convolutional Network (GCN) model [17] with two GCN layers for link prediction, i.e., predicting130

whether two nodes in GF share an edge. The initial input node features of the link prediction model131

are the same as the features of the original task. For any node embedding hl
i (the embedding of node132

i from the lth hidden layer), GCN layer combines the node embedding hl
i and other node embeddings133

from its neighbor node set N (i), which is formally denoted as134

hl+1
i = GCN(hl

i, {hl
j , j ∈ N (i)}) (1)

If we set the output of the last layer in the link prediction model for node i as vfi , the probability of135

node i and node j sharing an edge can be calculated as sigmoid(vfi · vfj ). We use the cross entropy136

loss to optimize the link prediction model.137

We train this fairness representation learning model separately to avoid overfitting. We extract the138

output vfi of the last layer for each node as the fairness hint.139

3.4 Fairness Promotion for GNN Models140

Our GFairHint framework is compatible with various GNN model architectures for the original141

tasks. The basic operations of each GNN layer are similar to the GCN operation in Equation 1,142

but the convolutional operations are replaced with other message-passing mechanisms for different143

GNN models. We train the chosen GNN backbone models with utility loss Lutility (i.e., cross144

entropy loss) and obtain the utility node embedding ui from the last GNN hidden layer. We then145

concatenate ui with the fairness hint vfi to form a joint node embedding [ui, v
f
i ]. We add two146

MLP layers with weights W1 and W2 to encourage the model to absorb both utility and fairness147

information in the joint node embeddings. The final embedding zi of the node i can be calculated as148

zi = W2(W1[ui, v
f
i ] + b1) + b2. For node classification tasks, we apply softmax to the final node149

embedding zi ∈ Rc to obtain the predictions where c is the number of classes.150

3.5 Integrate with REDRESS151

We can simply use the utility loss Lutility as the final loss. Moreover, the proposed GFairHint is a152

plug-and-play framework that can be integrated with other fairness promotion methods to further153

improve performance. To demonstrate this, we integrate proposed ranking-based loss from REDRESS154

[6] into our framework.155

Following the procedure in REDRESS, we additionally compute an outcome similarity matrix156

SŶ with the predicted outcome Ŷ , where the (i, j)-th entry is the cosine similarity between the157

embedding zi and zj of the node i and j of the final GNN layer. The general objective of the loss is158

to minimize the difference between the oracle similarity matrix SF and SŶ . For each node, we can159

obtain two top-k ranking lists derived from SF and SŶ respectively. The fairness loss Lfairness is160

then calculated with these two ranking lists as input. The final objective is to combine the fairness161

loss and the utility loss.162

Ltotal = Lutility + γLfairness (2)

where γ is an adjustable hyperparameter. By changing the value of γ, we can control the weight of163

fairness and utility during training according to the task’s requirement.164
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4 Experiments Setting165

Dataset Collection In our work, we focus on the node classification task to evaluate the fairness166

promotion ability of our proposed GFairHint. We collect five real-word datasets to assess the model167

performance in multiple domains. Co-author-CS and Co-author-Phy are two co-authorship network168

datasets [34], where each node represents an author, and they connect the nodes if two authors have169

published a paper together. ACM is a dataset of citation network [36], where each node represents a170

paper, and the edge denotes the citation relationship. In addition to them, we add another citation171

network OGBN-ArXiv dataset [13] for experiments, which is several magnitude orders larger than172

the ACM, CS, and Phy datasets. Additionally, we consider a dataset with external human annotation173

on individual fairness similarity. The Crime dataset [33] consists of socioeconomic, demographic,174

and law / police data records for neighborhoods in the US. We follow Lahoti et al. [20] for most of175

the preprocessing and introduce additional information on the geometrical adjacency of the county1176

to form a graph-structured dataset. The details for the dataset curation are in Appendix B.177

GNN Backbone Models Our learned fairness hint for each node contains individual fairness178

information, and we expect that the fairness hint helps promote fairness in various GNN models. We179

choose three popular GNN models: GCN [17], GraphSAGE [11], and Graph Attention Networks180

(GAT) [37] to demonstrate the compatibility of GFairHint with various GNN model designs. Note181

that we do not need to relearn the fairness hint for the same dataset even if the backbone models have182

changed.183

Oracle Similarity Matrix We consider two types of similarity matrix, i.e. continuous and discrete,184

to show the generalization ability of our GFairHint. For the co-authorship and citation networks185

