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Abstract

Subpopulation shift wildly exists in many real-world machine learning applications,1

referring to the training and test distributions containing the same subpopulation2

groups but varying in subpopulation frequencies. Importance reweighting is a3

normal way to handle the subpopulation shift issue by imposing constant or adap-4

tive sampling weights on each sample in the training dataset. However, some5

recent studies have recognized that most of these approaches fail to improve the6

performance over empirical risk minimization especially when applied to over-7

parameterized neural networks. In this work, we propose a simple yet practical8

framework, called uncertainty-aware mixup (UMIX), to mitigate the overfitting9

issue in over-parameterized models by reweighting the “mixed” samples according10

to the sample uncertainty. The training-trajectories-based uncertainty estimation11

is equipped in the proposed UMIX for each sample to flexibly characterize the12

subpopulation distribution. We also provide insightful theoretical analysis to verify13

that UMIX achieves better generalization bounds over prior works. Further, we14

conduct extensive empirical studies across a wide range of tasks to validate the15

effectiveness of our method both qualitatively and quantitatively.16

1 Introduction17

Empirical risk minimization (ERM) typically faces challenges from distribution shift, which refers to18

the difference between training and test distributions [53, 22, 3]. One common type of distribution19

shift is subpopulation shift wherein the training and test distributions consist of the same subpopulation20

groups but differ in subpopulation frequencies [6, 8]. Many practical research problems (e.g., fairness21

of machine learning and class imbalance) can all be considered as a special case of subpopulation shift22

[25, 16, 23]. For example, in the setting of fair machine learning, we train the model on a training23

dataset with biased demographic subpopulations and test it on an unbiased test dataset [25, 16].24

Therefore the essential goal of fair machine learning is to mitigate the subpopulation shift between25

training and test datasets.26

Many approaches have been proposed for solving this problem. Among these approaches, importance27

weighting (IW) is a classical yet effective technique by imposing static or adaptive weights on each28

sample when building weighted empirical loss. Therefore each subpopulation group contributes29

comparably to the final training objective. Specifically, there are normally two ways to achieve30

importance re-weighting. Early works propose to re-weight the sample inverse proportionally to the31

subpopulation frequencies (i.e., static weights) [53, 51, 12, 50, 11, 35], such as class-imbalanced32

learning approaches [12, 11, 35]. Alternatively, a more flexible way is to re-weight individual samples33

adaptively according to training dynamics [57, 64, 39, 62, 28, 40, 33, 54]. Distributional robust34

optimization (DRO) is one of the most representative methods in this line, which minimizes the35

loss over the worst-case distribution in a neighborhood of the empirical training distribution. A36
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commonly used dual form of DRO can be seen as a special case of importance re-weighting wherein37

the sampling weights are updated based on the current loss [44, 19, 31, 20] in an alternated manner.38

However, some recent studies have shown both empirically and theoretically that these IW methods39

could fail to achieve better worst-case subpopulation performance compared with ERM. Empirically,40

prior works [10, 50] recognize that various IW methods tend to exacerbate overfitting, which leads to41

a diminishing effect on stochastic gradient descent (SGD) over training epochs especially when they42

are applied to over-parameterized neural networks (NNs). Theoretically, previous studies prove that43

for over-parameterized neural networks, re-weighting algorithms do not improve over ERM because44

their implicit biases are (almost) equivalent [63, 51, 59]. In addition, some prior works also point out45

that using conventional regularization techniques such as weight decay cannot significantly improve46

the performance of IW [50].47

To this end, we introduce a novel technique called uncertainty-aware mixup (UMIX), by re-weighting48

the mixed samples according to uncertainty within the mini-batch while mitigating overfitting.49

Specifically, we employ the well-known mixup technique to produce "mixed" augmented samples.50

