
NxMTransformer: Semi-Structured Sparsification for
Natural Language Understanding via ADMM

Anonymous Author(s)
Affiliation
Address
email

Abstract

Natural Language Processing (NLP) has recently achieved great success by using1

huge pre-trained Transformer networks. However, these models often contain2

hundreds of millions or even billions of parameters, bringing challenges to online3

deployment due to latency constraints. Recently, hardware manufacturers have4

introduced dedicated hardware for efficient NxM sparsity to provide the flexibility5

of unstructured pruning with the runtime efficiency of structured approaches. NxM6

sparsity permits arbitrarily selecting M parameters to retain from a contiguous7

group of N in the dense representation. However, due to the extremely high com-8

plexity of pre-trained models, the standard sparse fine-tuning techniques often9

fail to generalize well on downstream tasks, which have limited data resources.10

To address such an issue in a principled manner, we introduce a new learning11

framework, called NxMTransformer, to induce NxM semi-structured sparsity on12

pretrained language models for natural language understanding to obtain better13

performance. In particular, we propose to formulate the NxM sparsity as a con-14

strained optimization problem and use Alternating Direction Method of Multipliers15

(ADMM) to optimize the downstream tasks while taking the underlying hardware16

constraints into consideration. ADMM decomposes the NxM sparsification prob-17

lem into two sub-problems that can be solved sequentially, generating sparsified18

Transformer networks that achieve high accuracy while being able to effectively19

execute on newly released hardware. We apply our approach to a wide range of20

NLP tasks, and our proposed method is able to achieve 1.7 points higher accuracy21

in GLUE score than current best practices. Moreover, we perform detailed analysis22

on our approach and shed light on how ADMM affects fine-tuning accuracy for23

downstream tasks. Finally, we illustrate how NxMTransformer achieves additional24

performance improvement with knowledge distillation based methods.25

1 Introduction26

Large-scale Transformer networks have achieved remarkable success for a wide variety of natural27

language tasks, including natural language inferencing, sentiment analysis, question answering,28

and others (needs CCITE). The state-of-the-art of these NLP models employs a transfer learning29

paradigm which contains two stages: a semi-supervised pre-training stage that trains a masked30

language modeling on massive web text, followed by a fine-tuning stage where the pre-trained model31

is adapted to specific downstream tasks with much smaller datasets. The size of these language32

models has dramatically increased in recent years; even relatively small models [4, 26] consist of33

hundreds of millions of parameters while larger models [22, 24, 23] stretch well into multi-billions.34

The large model size brings challenges for both deployment and training costs. While training a35

large-scale model often requires significant time even on large training clusters, the trained model36

also incurs significant challenges in deployment due to latency and capacity constraints.37

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



ADMM
Compress for 

Execution

Dense Pretrained 
Model

Dense Representation of 
Sparse Finetuned Model

Non-zero 
Values

Query

Key

Value

Self
Attention

Attention
Output FFN1 FFN2

Query

Key

Value

Self
Attention

Attention
Output FFN1 FFN2

Embeddings
Classifier
Network

Query

Key

Value

Self
Attention

Attention
Output FFN1 FFN2

Transformer Layer (x12)

Indices

Figure 1: The layers sparsified by NxMTransformer are highlighted in blue in the block structure
of a BERT model. As shown for FFN1, NxMTransformer simultaneously finetunes the pretrained
representation while inducing NxM semi-structured sparsity using ADMM. This sparse model can be
trivially converted to the deployment format for compatible hardware.

These challenges motivate techniques to compress and accelerate these models, even in datacenter38

environments where hardware resource limitations are at their smallest. These techniques include39

but are not limited to model quantization [36, 27, 2], low rank decomposition [18], knowledge40

distillation [10, 26], and model sparsification [3, 7]. These compression techniques can often be41

combined to maximize performance gains [39, 18, 9].42

Among different techniques, sparsification attempts to identify parameters that can be removed from43

the model without significantly compromising model accuracy. Sparsification techniques typically44

fall under two broad categories: unstructured and structured. Unstructured techniques will remove45

the individual parameters based on their importance (e.g., weight magnitude), which often yield the46

best accuracy but are unfriendly to modern hardware. Structured sparsification techniques remove47

parameters in groups (e.g., entire rows or columns), which result in models that retain their dense48

structure but can also add constraints that limit the expressiveness of the model.49

Recently, hardware manufacturers introduced support for NxM semi-structured sparsity to provide50

the benefits of both structured and unstructured sparsity. In NxM semi-structured sparsity, a model51

may preserve M parameters from each contiguous group of N original parameters. This relatively52

weak constraint on sparsification allows for sparse representations similar in flexibility to those53

of unstructured approaches but also permits efficient hardware implementation as well. Consider54

the 4x2 semi-structured sparsity implementation found on NVIDIA GPUs based on the Ampere55

architecture [1]. The Ampere architecture introduces a small set of multiplexers that select values56

from the input matrix corresponding to the retained values in the weight matrix [20]. The output of57

this operation remains compatible with the efficient Tensor Cores for dense matrix-matrix operations.58