(ACM, ArXiv, CS, Phy) without human defined SF , we follow previous work [6] and use the cosine186

similarities between node features as the entries in SF . For Crime dataset, we follow [20] to collect187

human reviews on Crime & Safety for neighborhoods in the U.S. from a neighborhood review website,188

Niche2. The judgments are given in the form of 1-star to 5-star ratings by current and past residents189

of these neighborhoods. We then use aggregated mean ratings to construct the fairness graph as190

described in Section 3.2.191

Models for Comparison To show the superiority of our proposed framework, we implement192

the vanilla GNN models and previous SOTA as baseline models with sensitivity analysis. The193

baseline models are Vanilla, REDRESS, and REDRESS + MLP. Our models are GFairHint and194

GFairHint + REDRESS. The details of model introduction are shown in Appendix D. Note that195

some existing works [1, 32] for group fairness promotion cannot be used as baseline models because196

our work focuses on individual fairness. There are two other recently proposed frameworks PFR [20]197

and InFoRM [15] to promote individual fairness. Since these two frameworks are not specifically198

designed for graph data or deep GNN models, their performance is consistently worse than REDRESS199

across multiple datasets and models [6], we do not choose PFR and InFoRM models for comparison200

in this work.201

Evaluation Metric Since our work focuses on the node classification task, we use conventional202

classification accuracy (ACC) as the metric to evaluate the utility performance of the model. Regarding203

the metric of individual fairness, we use different evaluation metrics in accordance with two different204

settings of the oracle similarity, i.e., continuous and discrete. For the co-authorship and citation205

networks (ACM, ArXiv, CS, Phy), we follow previous work [6] to utilize ERR@K [3] and NDCG@K206

[14] and choose k = 10. For the Crime dataset, where the entry of the oracle similarity matrix is207

discrete, we use Consistency [20] as the evaluation metric. The detailed description of the metrics is208

introduced in Appendix C.209

5 Experiment Results210

Input Feature Oracle Similarity Matrix For the citation and co-authorship networks, we use the211

input feature similarity as the entry of the oracle similarity matrix to construct the fairness graph.212

1https://pypi.org/project/county-adjacency/
2http://niche.com
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Model ACC ERR@10 NDCG@10
Vanilla 70.19 ± 0.02 91.45 ± 0.01 75.01 ± 0.19
REDRESS 68.65 ± 1.13 91.57 ± 0.10 75.25 ± 0.71
REDRESS + MLP 69.85 ± 0.27 91.47 ± 0.01 75.01 ± 0.26
GFairHint 70.62 ± 0.91 94.28 ± 0.09 81.93 ± 0.27
GFairHint + REDRESS 69.80 ± 0.47 95.22 ± 0.80 85.48 ± 3.47

Table 1: Node classification results on the ArXiv dataset for GCN model. All values are reported in
percentage. The best results are in bold, the second best results are underlined.

Model ACC Consistency
Vanilla 73.83 ± 0.34 54.80 ± 0.23
REDRESS 73.98 ± 0.70 54.07 ± 0.96
REDRESS + MLP 73.58 ± 1.80 53.06 ± 1.04
GFairHint 75.44 ± 0.71 62.76 ± 2.74
GFairHint + REDRESS 75.54 ± 0.90 63.61 ± 4.44

Table 2: Node classification results on the Crime datasets for GCN model. All values are reported in
percentage. The best results are in bold, the second best results are underlined.

We present the results for Arxiv dataset with GCN model in Table 1. The full results are shown213

in Table 4 for the citation networks and Table 5 for the co-authorship networks in the Appendix.214

From the utility perspective, we use accuracy as the evaluation metric. Our proposed GFairHint and215

GFairHint + REDRESS models achieve comparable results with vanilla backbone GNN models and216

other REDRESS variation models. In 5 cases out of 6 experiments for co-authorship datasets, our217

models also achieve the best utility performance.218

Regarding the fairness perspective, we use ERR@10 and NDCG@10 to evaluate the individual219

fairness promotion ability of the models, and higher values of ERR and NDCG represent better220

individual fairness promotion. Incorporating the fairness hint to REDRESS increases the ERR and221