Then we train the model on these mixed samples to make sure it can always see "novel" samples51

thus the effects of IW will not dissipate even at the end of the training epoch. To enforce the model52

to perform fairly well on all subpopulations, we further efficiently re-weight the mixed samples53

according to uncertainty of the original samples. The weighted mixup loss function is induced54

by combining the weighted losses of the corresponding two original samples. At a high level,55

this approach augments training samples in an uncertainty-aware manner, i.e., putting more focus56

on samples with higher prediction uncertainties that belong to minority subpopulations with high57

probabilities. We also show UMIX can provide additional theoretical benefit which achieves a tighter58

generalization bound than weighted ERM [34, 33, 62, 31]. In summary, the contributionns of this59

paper are:60

• We propose a simple and practical approach called uncertainty-aware mixup (UMIX) to improve61

previous IW methods by re-weighting the mixed samples, which provides a new framework to62

mitigate overfitting in over-parameterized neural networks.63

• Under the proposed framework, we provide theoretical analysis with insight that UMIX can64

achieve a tighter generalization bound than the weighted ERM.65

• We perform extensive experiments on a wide range of tasks, where the proposed UMIX achieves66

excellent performance in both group-oblivious and group-aware settings.67

Comparison with existing works. Here, we discuss the key differences between UMIX and other68

works. In contrast to most IW methods (e.g., CVaR-DRO [31] and JTT [34]), UMIX employs a69

mixup strategy to improve previous IW methods and mitigate the model overfitting. Among these70

methods, JTT [34] and LISA [61] are the two most related works to ours. Specifically, JTT provides71

a two-stage optimization framework in which an additional network is used for building the error set,72

and then JTT upweights samples in the error set in the following training stage. Besides, LISA also73

modifies mixup for improving model robustness against distribution shift. However, LISA intuitively74

mixes the samples within the same subpopulation or same label thus it needs additional subpopulation75

information. In contrast to them, UMIX introduces sample weights into the vanilla mixup strategy by76

quantitatively measuring the sample uncertainties without subpopulation information. In addition,77

our work is orthogonal to LISA, i.e., we can use our weight building strategy to improve LISA’s78

performance. In practice, our method consistently outperforms previous approaches that do not use79

subpopulation information and even achieves quite competitive performance to those methods which80

leverage subpopulation information. We also provide theoretical analysis to explain why UMIX81

works better than the weighted ERM [34, 33, 62, 31].82

2 Related work83

2.1 Importance weighting84

To improve the model robustness against subpopulation shift, importance weighting (IW) is a classical85

yet effective technique by imposing static or adaptive weight on each sample and then building86

weighted empirical loss. Therefore each subpopulation group can have a comparable strength in the87

final training objective. Specifically, there are typically two ways to achieve importance reweighting,88

i.e., using static or adaptive importance weights.89
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Static methods. The naive reweighting approaches perform static reweighting based on the dis-90

tribution of training samples [53, 51, 12, 50, 11, 35]. Their core motivation is to make different91

subpopulations have a comparable contribution to the training objective by reweighting. Specifically,92

the most intuitive way is to set the weight of each sample to be inversely proportional to the number93

of samples in each subpopulation [53, 51, 50]. Besides, there are some methods to obtain sample94

weights based on the effective number of samples [12], subpopulation margins [11], and Bayesian95

networks [35].96

Adaptive methods. In contrast to the above static methods, a more essential way is to assign each97

individual sample an adaptive weight that can vary according to training dynamics [57, 64, 39, 62,98

28, 40, 33, 54]. Distributional robust optimization (DRO) is one of the most representative methods99

in this line, which minimizes the loss over the worst-case distribution in a neighborhood of the100

empirical training distribution. A commonly-used dual form of DRO can be considered as a special101

case of importance reweighting wherein the sampling weights are updated based on the current loss102

[44, 19, 31, 20] in an alternated manner. For example, in the group-aware setting (i.e., we know103

each sample belongs to which subpopulation), GroupDRO [50] introduces an online optimization104

algorithm to update the weights of each group. In the group-oblivious setting, [57, 28, 39, 40]105

model the problem as a (regularized) minimax game, where one player aims to minimize the loss by106

optimizing the model parameters and another player aims to maximize the loss by assigning weights107

to each sample.108

2.2 Uncertainty quantification109

The core of our method is based on the high-quality uncertainty quantification of each sample. There110

are many approaches proposed for this goal. The uncertainty of deep learning models includes epis-111

temic (model) uncertainty and aleatoric (data) uncertainty [24]. To obtain the epistemic uncertainty,112