While the Ampere GPUs are the first to market with this capability, the matrix multiplication59

accelerators within them are similar to those used by other matrix-accelerated accelerators [14] which60

should enable other vendors to provide support for this type of sparsity as well.61

To induce semi-structured sparsity, a small set of approaches have been offered. ASP [20] proposes62

training the dense network until convergence, using single-shot magnitude-based pruning to induce63

sparsity conformant to the NxM constraints, and repeating the original training procedure to recover64

accuracy. Zhou, et al. [38] uses sparse-refined straight-through estimator (SR-STE) to introduce65

the sparsity throughout the entire training process. Both of these techniques pose some challenges66

for large-scale pre-trained Transformer networks in particular. ASP can require a second costly67

sparse pre-train of the model and the single-shot magnitude-based pruning might hurt the knowledge68

2



transferrability to different downstream tasks. SR-STE on the other hand sparsifies from the random69

model initialization, which avoids the costly sparse retraining but also necessitates performing the70

pre-training process with only a sparse representation in mind. Since NxM sparse hardware is not yet71

ubiquitous, maintaining compatibility with a single dense pretrained representation is valuable so the72

costly pre-training process does not need to be performed for both sparse and dense networks.73

In this work, we propose to effectively induce NxM semi-structured sparsity for large-scale Trans-74

former networks to leverage newly released Sparse Tensor Core hardware by making the following75

contributions. (1) We introduce a principled method, NxMTransformer(See Figure 1), to obtain76

Transformer networks with NxM semi-structured sparsity for different downstream tasks using Alter-77

nating Direction Method of Multipliers (ADMM), a technique designed for large-scale non-convex78

optimization problems with constraints. Such a method allows us to alternate promoting the NxM79

sparsity of the network and optimizing the fine-tuning performance. (2) We conduct comprehensive80

experiments and demonstrate that NxMTransformer achieves 1.7 points higher accuracy than state-of-81

the-art techniques to introduce NxM sparsity for natural language processing tasks. (3) We perform82

detailed analysis on our approach and shed light on how ADMM affects fine-tuning accuracy for83

downstream tasks. (4) Finally, we show that NxMTransformer is complimentary to alternative model84

compression techniques such as knowledge distillation and can further sparsify distilled models while85

preserving accuracy.86

2 Background and Related Work87

Compression Techniques for NLP Models. Due to the prominence of large-scale language mod-88

els, there has been significant interest in compressing these models. Sparsification has been shown to89

be a promising approach to improving model inference speed and reducing memory cost earlier in90

computer vision [9]. Sparsifying pre-trained language models turns out to be a challenging task be-91

cause the semi-supervised models tend to have less intrinsic sparsity than CNN-based models. Some92

prior studies try to understand and apply sparsification for large-scale language model compression.93

Chen, et al. [3] extend the Lottery Ticket Hypothesis [5] to pre-trained models, finding that winning94

tickets for the pre-training tasks do transfer universally to downstream tasks. Gordon, et al. [6] find95

that the level of sparsity discovered during the pretraining process represents most of the sparsity that96

can be discovered in the model. Guo, et al. [8] show that a proximal pruning strategy achieves higher97

accuracy than competing lasso regularization methods and iterative magnitude pruning. Most of98

these studies still focus on unstructured sparsity, which encounters difficulty to obtain large speedups99

on modern hardware. As a structured technique, Michel, et al. [19] observe that many transformer100

heads themselves are redundant and can be pruned with minimal accuracy loss. While a structured101

technique, this technique provides limited acceleration benefits since much of the compute time102

for short-to-medium sequence lengths is spent in the intermediate layers rather than the attention103

heads themselves. In addition to parameter sparsification, BERT models can also realize compression104

gains with model quantization [37, 28] and knowledge distillation [26, 29, 30, 13]. These techniques105

are complimentary to our proposed method and can be combined to achieve more effective overall106

compression, as in [9].107

Semi-structured Sparsity. There have been few studies to induce NxM sparsity for DNN models.108

Among them, SR-STE [38] is the most comparable work to this paper. SR-STE is single stage109

compression technique that uses an extended Straight-through Estimator and a sparse-refined term to110

improve the induction of NxM sparsity in the network. SR-STE is demonstrated across image and111

neural machine translation tasks and shows improved accuracy over NVIDIA’s ASP [20]. Unlike this112

work, SR-STE is designed for training from random initialization, not a pretrained model.113

In a more general context, cuSPARSElt [20] (the NVIDIA linear algebra library for NxM sparsity)114

demonstrated 1.3X to 1.6X performance uplift for the matrix multiplications prevalent in BERT115

models using sparse NxM Tensor cores on Nvidia A100 GPUs. Higher speedups may be achieved by116

increasing either batch size or sequence length with a maximum of 1.8X improvement for fp16 and117