NDCG values from 91.47 to 95.22 and from 75.01 to 85.48 respectively for Arxiv dataset with GCN222

model. From the results in Tables 4 and 5 (Appendix), our proposed models achieve the best fairness223

performance in nearly all settings, except for the ERR evaluation on the Phy dataset. Moreover,224

the second-best fairness performance for the citation network dataset is also mainly our proposed225

GFairHint and its variant (i.e., GFairHint + REDRESS).226

External Oracle Similarity Matrix For the Crime dataset, we construct a discrete (0-1) fairness227

graph from collected human expert judgements. We show the results for GCN backbone model in228

Table 2 and the full results with all backbone models in Table 6 (Appendix). We find that for all three229

backbone GNN models, GFairHint and GFairHint + REDRESS are the best two methods in fairness230

(Consistency) evaluations. This is as expected because vanilla and REDRESS models do not have231

access to fairness information in this setting.232

GFairHint and GFairHint + REDRESS have close performance in consistency, demonstrating the233

effectiveness of fairness hint even when it is utilized alone. Although GFairHint + REDRESS234

has slightly better results, it has much higher computation cost because of the ranking-based loss.235

For GCN and GAT backbone models, our proposed methods achieve the best two results in utility236

(accuracy) evaluation.237

Efficiency and Sensitivity Analysis In addition to the main results, we also perform an efficiency238

and sensitivity analysis of all models. The results are shown in Tables 2a and 2b. For Figure 2a, we239

observe that the computation cost of GFairHint is comparable with the vanilla model, much less than240

REDRESS. For Figure 2b, when changing the hyperparameter γ to adjust the weight of fairness and241

utility, our GFairHint + REDRESS model performs consistently better than the original REDRESS.242

Details of the analysis are shown in the Appendix E.243
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Figure 2: Computation efficiency and sensitivity analysis (Utility-fairness tradeoffs) for proposed
framework

6 Conclusions244

In this work, we propose GFairHint, a plug-and-play framework for promoting individual fairness in245

GNNs via fairness hint. Our methods learn fairness hint through an auxiliary link prediction task246

on constructed fairness graph. The fairness graph can be derived from both continuous and discrete247

oracle similarity metrics, which correspond to two ways of obtain similarity for individual fairness248

respectively, i.e., from input feature space and from external human annotations. To demonstrate249

the flexibility of GFairHint, we also integrate it with another individual fairness promotion method,250

REDRESS.251

We conducted extensive empirical evaluations on five real-world network datasets and three backbone252

GNN models to show the effectiveness of our proposed methods3. Our proposed GFairHint +253

REDRESS method achieved best fairness performance in almost all comparisons (24/27), while254

GFairHint performed second best in 16/27 of the comparisons when applied alone. These two255

methods also have comparable utility performance with the Vanilla model, as they ranked top two in256

12/15 utility comparisons. Although GFairHint + REDRESS achieved better fairness performance257

than GFairHint in general, the gaps are small. In addition, GFairHint requires much less computation258

cost as it does not involve ranking-based loss. These observations demonstrate the effectiveness of259

our proposed method for learning fairness hint to promote individual fairness in GNNs.260
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A Implementation Details381

All the backbone GNN models and our auxiliary link prediction models are implemented in the382

Pytorch framework, especially the package PyTorch Geometric [29, 10]. For each of our five datasets,383

we experiment with two backbone GNN settings, small and large model size. For the small model384

size setting, the number of layers and the dimension of the embeddings in the hidden layers are set to385

2 and 16. For the big model size setting, we set these two numbers to 10 and 128 respectively.386

For each dataset, we choose model hyperparameter settings with better average utility between two387

large and small model size settings as described in Section A. Specifically, for citation networks, the388

results are from 10-layer models with hidden layer dimension 128. For co-authorship netowrks and389

Crime dataset, the results are from 2-layer models with hidden layer dimension 16. Specifically, for390

the ArXiv dataset, since they have about 90,000 nodes as the training dataset, using 10-layer GAT391

on them will cause a memory issue, so we only experiment on the Arxiv data with the 3-layer and392