Bayesian neural networks (BNNs) [45, 37, 13, 24] is proposed which replace the deterministic weight113

parameters of model with distribution. Unlike BNNs, ensemble-based methods obtain the epistemic114

uncertainty by training multiple models and performing ensembles [29, 17, 2, 21]. Aleatoric uncer-115

tainty focuses on the inherent noise in the data, which usually is learned as a function of the data116

[24, 30, 46]. Our method focuses on estimating the uncertainty of training samples with multiple117

subpopulations and upweighting uncertain samples, thereby improving the performance of minority118

subpopulations with high uncertainty.119

3 Method120

In this section, we introduce technical details of UMIX. The key idea of UMIX is to exploit uncertainty121

information to upweight mixed samples thus can encourage the model to perform uniformly well on122

all subpopulations. We first introduce the basic procedure of UMIX and then present how to provide123

high-quality uncertainty estimations which is the fundamental block of UMIX.124

3.1 Background125

The necessary background and notations are provided here. Let the input and label space be X and Y126

respectively. Given N training samples {(xi, yi)}Ni=1 i.i.d. sampled from a probability distribution P ,127

we consider the setting that there are G predefined subpupulations and the g-th subpopulation follows128

the distribution Pg . Our goal is to obtain a model fθ : X → Y parameterized by θ ∈ Θ that performs129

well on all subpopulations.130

The well-known empirical risk minimization (ERM) algorithm doesn’t consider the subpopulations131

and minimizes the expected risk E[ℓ(θ, xi, yi)], where ℓ denotes the loss function. This leads to132

the model paying more attention to the majority subpopulations in the training set and resulting in133

poor performance on the minority subpopulations. For example, the ERM-based models may learn134

spurious correlations that exist in majority subpopulations but not in minority subpopulations [50].135

The proposed method aims to learn a model that is robust against subpopulation shift by importance136

weighting.137

Previous works on improving subpopulation shift robustness investigate several different settings, i.e.,138

group-aware and group-oblivious [62, 34, 50]. Most of the previous works have assumed that the139

group label is available during training [50, 61]. This is called the group-aware setting. However, due140
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to some reasons (e.g., privacy concerns), we may not have training group labels. This paper studies141

the group-oblivious setting, which cannot obtain group information for each example at training time.142

This requires the model to identify underperforming samples and then pay more attention to them143

during training.144

3.2 Importance-weighted mixup145

UMIX employs an aggressive data augmentation strategy called uncertainty-aware mixup to mitigate146

overfitting. Specifically, vanilla mixup [65, 67] constructs virtual training examples (i.e., mixed147

samples) by performing linear interpolations between data/features and corresponding labels as:148

x̃i,j = λxi + (1− λ)xj , ỹi,j = λyi + (1− λ)yj , (1)

where (xi, yi), (xj , yj) are two samples drawn at random from empirical training distribution and149

λ ∈ [0, 1]. Then vanilla mixup optimizes the following loss function:150

E{(xi,yi),(xj ,yj)}[ℓ(θ, x̃i,j , ỹi,j)]. (2)

When the cross entropy loss is employed, Eq. 2 can be rewritten as:151

E{(xi,yi),(xj ,yj)}[λℓ(θ, x̃i,j , yi) + (1− λ)ℓ(θ, x̃i,j , yj)]. (3)

Eq. 3 can be seen as a linear combination (mixup) of ℓ(θ, x̃i,j , yi) and ℓ(θ, x̃i,j , yj). Unfortunately,152

since vanilla mixup doesn’t consider the subpopulations with poor performance, it has been shown153

experimentally to be non-robust against subpopulation shift [61]. To this end, we introduce a simple154

yet effective method called UMIX, which further employs a weighted linear combination of original155

loss based on Eq. 3 to encourage the learned model to pay more attention to samples with poor156

performance.157

In contrast to previous IW methods, the importance weights of UMIX are posed on the mixed samples.158

To do this, we first estimate the uncertainty of each sample and then use this quantity to construct the159

importance weight (i.e., the higher the uncertainty, the higher the weight, and vice versa). For the i-th160

sample xi, we denote its importance weight as wi. Once we obtain the importance weight, we can161

perform weighted linear combination of ℓ(θ, x̃i,j , yi) and ℓ(θ, x̃i,j , yj) by:162