1.9X for int8. Realized speedups are smaller than the theoretical 2X improvement of 50% sparsity118

primarily due to memory bandwidth constraints. The performance provided by cuSPARSElt is a119

reasonable expectation for what can be achieved with NxMTransformer.120

3



ADMM for Neural Networks. Alternating Direction Method of Multipliers (ADMM) has been121

used in previous works primarily for compressing convolutional neural networks. Ye, et al. [35]122

explore an iterative approach to ADMM that shortcuts full ADMM convergence with a masked123

retraining operation. Ren, et al. [25] use ADMM for both unstructured sparsification and quantization124

of the model while combining the technique with a heuristic for determining whether speedup will be125

achieved given the achieved compression of a layer. Ma, et al. [17] use domain knowledge of CNN126

filter structure to perform a structured pruning operation for mobile-hardware efficient compression.127

While the above techniques all use ADMM as the sparsifying mechanism, none examine in-depth128

applicability to pre-trained language models for NxM sparsity.129

3 Methodology130

In this section, we formulate ADMM for NxM sparsity, describe the specific aspects of pre-trained131

models that define the optimization pipeline, and describe the high-level optimization schedule.132

3.1 Problem Definition.133

Consider adapting a pre-trained large-scale language model Φ with L Transformer layers (e.g.,134

BERT) to natural language understanding tasks, such as sentiment analysis, entailment, question135

and answering, etc, where the training instances are inputs (often text phrases) and target pairs:136

{xi, yi}Ni=1. Assume the collection of pre-trained model weights is W 0 = {W0
i}Li=1

1, the goal of137

NxMTransformer is to load W 0 and fine-tune it to W ′ such that {W ′i}Li=1 satisfies the constraints of138

at most M weight parameters having non-zero values out of N consecutive weights, while achieving139

similar performance in comparison to fine-tuning the task-specific objective function f({Wi}Li=1)140

(e.g., cross-entropy for classification) using W0 but without constraints.141

3.2 NxMTransformer142

Different from conventional DNN training objectives, the above problem is non-convex with com-143

binatorial constraints. Therefore, it cannot be directly solved by gradient-based methods such as144

stochastic gradient descent. To address this issue, we adopt the alternating direction method of145

multipliers (ADMM), which is a reliable method for large-scale constrained optimization (e.g., with146

combinatorial constraints). In particular, we modify the objective function of the NxM sparsity147

problem as148

min
{Wi}

f({Wi}Li=1) +

L∑
i=1

gi(Zi) subject to Wi = Zi, i = 1, . . . , L (1)

where f(·) is the fine-tuning objective function, and gi(·) is an added penalty function and Zi are149

auxiliary variables. To apply ADMM, we define the penalty function as150

gi(Wi) =

{
0 if Wi ∈ Si

∞ otherwise
(2)

where Si represents the constraint set Si = {Wi that have at most M weight parameters having151

non-zero values out of N consecutive weights}.152

Choice of Si. Not all weights in pre-trained Transformer models need to satisfy this NxM spar-153

sity constraint. BERT and similar pretrained models typically consist of three major components:154

embeddings, Transformer blocks, and classifiers (See Figure 1). For NxM semi-structured sparsity,155

we solely consider weights in Transformer blocks. Take BERT as an example, each Transformer156

block consists of 6 fully connected sub-layers: the query Q, key K, value V layers, the attention157

output layer Attn., and two feed-forward network FFN1 and FFN2. Each of the fully connected158

layers can take advantage of NxM semi-structured sparsity; furthermore, these layers constitute159

1For convenience’s sake, we will omit the notation of the bias since it is not relevant to the task of sparsifica-
tion.

4



the vast majority of inference wall-time. Of the six fully connected layers, FFN1 and FFN2 are160

particularly important to sparsify, alone requiring more than half of the inference wall-time for a161

Transformer block. Note that attention head pruning techniques [19] are unable to sparsify FFN1162

and FFN2. The self-attention mechanism itself does not include any trained parameters and is163

unable to be sparsified using this technique. We exclude the embedding layer since the lookup164

operation associated with the embedding layers is incompatible for acceleration with Tensor Cores.165

The classifier is composed of fully connected layers. For a given task, the classifier weights are166

randomly initialized at the beginning of the fine-tuning process. We find that sparsifying these167

matrices using ADMM will unnecessarily harm accuracy. Since the execution of these layers is168

typically under 2% of the inference wall-time, the runtime cost is minimal for doing so.169

Decomposing the minimization problem into sub-problems. Once we define Si, we apply the170

augmented Lagrangian, which decomposes equation 1 into two sub-problems on W and Z:171

Sub-problem 1 (performance-promoting): min
{Wi}

f({Wi}Li=1) +

L∑
i=1

ρ

2
‖Wi − Zk

i + Uk
i ‖2F (3)

Sub-problem 2 (NxM sparsity-promoting): min
{Zi}

L∑
i=1

gi(Zi) +

L∑
i=1

ρ

2
‖Wk+1

i − Zi + Uk
i ‖2F (4)

The first sub-problem solves the performance promoting problem, which consists of two terms. The172

first term is the standard objective function for fine-tuning the task, and the second term is a L2173

regularization term. The regularization target Zk
i − Uk

i is dynamically updated, based on Uk
i , which174

is the dual variable (i.e., the Lagrange multiplier). Since the L2 term is convex, the complexity175

of solving sub-problem 1 (e.g., via ADAM [15]) is the same as minimizing f(·). The second sub-176

problem solves the sparsity promoting problem. Since it optimizes the sparse constraints separately,177

it can be solved analytically as the solution of the Euclidean projection of Wk+1
i + Uk onto our178

constraint. For the case of NxM semi-structured sparsity, this is accomplished by retaining the M179

largest values of the contiguous group of N values (See Figure 1), which can be solved in linear time.180