128-dimensional hidden layer GAT model.393

For all experiments, we fix the values of the hyperparameters γ and k at 1 and 10 as suggested394

in the previous work [6], where γ is the weighting factor when integrating with the ranking-based395

loss (Equation 2) and k is the number of top entries used to calculate the ranking loss and fairness396

evaluation metrics NDCG@K and ERR@K.397

When training the GCN model for the auxiliary link prediction task, we randomly mask the 2.5% and398

5% edges of the fairness graph as the positive edges sampled in the validation set and the test set. We399

also generate the same number of negative edges. For optimization, we use Adam optimizer with400

learning rate 0.001 and full batch training [16].401

As for the training epochs, when training without the ranking-based loss (Vanilla and FairGraph402

Embedding models), the numbers of training epochs of ArXiv, ACM, Phy, CS and Crime datasets403

are 300, 150, 300, 300, 500 respectively. When training with ranking-based loss, we first train the404

models with only utility loss for tens of epochs to “warm up" and then the models will be trained405

with ranking-based loss and utility loss together. The numbers of “warm-up" epochs and training406

epochs with ranking-based loss are 150 and 300, 250 and 300, 50 and 150, 50 and 500, 50 and 600407

for ArXiv, ACM, Phy, CS and Crime datasets, respectively. This warm-up operation also follows the408

procedure in the REDRESS paper [6].409

We note that for the Crime dataset, since the entries of oracle similarity matrix SF are discrete (0-1),410

we cannot calculate the ranking-based loss of the constructed fairness graph GF . Therefore, we adapt411

the REDRESS-related models to calculate the ranking-based loss based on input feature similarity .412

As a result, for the Crime dataset, REDRESS and REDRESS + MLP do not have any access to the413

fairness information (i.e., fairness graph GF ), while GFairHint + REDRESS get fairness information414

only through the fairness hint but not the ranking-based loss.415

B Dataset Details416

For ACM, CS, and Phy datasets, we follow the preprocessing procedure in REDRESS and use the417

bag-of-word model to transfer the title and abstract of the paper as node features. We use the pre-split418
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training, validation, and test datasets from the REDRESS paper 4, which samples 5% nodes as the419

training set, 10% nodes as the validation set, and the rest of the nodes as the test dataset. Regarding420

the ArXiv dataset, we directly use the processed 128-dimensional feature vectors from a pre-trained421

skip-gram model [27]. We then follow the train/validation/test splits from the official release of Open422

Graph Benchmark5. We repeat the experiments for each model setting twice, since the split of the423

dataset is fixed by the previous work.424

For the Crime dataset, we have a binary outcome variable for whether the neighborhood is violent425

and consider other data records as input features. As there is no predefined train/validation/test split,426

we randomly split the dataset and repeat five times for each model setting. We show basic statistics427

for the five datasets in Table ??.428

Dataset # Training Nodes # Features # Classes

CS 916 6,805 15
Phy 1,724 8,415 5
ACM 824 8,337 9
ArXiv 90,941 128 40
Crime* 1994 122 2

Table 3: Statistics of the datasets used for node classification experiments. * indicates the oracle
similarity matrix is discrete and provided by human experts, while the oracle similarity matrix for
other datasets are continuous and derived from input feature space.

C Evaluation Metirc Details429

ERR@K and NDCG@K measure the similarity between the ranking lists obtained from the oracle430

similarity matrix SF and the outcome similarity matrix SŶ .431

Consistency measures the consistency of outcomes between individuals who are similar to each other.432

The formal definition regarding a fairness similarity matrix SF is433

Consistency = 1−
ΣiΣj |yi − ŷj | · SF

ij

ΣiΣjSF
ij

∀i ̸= j

D Baseline Details434

Vanilla: Vanilla denotes the vanilla GNN models without any individual fairness promotion method.435

REDRESS: REDRESS is the previous SOTA framework for individual fairness promotion in GNN436

models [6]. They formulate the conventional individual fairness promotion into a ranking-based437

optimization problem. By optimizing the ranking-based loss Lfairness and the utility loss Lutility,438

REDRESS can achieve the goal of maximization of utility and promotion of individual fairness439

simultaneously. For the implementation of its framework and ranking-based loss, we adapt the440

codebase released by the authors6.441

REDRESS + MLP As mentioned in Section 3.4, after concatenating the utility node embeddings442

and fairness hint, our proposed framework GFairHint uses additional MLP layers to process the443

concatenated embeddings, which increases the model complexity. This variant of REDRESS adds444

the MLP layers with the same size after the GNN models along with the original REDRESS loss.445