E{(xi,yi),(xj ,yj)}[wiλℓ(θ, x̃i,j , yi) + wj(1− λ)ℓ(θ, x̃i,j , yj)], (4)

where wi and wj denote the importance weight of the i-th and j-th samples respectively. In practice,163

to balance the UMIX and normal training, we set a hyperparameter σ that denotes the probability to164

apply UMIX. The whole training pseudocode for UMIX is shown in Algorithm 1.165

Algorithm 1: The training pseudocode of UMIX.
Input: Training dataset D and the corresponding importance weights w = [w1, · · · , wN ],

hyperparameter σ to control the probability of doing UMIX, and hyperparameter α;
1 for each iteration do
2 Obtain training samples (xi, yi), (xj , yj) and the corresponding weight wi, wj ;
3 Sample p ∼ Uniform(0,1);
4 if p < σ then Sample λ ∼ Beta(α, α); else λ = 0;
5 Obtain the mixed input x̃i,j where x̃i,j = λxi + (1− λ)xj ;
6 Obtain the loss of the model with wiλℓ(θ, x̃i,j , yi) + wj(1− λ)ℓ(θ, x̃i,j , yj);
7 Update model parameters θ to minimize loss with an optimization algorithm.

3.3 Uncertainty-aware importance weights166

Now we present how to obtain the uncertainty-aware training importance weights. In the group-167

oblivious setting, the key to obtaining importance weights is to find samples with high uncertainty. For168

example, DRO-based algorithms construct the uncertainty set with the current loss [44, 19, 31, 20]. It169

has been shown experimentally that the uncertain samples found in this way are constantly changing170

during training [34], resulting in these methods not always upweighting the minority subpopulations.171

Therefore, we introduce a sampling-based stable uncertainty estimation to better characterize the172

subpopulation shift.173
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Given a well trained neural classifier fθ : X → Y that could produce the predicted class f̂θ(x),174

a simple way to obtain the uncertainty of a sample is whether the sample is correctly classified.175

However, as pointed out in previous work [29], a single model cannot accurately characterize the176

sampling uncertainty. Therefore, we propose to obtain the uncertainty through Bayesian sampling177

from the model posterior distribution p(θ;D). Specifically, given a sample (xi, yi), we define the178

training uncertainty as:179

ui =

∫
κ(yi, f̂θ(xi))p(θ;D)dθ,where κ(yi, f̂θ(xi)) =

{
0, if yi = f̂θ(xi)

1, if yi ̸= f̂θ(xi)
. (5)

Then, we can obtain an approximation of Eq. 5 with T Monte Carlo sampling as ui ≈180
1
T

∑T
t=1 κ(yi, f̂θt(xi)), where θt ∈ Θ can be obtained by minimizing the expected risk.181

In practice, sampling {θt}Tt=1 from the posterior (i.e., θt ∼ p(θ;D)) is computationally expensive182

and sometimes even intractable since multiple training models need to be built or extra approximation183

errors need to be introduced. Inspired by a recent Bayesian learning paradigm named SWAG [38], we184

propose to employ the information from the historical training trajectory to approximate the sampling185

process. More specifically, we train a model with empirical risk minimization and save the prediction186

results f̂θt(xi) of each sample on each iteration epoch t. Then, to avoid the influence of inaccurate187

predictions at the beginning of training, we estimate uncertainty with predictions after training Ts − 1188

epochs with:189

ui ≈
1

T

Ts+T∑
t=Ts

κ(yi, f̂θt(xi)). (6)

We assume a reasonable importance weight is linearly positively related to the corresponding uncer-190

tainty,191

wi = ηui + c, (7)
where η ∈ R+ is a hyperparameter and c ∈ R+ is a constant that keeps the weight from being 0. In192

practice, we could set c to 1. The whole process for obtaining training importance weights is shown193

in Algorithm 2.194

Algorithm 2: The process for obtaining training importance weights.
Input: Training dataset D, sampling start epoch Ts, the number of sampling T , and upweight

hyperparameter η ;
Output: The training importance weights w = [w1, · · · , wn];

1 for each iteration do
2 Train fθ by minimizing the expected risk E{ℓ(θ, xi, yi)};
3 Save the prediction results {f̂θt(xi)}Ni=1 of the current epoch t;
4 Obtain the uncertainty of each sample with ui ≈ 1

T

∑Ts+T
t=Ts

κ(yi, f̂θt(xi));
5 Obtain the importance weight of each sample with wi = ηui + c.

