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ABSTRACT

The vast majority of deep learning models are trained using SGD or one of its
variants. |[Zhang et al.|(2019) suggested the Lookahead optimiser as an alternative

which enjoys remarkable test performance on

many established datasets and mod-

els. In this work we investigate a generalisation of this optimisation method. We
validate the method empirically, generally demonstrating better results and faster
convergence relative to the baselines of SGD and Lookahead.

1 INTRODUCTION

The Lookahead optimiser (Zhang et al. 2019) is de-
scribed in Alg. [Il It comprises an outer loop, which
generates a sequence of “slow weights” ¢, and an in-
ner loop, which generates a sequence of “fast weights”
0. ;. The inner loop takes k steps using a gradient opti-
miser (e.g. Momentum SGD, Adam), and then updates
the slow weights by moving in the direction of the final
fast weights, scaled by a factor of & € (0,1). Here, «
and k are hyperparameters that must be specified, and
L represents the batch loss.

2 OUR METHOD: THE
GENERALISED LOOKAHEAD OPTIMISER

Lookahead works by resetting some of the progress
every k steps without considering the intermediate
path {6; ;}*=! (7" line, Alg. , but only the over-
all direction. In contrast, we aim to use all k it-
erates to better inform our slow step. Since SGD
takes steps in the direction of stochastic gradient es-
timates, there is a chance that the stochasticity will
cause the direction to oscillate. To address this, we
still seek to optimise the loss on the new batch, but
constrain our search to a recently explored region
(in weight space) T so as to limit oscillations while
preserving progress. Due to the constrained search
space, this point (¢;) will achieve worse loss on the
current batch S’ than an unconstrained SGD step,
but still better than 6; 1. We choose T" within the

Alg. 1 Lookahead optimiser

fort=1,2,... do
0r0 < P11
fori=1,2,...,kdo
S < sample next batch
Ht,i — NIOI’I’ISGD([:S7 Ht,i—l)
end for
D1 — dr—1+ (0 — Di—1)
end for
return ¢

Alg. 2 Generalised Lookahead optimiser

fort=1,2,... do
00 < P11
fori=1,2,...,kdo
S < sample next batch
Bm — MOInSGD(ES7 Hm-,l)
end for
S’ < sample next batch
T < BuildRegion (8,9, ..., 60+ k)
g < QuadFit(£5', T)
B1 « argming e g(z)
end for
return ¢

affine hull of the fast weights to ensure that both a standard Lookahead jump as well as staying
still (by ¢, < 0, ;1) are feasible. Thus, we are guaranteed to generalise both Lookahead and SGD
(dropping every (k- 1)" batch). Further parallels to existing literature are discussed in Appendix

The pseudocode for our method, which we refer to as Generalised Lookahead, is described in its
most general form in Alg. [2] It assumes access to the objective function £, initial parameters ¢y,
the number of fast updates k, a method to sample mini-batches, and the two additional methods:

* BuildRegion: an algorithm that, given access to the k fast-weight updates, returns an affine-hull
search region in which to find an update for the slow weights.
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Table 1: Validation accuracy mean and standard deviation over 3 runs for the considered settings.

ResNet-18 on  ResNet-18 on  LeNet-5 on LeNet-50on  ResNet-18 on

Optimizer CIFAR-10 CIFAR-100  CIFAR-10 SVHN SVHN

SGD 82.02+£0.25 50.27£0.48 77.46+£0.53 93.53+0.17 95.95+0.05
Lookahead 82.89+0.45 51.08+£0.20 77.43+£0.18 93.78+0.13 95.86+0.05
p=k, Hessian 83.31+£0.30 55.58£0.10 77.53+£0.41 93.61+0.08 96.01+0.06

p=2, sampling  84.04 £ 0.39
p=2, Hessian 83.19 £ 0.41

¢ QuadFit: an algorithm that, given a search region 7" and a function f : T" — R, returns a quadratic
approximation of f on 7.

In all experiments, we set the inner optimiser to Momentum SGD as it performed best in|Zhang et al.
(2019), and used SciPy’s Sequential Least Squares Programming (SLSQP) optimiser (Kraft et al.,
1988)) for the last step, although any similar solver would be sufficient.

BuildRegion yields a search space contained within the affine hull of 8, ¢, ..., 6; . Even though
k may be a small constant, the computational cost of a quadratic approximation (via QuadFit) is a
function of dim(7T"). Hence, we also tested PCA to lower the dimension of the affine space to a target
dimension p. Having fixed an affine space, we let 1" be the scaled convex hull of the projections of
the fast-weight updates onto that space. Importantly, the scaling is done around the final fast-weight
iterate 6; j, to allow for preserving progress. For QuadFit, we tried both sampling Q(p?) points
within 7" and fitting a quadratic, and using a Hessian approximation (by double back-propagation).