We use the output of MLP layers from this variation model to calculate the loss and optimize the446

parameters in the GNN and MLP layers. REDRESS + MLP model can show the effectiveness of447

GFairHint without interference of the model complexity confounder.448

Our methods: We study the performance of GFairHint and examine its effectiveness with the449

combination of REDRESS loss:450

4https://github.com/yushundong/REDRESS/tree/main/node%20classification/data
5https://ogb.stanford.edu/docs/nodeprop/
6https://github.com/yushundong/REDRESS
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GFairHint: We combine the fairness hint with the utility node embedding and only use the Lutility451

loss to update the model parameters.452

GFairHint + REDRESS: As described in Section 3.5, we combine the ranking-based loss Lfairness453

in REDRESS with the utility loss Lutility to further encourage the models to learn individual fairness.454

The only difference between this model and REDRESS + MLP is that GFairHint + REDRESS455

incorporates the fairness hint.456

E Efficiency and Sensitivity Analysis457

E.1 Efficiency Evaluation458

In addition to fairness and utility results, we compare the efficiency of GFairHint models with other459

baseline models in terms of time complexity and time spent for training. During the training phase,460

the ranking-based loss in REDRESS requires to find the top-k similar nodes by ranking for each node.461

Therefore, the training time of REDRESS is much longer than that of the vanilla GNN models. We462

claim that the GFairHint framework has a much lower computation cost than REDRESS does. To463

make the gap more salient, we perform experiments on the largest dataset, the ArXiv dataset, with464

90,941 training nodes. We choose GCN as the backbone model. The experiments were conducted in465

a controlled computation environment with single GPU (RTX2080ti) and fixed GPU memory (32GB).466

For each method, we train the models for 300 epochs and visualize the average training time of 50467

epochs in Figure 2a.468

We find that training time for REDRESS, REDRESS + MLP and our proposed GFairHint + REDRESS469

are similar, much higher than the vanilla and GFairHint models. In addition to training time with470

ranking-based loss, all REDRESS-related models require training with only utility loss to “warm up“471

before training with both utility loss and ranking-based loss [6]. Actual training time gaps between472

GFairHint and REDRESS are more significant than the visualization in Figure 2a. We expect that our473

GFairHint model is more scalable in practical applications when applied to large graph datasets.474

E.2 Trade-off between Fairness and Utility475

GFairHint + REDRESS achieves the best fairness performance, where we integrate fairness hint476

with ranking-based loss. The value of the hyperparameter γ in Equation 2 controls the strength of477

the fairness constraint. There is a trade-off between utility and fairness when adjusting the γ value478

[6]. To demonstrate the effectiveness of GFairHint, we perform experiments with multiple values479

of γ for the REDRESS and GFairHint + REDRESS models on the Arxiv dataset with GCN as the480

backbone GCN model. Figure 2b shows the trade-off between accuracy and fairness (NDCG@10)481

with varying values of γ for the REDRESS and GFairHint + REDRESS methods. We also further482

visualize the accuracy and NDCG@10 values for the vanilla and GFairHint models as two data points483

for reference.484

With the value of γ being small (e.g., 0.001), REDRESS and GFairHint + REDRESS models behave485

similarly to the vanilla and GFairHint models respectively as expected. When increasing the value of486

γ, we can observe fairness improvements for both REDRESS and the GFairHint + REDRESS models.487

This fairness improvement is more significant for the GFairHint + REDRESS model. We conjecture488

that little improvement for the REDRESS model is due to the vanishing gradient problem of deep489

GNN models [5], which may reduce the impact of fairness loss. GFairHint + REDRESS model does490

not have such a concern because it also directly learns from the fairness hint that is incorporated491

into the final GNN layers. We observe that with the same accuracy level, our proposed GFairHint +492

REDRESS model achieves a higher NDCG@10 value than the REDRESS model, demonstrating the493

effectiveness of the fairness hint.494

We expect that the adjustment of the trade-off between fairness and utility can provide more flexibility495

in practical applications. For example, some tasks may pay more attention to fairness rather than496

utility.497
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Dataset BB Model ACC ERR@10 NDCG@10