Rethink why this estimation approach could work? Recent work has empirically shown that195

compared with the hard-to-classify samples, the easy-to-classify samples are learned earlier during196

training [15]. Meanwhile, the hard-to-classify samples are also more likely to be forgotten by the197

neural networks [55]. The frequency with which samples are correctly classified during training198

can be used as supervision information in confidence calibration [43]. Snapshot performs ensemble199

learning on several local minima models along the optimization path [21]. The proposed method is200

also inspired by these observations and algorithms. During training, samples from the minority sub-201

populations are classified correctly less frequently, which corresponds to higher training uncertainty.202

On the other hand, samples from the majority subpopulations will have lower training uncertainty203

due to being classified correctly more often.204

4 Experiments205

In this section, we conduct experiments on multiple datasets with subpopulation shift to answer the206

following questions. Q1 Effectiveness (I). In the group-oblivious setting, does the proposed method207
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outperform other algorithms? Q2 Effectiveness (II). Although our method does not use training208

group labels, does it perform better than the algorithms using training group labels? Q3 Effectiveness209

(III). Can UMIX improve the model robustness against domain shift where the training and test210

distributions have different subpopulations. Q4 Qualitative analysis. Are the obtained uncertainties211

of the training samples trustworthy? Q5 Ablation study. What is the key factor of performance212

improvement in our method?213

4.1 Setup214

We briefly present the experimental setup here, including the experimental datasets and comparison215

methods. Please refer to Sec. B in Appendix for more detailed setup.216

Datasets. We perform experiments on three datasets with multiple subpopulations, including Water-217

birds [50], CelebA [36] and CivilComments [9]. We also validate UMIX on domain shift scenario218

which is a more challenging distribution shift problem since there are different subpopulations be-219

tween training and test data. Hence, we conduct experiments on a medical dataset called Camelyon17220

[5, 26] that consists of pathological images from five different hospitals. The training data is drawn221

from three hospitals, while the validation and test data are sampled from other hospitals.222

Evaluation metrics and model selection. To be consistent with existing works [61, 26, 48], we223

report the average accuracy of Camelyon17 over 10 different seeds. On other datasets, we repeat224

experiments over 3 times and report the average and worst-case accuracy among all subpopulations.225

Following prior works [34, 62], we assume the group labels of validation samples are available and226

select the best model based on worst-case accuracy among all subpopulations on the validation set.227

Comparisons in the group-oblivious setting. Here we list the baselines used in the group-oblivious228

setting. (1) ERM trains the model using standard empirical risk minimization. (2) Focal loss [33]229

downweights the well-classified examples’ loss according to the current classification confidences.230

(3) DRO-based methods including CVaR-DRO, χ2-DRO [31], CVaR-DORO and χ2-DORO [62]231

minimize the loss over the worst-case distribution in a neighborhood of the empirical training232

distribution. (4) JTT [34] constructs an error set and upweights the samples in the error set to improve233

the worst-case performance among all subpopulations.234

Comparison in the group-aware setting. To better demonstrate the performance of the proposed235

method, we compare our method with multiple methods that use training group labels, including236

IRM [3], IB-IRM [1], V-REx [27], CORAL [32], Group DRO [50], DomainMix [60], Fish [52], and237

LISA [61].238

Mixup-based comparison methods. We compare our method with vanilla mixup and in-group239

mixup, where vanilla mixup is performed on any pair of samples and in-group mixup is performed240

on the samples with the same labels and from the same subpopulations.241

4.2 Experimental results242

We present experimental results and discussions to answer the above-posed questions.243