Finally, we need to update the dual variable U as Uk
i := Uk−1

i + Wk
i − Zk

i to guarantee that the181

dual feasibility condition is satisfied in each ADMM iteration.182

Sparsity-inducing based fine-tuning. The typical ADMM pipeline fully trains a model to con-183

vergence before introducing ADMM [25]. This two-step process is necessary since the primary184

objective of ADMM is to optimize the existing network to conform to the constraints; ADMM185

will only introduce small changes to parameters it retains in the model. However, for pre-trained186

language models, the primary purpose of the fine-tune is to adapt the classifiers for the specific187

downstream with minimal disturbance to the parameters of the pre-trained representation. As a result,188

we apply the three aforementioned steps (i.e., two sub-problems and the update of the dual variable)189

while fine-tuning the model. In particular, we perform the three steps in an alternating manner, i.e.,190

performing some number of fine-tuning steps with Adam to solve the first sub-problem, solving191

the Euclidean projection for each weight matrix for the second sub-problem, and finally updating192

the auxiliary variable. This sequence will be referred to as one ADMM iteration. The optimization193

proceeds until the W and Z variables have converged, at which point we have a sparsified network194

compliant with our NxM constraint.195

4 Evaluation196

In this section, we evaluate NxMTransformer and show its effectiveness in compressing Transformer197

networks over a wide range of NLP tasks.198

Implementation. NxMTransformer is implemented as a PyTorch [21] compatible library for spar-199

sifying models with NxM semi-structured sparsities. Furthermore, a HuggingFace Transformers [34]200

compatible Trainer is implemented to enable easy integration with their model collection and training201

scripts. Our approach supports different NxM sparse patterns (e.g., 4:1, 8:4) so long as weight’s202

5



Table 1: The dev set results on the GLUE benchmark. The results show that NxMTransformer is able
to achieve higher accuracy than ASP for NxM sparsity, especially when the downstream tasks have
low data resources.
Model Task Average

MNLI (m/mm) SST-2 QNLI CoLA STS-B MRPC RTE
Samples 392k 67k 108k 8.5k 5.7k 3.5k 2.5k

Baseline (BERTbase) 84.5/84.8 92.5 91.6 56.7 89.6 91.7 70.7 81.8
ADMMUnstructured 84.0/84.7 92.5 91.0 57.5 89.6 90.5 68.2 81.3

ASP 83.3/83.4 91.9 90.6 51.7 88.7 88.1 63.9 78.8
NxMTransformer 82.3/83.4 92.3 90.4 55.3 89.3 90.8 68.6 80.5

input dimension is a multiple of N. For evaluation, we focus on evaluating 4:2 sparsity since it is the203

sparsity supported in commodity hardware. We use pretrained model checkpoints for both BERT2204

and DistilBERT3, provided by the HuggingFace model repository. All models were fine-tuned on an205

Intel Xeon 2630 v4 server with 2x NVIDIA Titan V running Ubuntu 18.04. PyTorch version 1.7.1206

was used alongside Transformers 4.3.2. Finetuning these models required between 5 minutes (RTE)207

and 5 hours (MNLI) depending on task size. For the set of training hyperparameters used for training208

NxMTransformer, see Table 3.209

Dataset. We evaluate NxMTransformer and our baselines using the the General Language Under-210

standing Evaluation (GLUE) benchmark [31], a collection of NLP tasks varying in data availability211

and complexity. We report the Spearman correlation for STS-B, the F1 score for MRPC, Matthews212

correlation for CoLA, and accuracy for all remaining tasks. The reported average is the geometric213

mean of reported scores.214

4.1 Main Results215

• BERT [4]: This is the BERTbase model from publicly available checkpoint.216

• ASP: Inline with ASP practices[20], we perform one-shot magnitude-based masked pruning217

on the pretrained model. This baseline is considered best practices for a large pretrained218

language representation for semi-structured sparsity.219

• ADMMUnstructured: To measure the accuracy cost of semi-structured accuracy specifically,220

we create another baseline that uses ADMM but induces unstructured sparsity at 50%221

per-layer (rather than global) sparsity.222

Hyperparameters. In [4], the authors only report the development results on a few tasks. Therefore,223

we produce the BERT baseline results. We fine-tune BERT for 5 epochs on each downstream task.224

We perform a grid search of batch sizes 16 and 32, and learning rates 1e-5, 3e-5, and 5e-5 for SST-2,225

QNLI, and MNLI, due to their high training cost. Learning rates of 7e-5 and 9e-5 are additionally226

used for the remaining tasks. For masked fine-tune, the model was fine-tuned with learning rates227

1e-5, 3e-5, 5e-5, 7e-5, and 9e-5 across batch sizes 16 and 32. ADMMUnstructured is trained using the228

same hyperparameters sweeps as NxMTransformer. For all configurations, we set the fine-tune to229

have 5 epochs, and the best observed result on the validation set is reported.230