ArXiv

GCN

Vanilla 70.19 ± 0.02 91.45 ± 0.01 75.01 ± 0.19
REDRESS 68.65 ± 1.13 91.57 ± 0.10 75.25 ± 0.71
REDRESS + MLP 69.85 ± 0.27 91.47 ± 0.01 75.01 ± 0.26
GFairHint 70.62 ± 0.91 94.28 ± 0.09 81.93 ± 0.27
GFairHint + REDRESS 69.80 ± 0.47 95.22 ± 0.80 85.48 ± 3.47

SAGE

Vanilla 70.44 ± 0.69 91.71 ± 0.13 75.47 ± 0.37
REDRESS 69.34 ± 0.55 91.58 ± 0.16 75.51 ± 0.73
REDRESS + MLP 69.75 ± 0.18 91.40 ± 0.09 74.45 ± 0.53
GFairHint 70.40 ± 0.34 94.34 ± 0.04 81.92 ± 0.17
GFairHint + REDRESS 68.98 ± 0.25 95.22 ± 0.79 85.32 ± 3.45

GAT

Vanilla 70.86 ± 0.64 92.04 ± 0.09 76.64 ± 0.21
REDRESS 69.74 ± 0.19 92.18 ± 0.02 77.46 ± 0.09
REDRESS + MLP 70.45 ± 0.30 91.86 ± 0.25 76.23 ± 0.98
GFairHint 71.06 ± 0.45 94.20 ± 0.04 81.80 ± 0.14
GFairHint + REDRESS 69.89 ± 0.11 95.20 ± 1.19 85.49 ± 4.73

ACM

GCN

Vanilla 70.78 ± 0.18 76.99 ± 0.08 33.90 ± 0.73
REDRESS 70.15 ± 1.77 76.98 ± 0.13 34.82 ± 0.80
REDRESS + MLP 70.64 ± 1.89 76.66 ± 0.19 30.93 ± 0.46
GFairHint 69.70 ± 0.77 76.39 ± 0.52 35.12 ± 0.34
GFairHint + REDRESS 69.77 ± 0.95 77.00 ± 0.16 38.58 ± 2.85

SAGE

Vanilla 69.26 ± 0.60 76.63 ± 0.18 30.55 ± 1.86
REDRESS 68.23 ± 0.97 76.68 ± 0.04 31.58 ± 1.06
REDRESS + MLP 69.32 ± 0.44 76.29 ± 0.78 28.73 ± 0.12
GFairHint 69.24 ± 0.11 76.39 ± 0.25 36.12 ± 0.72
GFairHint + REDRESS 67.52 ± 0.16 77.37 ± 0.55 37.83 ± 3.78

GAT

Vanilla 71.14 ± 1.14 77.00 ± 0.20 34.62 ± 0.28
REDRESS 70.49 ± 0.87 77.40 ± 0.28 34.83 ± 0.45
REDRESS + MLP 69.87 ± 0.70 76.22 ± 0.09 32.82 ± 1.36
GFairHint 71.04 ± 0.74 76.79 ± 0.27 37.52 ± 0.54
GFairHint + REDRESS 69.65 ± 0.88 77.50 ± 0.36 43.01 ± 2.02

Table 4: Node classification results for citation datasets: ArXiv and ACM. BB represents the backbone
GNN models. The number of layers and the hidden layer dimension of the backbone GNN models
are 10 and 128 respectively. All values are reported in percentage. The Best results are in bold, the
second best results are underlined.
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Dataset BB Model ACC ERR@10 NDCG@10

CS

GCN

Vanilla 80.16 ± 9.32 78.93 ± 0.07 44.00 ± 1.14
REDRESS 79.88 ± 2.68 81.25 ± 0.55 49.24 ± 2.36
REDRESS + MLP 77.35 ± 2.10 78.76 ± 0.27 40.54 ± 2.45
GFairHint 87.08 ± 2.05 79.56 ± 0.36 51.31 ± 1.17
GFairHint + REDRESS 91.17 ± 0.54 83.48 ± 0.20 64.60 ± 0.58