Q1 Effectiveness (I). Since our algorithm does not need training group labels, thus we conduct244

experiments to verify its superiority over current group-oblivious algorithms. The experimental results245

are shown in Table 1 and we have the following observations: (1) The proposed UMIX achieves the246

best worst-case accuracy on all three datasets. For example, for the CelebA dataset, UMIX achieves247

worst-case accuracy of 85.3%, while the second-best is 81.1%. (2) ERM consistently outperforms248

other methods in terms of average accuracy. However, it typically comes with the lowest worst-case249

accuracy. The underlying reason is that the dominance of the majority subpopulations during training250

leads to poor performance of the minority subpopulations. (3) UMIX shows competitive average251

accuracy compared to other methods. For example, on CelebA, UMIX achieves the average accuracy252

of 90.1%, which outperforms all other IW/DRO methods.253

Q2 Effectiveness (II). We further conduct comparisons with algorithms that require training group254

labels. The comparison results are shown in the Table 2. According to the experimental results, it255

is observed that the performance from our UMIX without using group label is quite competitive256

compared with these group-aware algorithms. Specifically, benefiting from the uncertainty-aware257

mixup, UMIX usually performs in the top three in terms of both average and worst-case accuracy.258
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For example, on WaterBirds, UMIX achieves the best average accuracy of 93.0% and the second-best259

worst-case accuracy of 90.0%.260

Table 1: Comparison results with other methods in the group-oblivious setting. The best results are in
bold and blue. Full results with standard deviation are in the Table 6 in Appendix.

Waterbirds CelebA CivilComments Camelyon17
Avg. Worst Avg. Worst Avg. Worst Avg.

ERM 97.0% 63.7% 94.9% 47.8% 92.2% 56.0% 70.3%

Focal Loss [33] 87.0% 73.1% 88.4% 72.1% 91.2% 60.1% 68.1%
CVaR-DRO [31] 90.3% 77.2% 86.8% 76.9% 89.1% 62.3% 70.5%
CVaR-DORO [31] 91.5% 77.0% 89.6% 75.6% 90.0% 64.1% 67.3%
χ2-DRO [62] 88.8% 74.0% 87.7% 78.4% 89.4% 64.2% 68.0%
χ2-DORO [62] 89.5% 76.0% 87.0% 75.6% 90.1% 63.8% 68.0%
JTT [34] 93.6% 86.0% 88.0% 81.1% 90.7% 67.4% 69.1%

Ours 93.0% 90.0% 90.1% 85.3% 90.6% 70.1% 75.1%

Table 2: Comparison results with the algorithms using training group labels (Our method is not
dependent on this type of information). Results of baseline models are from [61]. The best three
results are in bold brown or bold blue and the color indicates whether the training group labels are
used. Full results with standard deviation are in the Table 7 in Appendix.

Group labels Waterbirds CelebA CivilComments Cam17
in train set? Avg. Worst Avg. Worst Avg. Worst Avg.

IRM [3] Yes 87.5% 75.6% 94.0% 77.8% 88.8% 66.3% 64.2%
IB-IRM [1] Yes 88.5% 76.5% 93.6% 85.0% 89.1% 65.3% 68.9%
V-REx [27] Yes 88.0% 73.6% 92.2% 86.7% 90.2% 64.9% 71.5%
CORAL [32] Yes 90.3% 79.8% 93.8% 76.9% 88.7% 65.6% 59.5%
GroupDRO [50] Yes 91.8% 90.6% 92.1% 87.2% 89.9% 70.0% 68.4%
DomainMix [60] Yes 76.4% 53.0% 93.4% 65.6% 90.9% 63.6% 69.7%
Fish [52] Yes 85.6% 64.0% 93.1% 61.2% 89.8% 71.1% 74.7%
LISA [61] Yes 91.8% 89.2% 92.4% 89.3% 89.2% 72.6% 77.1%
Ours No 93.0% 90.0% 90.1% 85.3% 90.6% 70.1% 75.1%