We report the evaluation results for BERT in Table 1 and make the following key observations.231

First, the pruning based method sparsifies weights of Transformer blocks but cannot explicit satisfy232

the underlying hardware constraints, e.g., the 4:2 sparsity. Although preserving the highest accuracy233

on downstream tasks (81.3 vs. 81.8 on average), the obtained sparse weights have a random structure234

of non-zero weights, which is inefficient to execute in modern hardware systems. As a result, the235

performance benefit with these unstructured sparsity based approaches is negligible, even when the236

pruning rate is high (e.g., 95%) [32].237

2https://huggingface.co/bert-base-uncased, Apache 2.0 License
3https://huggingface.co/distilbert-base-uncased, Apache 2.0 License

6

https://huggingface.co/bert-base-uncased
https://huggingface.co/distilbert-base-uncased


(a) Validation accuracy of NxMTransformer and
ASP networks on best configuration STS-B.

(b) Training loss of the NxMTransformer and ASP
networks on best configurations of STS-B.

Figure 2: ASP and NxMTransformer on STS-B

Second, when it comes to NxM sparsity, NxMTransformer achieves an average score of 80.4,238

outperforming ASP by 1.6 points. In particular, we observe that for large tasks (MNLI, QNLI,239

SST-2), NxMTransformer performs comparably to ASP. However, NxMTransformer dramatically240

outperforms ASP for the small tasks (CoLA, STS-B, MRPC, RTE), increasing accuracy by 2.9 points241

on average. This pattern suggests that while more data allows a less principled mechanism to recover242

accuracy, an explicit optimization approach that take the sparsity constraints into account would243

yield much better accuracy results when the downstream tasks have low data resources. As a result,244

NxMTransformer retains 99% of the accuracy of the unstructured sparsity (ADMMUnstructured) and245

98.4% of the uncompressed model (BERTbase). Different from ADMMUnstructured, which suffers from246

expensive irregular memory accesses, our NxMTransformer method can effectively leverage the247

underlying Sparse Tensor Core and achieves inference speedups even with 50% overall sparsity.248

4.2 Analysis Results249

In this section, we further investigate the performance gain of NxMTransformer and its impact to the250

downstream task accuracy with NxM sparsity.251

Validation accuracy improvement. We first compare the model trained with ASP and NxMTrans-252

former. To evaluate NxMTransformer, we perform a hard prune of small weights at the end of253

every epoch, so we evaluate the model as if it has already sparsified. As we can see in Figure 2,254

NxMTransformer converges slower than ASP in the beginning of the fine-tuning. This is presumably255

because the initial model weights are heavily violating the hardware constraints, causing significant256

degradation when performing the pruning action. As the training moves forward, NxMTransformer257

is able to catch up and outperform ASP at around epoch 6. This is because by using ADMM,258

NxMTransformer trains the dense model to gradually converge to a sparse model that satisfies the259

provided constraints, so pruning weights would gradually have a smaller impact to model accuracy.260

Since then, the validation accuracy of both ASP and NxMTransformer are still increasing, but ASP261

tends to plateau after 8 epochs, whereas NxMTransformer continues to increase, outperforming ASP262

by 0.5 point in the end. On the other hand, we also observe that ASP has slightly lower training loss263

towards the end (as shown in Figure 2b), indicating that ASP might be overfitting on the dev set264

(potentially due to the small amount of data).265

Dynamism of sparse subnetwork masks. The penalty parameter ρ controls the balance between266

maximizing the accuracy of the model and reaching a sparse model. The larger that ρ is, the greater267

the influence of the sparsity-inducing regularizer and the more quickly the model converges to a268

sparse solution. The trade-off represented by tuning ρ manifests itself by values moving into and269

out of the sparse subnetwork mask between ADMM iterations. Since the sparsity is induced more270

slowly by a small ρ, a parameter is more likely to be included when the second sub-problem is solved.271

Empirically, we find that frequently moving values into and out of the sparse subnetwork mask272

results degrades the ultimate sparse networks accuracy. In Figure 3, ρ is tuned to achieve different273

7



values of similarity, which is calculated as the fraction of values that remain in the sparse subnetwork274

mask from one ADMM iteration to the next. For both CoLA and QNLI a clear correlation between275

average similarity and accuracy exists until approximately 99% similarity, where the strength of the276

regularizer is over-weighted against the training loss and accuracy begins to degrade.277

(a) Similarity vs Matthews Correlation on CoLA
(8.5k). Learning rate: 9e-5, Batch size: 32

(b) Similarity vs Accuracy on QNLI (108k samples).
Learning: 3e-5, Batch size: 32

Figure 3: Analysis of mask similarity and accuracy metrics for a subset of GLUE tasks. Different
similarities are achieved through ρ tuning.