SAGE

Vanilla 85.49 ± 6.58 78.33 ± 0.02 46.34 ± 0.98
REDRESS 88.26 ± 3.30 81.09 ± 0.59 54.71 ± 1.91
REDRESS + MLP 83.29 ± 1.66 77.80 ± 0.44 42.83 ± 1.40
GFairHint 86.67 ± 3.07 79.32 ± 0.30 51.00 ± 0.73
GFairHint + REDRESS 91.06 ± 0.02 83.21 ± 0.31 64.49 ± 0.45

GAT

Vanilla 80.73 ± 7.52 79.44 ± 0.29 46.99 ± 0.98
REDRESS 79.53 ± 2.75 80.62 ± 0.00 51.14 ± 0.25
REDRESS + MLP 82.42 ± 1.87 79.13 ± 0.48 44.39 ± 0.73
GFairHint 86.11 ± 0.94 80.91 ± 0.38 53.80 ± 0.99
GFairHint + REDRESS 90.54 ± 0.57 83.46 ± 0.33 63.67 ± 0.09

Phy

GCN

Vanilla 88.33 ± 5.11 73.30 ± 0.10 30.46 ± 1.05
REDRESS 84.28 ± 2.12 74.69 ± 0.06 35.76 ± 1.72
REDRESS + MLP 93.40 ± 0.38 74.61 ± 0.13 36.06 ± 0.88
GFairHint 87.35 ± 0.03 71.60 ± 0.32 33.26 ± 0.21
GFairHint + REDRESS 94.15 ± 0.15 73.87 ± 1.46 41.53 ± 4.63

SAGE

Vanilla 95.65 ± 0.51 72.38 ± 0.33 31.73 ± 0.04
REDRESS 89.72 ± 0.33 74.89 ± 0.64 41.01 ± 2.25
REDRESS + MLP 93.08 ± 0.04 74.22 ± 0.04 35.65 ± 0.90
GFairHint 90.00 ± 3.15 71.75 ± 0.28 29.95 ± 0.98
GFairHint + REDRESS 93.24 ± 0.69 74.06 ± 0.03 41.66 ± 0.23

GAT

Vanilla 90.33 ± 5.19 73.78 ± 0.57 33.27 ± 1.32
REDRESS 84.74 ± 5.39 74.64 ± 0.34 36.24 ± 0.06
REDRESS + MLP 92.54 ± 0.15 74.70 ± 0.97 36.43 ± 2.78
GFairHint 89.79 ± 1.98 71.99 ± 0.00 29.13 ± 0.25
GFairHint + REDRESS 93.67 ± 0.30 74.62 ± 1.10 44.56 ± 2.62

Table 5: Node classification results on co-authorship datasets: coauthor-phy and coauthor-cs. BB
represents the backbone GNN models. The number of layers and the hidden layer dimension of
backbone GNN models are 2 and 16 respectively. All values are reported in percentage. The best
results are in bold, the second best results are underlined.

BB Model ACC Consistency

GCN

Vanilla 73.83 ± 0.34 54.80 ± 0.23
REDRESS 73.98 ± 0.70 54.07 ± 0.96
REDRESS + MLP 73.58 ± 1.80 53.06 ± 1.04
GFairHint 75.44 ± 0.71 62.76 ± 2.74
GFairHint + REDRESS 75.54 ± 0.90 63.61 ± 4.44

SAGE

Vanilla 82.16 ± 0.33 62.09 ± 0.50
REDRESS 82.11 ± 0.52 61.46 ± 1.91
REDRESS + MLP 81.35 ± 0.34 61.46 ± 1.36
GFairHint 80.60 ± 0.98 62.26 ± 0.98
GFairHint + REDRESS 80.85 ± 1.21 62.49 ± 4.86

GAT

Vanilla 73.68 ± 0.79 55.17 ± 0.81
REDRESS 72.88 ± 0.74 53.55 ± 1.15
REDRESS + MLP 72.08 ± 1.24 51.84 ± 0.42
GFairHint 75.34 ± 0.74 64.04 ± 2.74
GFairHint + REDRESS 74.94 ± 1.05 65.30 ± 3.60

Table 6: Node classification results on the Crime datasets. BB represents the backbone GNN models.
The number of layers and the hidden layer dimension of backbone GNN models are 2 and 16
respectively. All values are reported in percentage. The best results are in bold, the second best
results are underlined.
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