Q3 Effectiveness (III). We conduct comparison experiments on Camelyon17 to investigate the261

effectiveness of our algorithm under the domain shift scenario. The experimental results are shown262

in the last column of Table 1 and Table 2 respectively. In the group-oblivious setting, the proposed263

method achieves the best average accuracy on Camelyon17 as shown in Table 1. For example, UMIX264

achieves the best average accuracy of 75.1% while the second is 70.3%. Meanwhile, in Table 2,265

benefiting from upweighting the mixed samples with poor performance, our method achieves a quite266

competitive generalization ability on Camelyon17 compared with other algorithms using training267

group labels.268

Q4 Qualitative analysis. To intuitively investigate the rationality of the estimated uncertainty, we269

visualize the density of the uncertainty for different groups with kernel density estimation. As shown270

in Fig. 1, the statistics of estimated uncertainty is basically correlated to the training sample size of271

each group. For example, on Waterbirds and CelebA, the average uncertainties of minority groups272

are much higher, while those of majority groups are much lower.273

Q5 Ablation study. Finally, we conduct the ablation study in comparison with vanilla mixup and274

in-group mixup. The experimental results are shown in Table 3. Compared with ERM, vanilla mixup275

cannot significantly improve worst-case accuracy. After using the group label, the in-group mixup276

slightly improves the worst-case accuracy compared to ERM. The possible reason is that mixup-based277

methods do not increase the influence of minority subpopulations in the model objective function.278

Although our method does not use the group label of the training samples, our method still can279

significantly improve the worst-case accuracy.280
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(a) Waterbirds (b) CelebA

Figure 1: Visualization of the obtained uncertainty with kernel density estimation on Waterbirds and
CelebA datasets, where group size refers to the sample number of the group.

Table 3: Comparison with ERM and mixup based methods. Results of baseline models are from [61].
The best results are in bold brown or bold blue and the color indicates whether the training group
labels are used. Full results with standard deviation are in the Table 8 in Appendix.

Group labels Waterbirds CelebA CivilComments Cam17
in train set? Avg. Worst Avg. Worst Avg. Worst Avg.

ERM No 97.0% 63.7% 94.9% 47.8% 92.2% 56.0% 70.3%
vanilla mixup No 81.0% 56.2% 95.8% 46.4% 90.8% 67.2% 71.2%
in-group mixup Yes 88.7% 68.0% 95.2% 58.3% 90.8% 69.2% 75.5%
Ours No 93.0% 90.0% 90.1% 85.3% 90.6% 70.1% 75.1%

5 Theory281

In this section, we provide a theoretical understanding of the generalization ability for UMIX. At a282

high level, we prove that our method can achieve a better generalization error bound than traditional283

IW methods without using mixup. For simplicity, our analysis focuses on generalized linear model284

(GLM). The roadmap of our analysis is to first approximate the mixup loss and then study the285

generalization bound from a Rademacher complexity perspective. To introduce the theoretical286

framework, we first present the basic settings.287

Basic settings. Our analysis mainly focuses on GLM model classes whose loss function ℓ follows288

ℓ(θ, x, y) = A(θ⊤x) − yθ⊤x, where x ∈ Rd is the input , θ ∈ Rd is the parameter, y ∈ R is the289

label and A(·) is the log-partition function. We impose the following assumptions on A(·) which can290

be widely satisfied by the most commonly used GLMs, e.g., logistical regression and linear model.291

Assumption 5.1. We assume A(·) is twice differentiable and for all |z| ≤ 1, there exists some K > 0292

such that K−1 ≤ A′′(z) ≤ K. Moreover, we assume ∥θ∥ ≤ 1.293

Recall the setting of subpopulation shift, we assume that the population distribution P consists of G294

different subpopulations with the g-th subpopulation’s proportion is kg and the g-th subpopulation295

follows the distribution Pg. In specific, we have P =
∑G

g=1 kgPg. Then we denote the covariance296

matrix for the g-th subpopulation as Σg
X = E(x,y)∼Pg

[xxT ]. For simplicity, we consider the case297

where a shared weight wg is assigned to all samples from the g-th subpopulation. The main goal298

of our theoretical analysis is to characterize the generalization ability of the model learned using299