Inspecting the values of weights that undergo swapping illustrates why higher dynamism in the sparse278

subnetwork mask incurs an accuracy penalty. Figure 4 shows a parameter outside of the sparse279

subnetwork mask for just a single iteration will decrease in magnitude by approximately 15% from280

its initial magnitude. A second iteration further increases this penalty to 25%. This is in contrast to281

parameters that remain in the sparse mask for the entirety of the optimization process and retain all of282

their magnitude. The philosophy behind training from a pretrained model is to retain the information283

of that process. Large changes in parameter magnitude are destructive to that pretrained information284

because the parameter only partially reflects that learned information.285

Figure 4: Comparison of average parameter value before and after fine-tuning on a 10-epoch STS-B
experiment (learning rate: 5e-5, batch size: 16, ρ: 1e-3) based on the number of times it was present
in the sparse subnetwork mask.

4.3 When NxM Sparsity Meets Knowledge Distillation286

Knowledge distillation has been proven to be another promising technique to compress a large model287

and also yield models with regular and dense structures. However, there have been few studies288

on the sparsity of knowledge distilled models, especially in the context of transfer learning and289

pre-trained language models. On first sight, it may seem that once distilling a large model into a290

smaller model, there will be less redundancy in the model, where sparsification might hurt model291

accuracy significantly. In this section, we investigate how NxMTransformer affects KD compressed292

8



models. We apply NxMTransformer to a student model obtained through DistilBERT [26], which is293

a 6-layer BERT model with 768 hidden dimension size. The results are shown in Table 2, and we294

make the following observations.295

Table 2: The dev set results on the GLUE benchmark with knowledge distillation. The results show
NxMTransformer retains 97.6% of the DistilBERT model.
Model # Params Task Average

MNLI (m/mm) SST-2 QNLI CoLA STS-B MRPC RTE

NxMTransformer (4:2 BERT12) 66.6M 82.3/83.4 92.3 90.4 55.3 89.3 90.8 68.6 80.5
DistilBERT (BERT6) 66.6M 82.4/82.5 90.9 89.1 53.4 86.6 89.6 63.5 78.5

DistilBERT-NxMTransformer 45.3M 80.7/81.2 90.5 87.5 50.1 87.1 88.7 59.2 76.6

First, despite DistilBERT and NxMTransformer have the same number of parameters, NxMTrans-296

former achieves 2 points higher accuracy on average than DistilBERT, which indicates that removing297

Transformer layers from the BERT model is more detrimental to the model accuracy and NxMTrans-298

former’s semi-structured approach captures redundancy (intra-layer) much more efficiently.299

Second, NxMTransformer retains 97.6% of the accuracy of the dense DistilBERT model. While300

slightly worse than the retained accuracy ratio for BERTbase (98.4%) itself, this indicates that while the301

depth of dimensionality of the model may be reduced, the relatively low amounts of sparsity exploited302

by semi-structured sparsity are still prevalent in fully connected layers. The result also seems to303

suggest the potential existence of a winning ticket even in highly compressed BERT model [3].304

More recently, knowledge distillation techniques such as TinyBert [13] and MiniLM [33] leverage305

fine-grained knowledge transfer to help student better mimic teacher’s behavior. As our method306

is largely orthogonal to how knowledge gets transferred between teacher and student, we expect307

the effectiveness on NxMTransformer as witnessed on DistilBERT should apply to models distilled308

through these more advanced techniques as well and will leave more extensive studies as future work.309

5 Conclusion310

Semi-structured sparsity can improve runtime resource efficiency without large penalties in model311

performance. This work demonstrates the effectiveness of a low-overhead ADMM approach to312

introduce NxM semi-structured sparsity for large pretrained natural language models. Furthermore,313

NxMTransformer is an orthogonal optimization to existing compression techniques, such as knowl-314

edge distillation and reduced precision inference. However, NxMTransformer is limited in that it is315

not a lossless compression technique and does introduce an accuracy gap. Furthermore, it is untested316

on emerging pretrained Transformer representations for vision tasks and it is unclear how it would317

transfer to this emerging domain.318

6 Negative Societal Effects319

NxMTransformer exposes two key avenues for negative societal impacts. First, since NxMTrans-320

former is designed to inherit from a pretrained model representation, it inherits any societal-level321

biases that may be embedded in the parent model. Previous work has identified that BERT models do322

encode both gender bias [16] and bias against people with disabilities [12]. NxMTransformer does not323

specifically attempt to combat these biases and downstream tasks fine-tuned with NxMTransformer324

will inherit them as well. The second potential source of negative societal impacts is due to the act325

of pruning itself. Hooker, et al. [11] identify that for convolutional neural networks, pruning can326

disproportionately reduce accuracy of lower frequency output examples. Although the model design327

for CNNs is different from that of Transformers, it is unlikely this alone would mitigate this source of328

network bias. These sources of bias can introduce real-world harms as fine-tuned natural language329

models are increasingly used for online content moderating, brand sentiment, career matching, and330

other human-facing algorithms that can affect livelihoods.331

9



References332

[1] Nvidia a100 tensor core gpu architecture, 2020.333

[2] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael R. Lyu,334

and Irwin King. Binarybert: Pushing the limit of BERT quantization. CoRR, abs/2012.15701,335

2020.336

[3] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and337

Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks, 2020.338

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of339

deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-340

ence of the North American Chapter of the Association for Computational Linguistics: Human341

Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,342

Minnesota, June 2019. Association for Computational Linguistics.343

[5] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable344

neural networks. In International Conference on Learning Representations, 2019.345

[6] Mitchell Gordon, Kevin Duh, and Nicholas Andrews. Compressing BERT: Studying the effects346

of weight pruning on transfer learning. In Proceedings of the 5th Workshop on Representa-347

tion Learning for NLP, pages 143–155, Online, July 2020. Association for Computational348

Linguistics.349

[7] Fu-Ming Guo, Sijia Liu, Finlay S. Mungall, Xue Lin, and Yanzhi Wang. Reweighted proximal350

pruning for large-scale language representation. CoRR, abs/1909.12486, 2019.351

[8] Fu-Ming Guo, Sijia Liu, Finlay S. Mungall, Xue Lin, and Yanzhi Wang. Reweighted proximal352

pruning for large-scale language representation. CoRR, abs/1909.12486, 2019.353

[9] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark Horowitz, and Bill Dally.354

Deep compression and EIE: efficient inference engine on compressed deep neural network. In355

2016 IEEE Hot Chips 28 Symposium (HCS), Cupertino, CA, USA, August 21-23, 2016, pages356

1–6. IEEE, 2016.357

[10] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.358

In NIPS Deep Learning and Representation Learning Workshop, 2015.359

[11] Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton. Characteris-360

ing bias in compressed models, 2020.361

[12] Ben Hutchinson, Vinodkumar Prabhakaran, Emily Denton, Kellie Webster, Yu Zhong, and362

Stephen Craig Denuyl. Social biases in nlp models as barriers for persons with disabilities. In363

Proceedings of ACL 2020, 2020.364

[13] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and365

Qun Liu. TinyBERT: Distilling BERT for natural language understanding. In Findings of the366

Association for Computational Linguistics: EMNLP 2020, pages 4163–4174, Online, November367

2020. Association for Computational Linguistics.368

[14] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder369

Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin,370

Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,371

Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard372

Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,373

Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy,374

James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,375

Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi376

Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,377

Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory378

Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory379

Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,380

10



Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis of a tensor processing381

unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture,382

ISCA ’17, page 1–12, New York, NY, USA, 2017. Association for Computing Machinery.383

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR384

(Poster), 2015.385

[16] Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black, and Yulia Tsvetkov. Measuring bias in386

contextualized word representations. In Proceedings of the First Workshop on Gender Bias in387

Natural Language Processing, pages 166–172, Florence, Italy, August 2019. Association for388

Computational Linguistics.389

[17] Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian Tang, Kaisheng Ma, Bin Ren, and390

Yanzhi Wang. Pconv: The missing but desirable sparsity in dnn weight pruning for real-time391

execution on mobile devices. Proceedings of the AAAI Conference on Artificial Intelligence,392

34(04):5117–5124, Apr. 2020.393

[18] Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang, Yang Wang, Quanlu Zhang, Yaming Yang,394

Yunhai Tong, and Jing Bai. Ladabert: Lightweight adaptation of BERT through hybrid model395

compression. In Donia Scott, Núria Bel, and Chengqing Zong, editors, Proceedings of the396

28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain397

(Online), December 8-13, 2020, pages 3225–3234. International Committee on Computational398

Linguistics, 2020.399

[19] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In400

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,401

Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.402

[20] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,403

Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks, 2021.404

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,405

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas406

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,407

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-408

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-409

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,410

pages 8024–8035. Curran Associates, Inc., 2019.411

[22] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language412

models are unsupervised multitask learners. 2019.413

[23] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,414

Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified415

text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.416

[24] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-417

tions toward training trillion parameter models. ArXiv, October 2019.418

[25] Ao Ren, Tianyun Zhang, Shaokai Ye, Jiayu Li, Wenyao Xu, Xuehai Qian, Xue Lin, and Yanzhi419

Wang. Admm-nn: An algorithm-hardware co-design framework of dnns using alternating420

direction methods of multipliers. In Proceedings of the Twenty-Fourth International Conference421

on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19,422

page 925–938, New York, NY, USA, 2019. Association for Computing Machinery.423

[26] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version424

of bert: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108, 2019.425

[27] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W.426

Mahoney, and Kurt Keutzer. Q-BERT: hessian based ultra low precision quantization of BERT.427

In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second428

Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI429

Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,430

February 7-12, 2020, pages 8815–8821. AAAI Press, 2020.431

11



[28] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W.432

Mahoney, and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert.433

Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8815–8821, Apr. 2020.434

[29] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for BERT435

model compression. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors,436

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and437

the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019,438

Hong Kong, China, November 3-7, 2019, pages 4322–4331. Association for Computational439

Linguistics, 2019.440

[30] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobile-441

bert: a compact task-agnostic bert for resource-limited devices. In ACL (2020), 2020.442

[31] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.443

GLUE: A multi-task benchmark and analysis platform for natural language understanding.444

In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting445

Neural Networks for NLP, pages 353–355, Brussels, Belgium, November 2018. Association for446

Computational Linguistics.447

[32] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity448

in deep neural networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle449

Guyon, and Roman Garnett, editors, Advances in Neural Information Processing Systems 29:450

Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,451

Barcelona, Spain, pages 2074–2082, 2016.452

[33] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity453

in deep neural networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle454

Guyon, and Roman Garnett, editors, Advances in Neural Information Processing Systems 29:455

Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,456

Barcelona, Spain, pages 2074–2082, 2016.457

[34] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony458

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,459

Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain460

Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-461

art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods462

in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.463

Association for Computational Linguistics.464

[35] Shaokai Ye, Tianyun Zhang, Kaiqi Zhang, Jiayu Li, Kaidi Xu, Yunfei Yang, Fuxun Yu, Jian465

Tang, Makan Fardad, Sijia Liu, Xiang Chen, Xue Lin, and Yanzhi Wang. Progressive weight466

pruning of deep neural networks using ADMM. CoRR, abs/1810.07378, 2018.467

[36] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8BERT: quantized 8bit BERT.468

CoRR, abs/1910.06188, 2019.469

[37] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8BERT: quantized 8bit BERT.470

CoRR, abs/1910.06188, 2019.471

[38] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and472

Hongsheng Li. Learning n:m fine-grained structured sparse neural networks from scratch. In473

International Conference on Learning Representations, 2021.474

[39] Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar, and Gal Novik. Neural network distiller: A475

python package for DNN compression research. CoRR, abs/1910.12232, 2019.476

Checklist477

1. For all authors...478

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s479

contributions and scope? [Yes]480

12



(b) Did you describe the limitations of your work? [Yes] See Section 5481

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See482

Section 6483

(d) Have you read the ethics review guidelines and ensured that your paper conforms to484

them? [Yes]485

2. If you are including theoretical results...486

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical487

results.488

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results.489

3. If you ran experiments...490

(a) Did you include the code, data, and instructions needed to reproduce the main experi-491

mental results (either in the supplemental material or as a URL)? [Yes] Training scripts492

and model code are included in the supplementary material.493

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they494

were chosen)? [Yes] See Section 4, Appendex A.1495

(c) Did you report error bars (e.g., with respect to the random seed after running experi-496

ments multiple times)? [No]497

(d) Did you include the total amount of compute and the type of resources used (e.g., type498

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4499

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...500

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4501

(b) Did you mention the license of the assets? [Yes] See Section 4502

(c) Did you include any new assets either in the supplemental material or as a URL? [No]503

No new assets introduced in the work.504

(d) Did you discuss whether and how consent was obtained from people whose data you’re505

using/curating? [No]506

(e) Did you discuss whether the data you are using/curating contains personally identifiable507

information or offensive content? [No]508

5. If you used crowdsourcing or conducted research with human subjects...509

(a) Did you include the full text of instructions given to participants and screenshots, if510

applicable? [N/A] No human subjects.511

(b) Did you describe any potential participant risks, with links to Institutional Review512

Board (IRB) approvals, if applicable? [N/A] No human subjects.513

(c) Did you include the estimated hourly wage paid to participants and the total amount514

spent on participant compensation? [N/A] No human subjects.515

13



A Appendix516

A.1 Scheduling ADMM Iterations517

ADMM can converge effectively with as few as 80 training steps in each ADMM iteration. For518

example, RTE (2.5k training samples), ADMM successfully converges with a minibatch of 32 and519

one ADMM iteration per epoch. However, increasing the number of training steps between iterations520

can reduce reliance on a high learning rate. Note that a high learning rate is necessary to allow the521

optimizer to relatively quickly push larger parameters towards 0 in a reasonable number of training522

steps, since the practical parameter delta in a single training step is proportional to the product of the523

learning rate and ρ. Furthermore, a small learning rate reduces the effectiveness of the regularizer524

and decreases model similarity.525

Experimentally, ADMM will achieve its maximum accuracy once 10 ADMM iterations have occurred.526

However, further optimizing, does not appear to harm model accuracy. While further training is527

typically not desirable for small tasks — training is frequently extended for these tasks to have a528

sufficiently large training period each ADMM iteration — for large tasks tens of ADMM iterations529

may be performed such that the fine-tune can continue for sufficient time. For example, a fine-tune530

on QNLI for just 3 epochs may perform nearly 50 ADMM iterations.531

Table 3: NxMTransformer Training Hyperparameters. Smaller tasks utilize larger learning rates and
penalty parameters (ρ) since ADMM iterations for these tasks are much shorter (See Appendix A.1).
Tasks Learning Rates ρ Batch Size Epochs

MNLI, QNLI, SST-2 1e-5, 3e-5, 5e-5 4e-4, 1e-3, 3e-3 16, 32 5
CoLA, STS-B, MRPC, RTE 5e-5, 7e-5, 9e-5, 1e-4 3e-3, 6e-3, 1e-2 16, 32 10

14


	Introduction
	Background and Related Work
	Methodology
	Problem Definition.
	NxMTransformer

	Evaluation
	Main Results
	Analysis Results
	When NxM Sparsity Meets Knowledge Distillation

	Conclusion
	Negative Societal Effects
	Appendix
	Scheduling ADMM Iterations