Algorithm 1. Formally, we focus on analyzing the upper bound of the weighted generalization error300

defined as:301

GError(θ) = E(x,y)∼P [w(x, y)ℓ(θ, x, y)]−
1

N

N∑
i=1

w(xi, yi)ℓ(θ, xi, yi),
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where the function w(x, y) is the weighted function to return the weight of the subpopulation to302

which the sample (x, y) belongs.303

First of all, we present our main result in this section. The main theorem of our analysis provides a304

subpopulation-heterogeneity dependent bound for the above generalization error. This theorem is305

formally presented as:306

Theorem 5.1. Suppose A(·) is LA-Lipschitz continuous, then there exists constants L,B > 0 such307

that for any θ satisfying θ⊤ΣXθ ≤ γ, the following holds with a probability of at least 1− δ,308

GError(θ) ≤ 2L · LA · (max{(γ(δ/2)
ρ

)1/4, (
γ(δ/2)

ρ
)1/2} ·

√
rank(ΣX)

n
) +B

√
log(2/δ)

2n
,

where γ(δ) is a constant dependent on δ and ΣX =
∑G

g=1 kgwgΣ
g
X .309

We will show later that the output of our Algorithm 1 can satisfy the constraint θ⊤ΣXθ ≤ γ and thus310

Theorem 5.1 can provide a theoretical understanding of our algorithm. In contrast to weighted ERM,311

the bound improvement of UMIX is on the red term which can partially reflect the heterogeneity of312

the training subpopulations. Specifically, the red term would become
√
d/n in the weighted ERM313

setting (see more detailed theoretical comparisons in Appendix.) Thus our bound can be tighter when314

the intrinsic dimension of data is small (i.e., rank(Σ) ≪ d).315

The proof of Theorem 5.1 follows this roadmap: (1) We first show that the model learned with316

UMIX can fall into a specific hypothesis set Wγ . (2) We analyze the Rademacher complexity of the317

hypothesis set and obtain its complexity upper bound (Lemma A.3). (3) Finally, we can characterize318

the generalization bound by using complexity-based learning theory [7] (Theorem 8). More details of319

the proof can be found in Appendix.320

As we discuss in Appendix, the weighted mixup can be seen as an approximation of a regularization321

term C
n [
∑n

i=1 wiA
′′(x⊤i θ)]θ

⊤Σ̂Xθ for some constant C compared with the non-mixup algorithm,322

which motivates us to study the following hypothesis space323

Wγ := {x→ θ⊤x, such that θ satisfying Ex,y[w(x, y)A
′′(x⊤θ)]θ⊤ΣXθ ≤ γ},

for some constant γ.324

To further derive the generalization bound, we also need the following assumption, which is satisfied325

by general GLMs when θ has bounded ℓ2 norm and it is adopted in, e.g., [4, 67].326

Assumption 5.2 (ρ-retentive). We say the distribution of x is ρ-retentive for some ρ ∈ (0, 1/2] if327

for any non-zero vector v ∈ Rd and given the event that θ ∈ Wγ where the θ is output by our328

Algorithm 1, we have329

E2
x[A

′′(x⊤v)] ≥ ρ ·min{1,Ex(v
⊤x)2}.

Finally, we can derive the Rademacher complexity of the Wγ and the proof of Theorem 5.1 is330

obtained by combining Lemma A.3 and the Theorem 8 of [7].331

Lemma 5.1. Assume that the distribution of xi is ρ-retentive, i.e., satisfies the assumption 5.2. Then332

the empirical Rademacher complexity of Wr satisfies333

Rad(Wr,S) ≤ max{(γ(δ)
ρ

)1/4, (
γ(δ)

ρ
)1/2} ·

√
rank(ΣX)

n
,

with probability at least 1− δ.334

6 Conclusion335

In this paper, we propose a novel method called UMIX to improve the model robustness against336

subpopulation shift. We propose a simple yet reliable approach to estimate the sample uncertainties337

and integrate them into the mixup strategy so that UMIX can mitigate the overfitting thus improving338

prior IW methods. Our method consistently outperforms previous approaches on commonly-used339

benchmarks. Furthermore, UMIX also shows the theoretical advantage that the learned model comes340

with subpopulation-heterogeneity dependent generalization bound. In the future, how to leverage341

subpopulation information to improve UMIX can be a promising research direction.342
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