3 EXPERIMENTS AND RESULTS

We performed classification experiments on two datasets, CIFAR-10/100 (Krizhevsky et al.) and
SVHN (Netzer et al.| [2011)), considering ResNet-18 (He et al., |2016) and LeNet-5 (LeCun et al.,
1989) architectures and & in {5, 11,17, 21}, training for 200 epochs. We avoided using a learning
rate decay schedule due to tuning costs for ResNet-18 on CIFAR-10/100. The other experiments
converged quickly, so we used the same schedule as|Zhang et al.[(2019).

The final validations for our experiments are reported in Table We only tried dimensionality
reduction for ResNet-18 on CIFAR-10 (using p = 2) since setting k = p is strictly more general.
We could only afford approximating by sampling and fitting when p = 2 because we need Q(p?)
samples. One interesting finding is that sampling and fitting yielded smaller approximation error
than the Hessian-based approach — we credit this to the piece-wise nature of the functions, which
makes local behaviour less relevant. More experiment results are available in Appendix

4 COMMENTS AND FUTURE DIRECTIONS

The method proved competitive in experiments, improving accuracy by up to 4 percent. However,
it requires more tuning and was outperformed by Lookahead in one instance. Another downside
is that, depending on the chosen settings, the incurred computational cost can be significant, with
training taking 1.5-2.5 times longer than SGD or Lookahead. The memory consumption also grows
linearly with the hyperparameter k. However, the heaviest computations are parallelisable; in theory,
with enough parallelisation, the method could approach the speed of SGD. We treat all fast weights
the same and it is conceivable that placing greater importance on later updates could help. There
exist theoretical parallels to support this in the works of |Zhou et al.|(2021) and Scieur et al.| (2018).

Finally, it remains an open question how to best employ momentum within the Generalised Looka-
head framework. Throughout this project, we followed Zhang et al.|(2019) in leaving the standard
momentum update untouched for the slow weights. However, especially since our optimisation-
based update could take a relatively large step, it is possible that a different approach to momentum
(or the optimiser state in general) would improve the algorithm.
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A DISCUSSION ON GENERALISED LOOKAHEAD

One of the most similar methods is Anderson’s acceleration (Anderson, 1965) which aims to speed
up fixed-point iterations by also jumping to points which are a linear combination of last k steps.
However, the linear combination is computed so as to minimise the residual of an approximation
given by simple linear interpolation of the residuals at last k steps. [Scieur et al.| (2016) generalised
the method to an optimisation setting and no longer make the linearity assumption, ending up with
an extra regularizer in the way the linear combination is chosen. This has been further improved by
Scieur et al.[(2018)) and applied successfully in a DNN setting. Their approach becomes a particular
case of ours as, together with the regularizer factor, they make a second order approximation of
the loss within our search space (albeit at a much smaller computational cost) to inform the next
jump. However, our approximation is widely different and approximates better by construction and
the justification of the approach should better address the problem of stochasticity that is not being
considered in|Scieur et al.|(2018).

Lastly, our approach can be seen as a heavily simplified version of Newton’s method: if we let the
search space be given by the affine hull of all previous steps, it will eventually stop being constraining
and our quadratic approximation will be precisely that given by the second order expansion of the
loss. Computing the minimum of that would then be intractable, but we get around this problem
by working in a much smaller dimension. Put differently, the approach can also be considered a
Quasi-Newton method as we use a low dimensional approximation of the Hessian (and gradient) to
make the problem tractable.


http://www.cs.toronto.edu/~kriz/cifar.html
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Figure 1: Performance comparison of discussed optimisers for ResNet-18 on CIFAR-10
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Figure 2: Performance comparison of discussed optimisers for ResNet-18 on CIFAR-100

B EXPERIMENTS

In this section we provide more experimental results. All shaded graphs incorporate the mean and
standard deviation of 3 different runs with different random seeds.

B.1 RESNET-18 oN CIFAR-10/100

‘We have made the most exhaustive experiments when training a ResNet-18 on CIFAR-10/100. In the
case of CIFAR-10 we also considered the option of setting p = 2, where we had either the Hessian-
based approach or the sampling and fitting one. In the sampling and fitting case we sampled 17
points because the error was good and there was not much computational overhead. The test and
train losses for CIFAR-10 and CIFAR-100 are summarised in Figure [I|and Figure [2] respectively.
Generalised Lookahead outperformed by a clear margin both SGD and Lookahead and it did so by
having a twice larger train loss and generalising better. In the case of CIFAR-100, the testing loss
starts going up although the train loss keeps decreasing, which may indicate some overfitting but our
method clearly outperforms it even before that point.

It is worth noting that the best performing setting in terms of validation accuracy was not when
p = k, but rather when p = 2, in the case of approximating by sampling and fitting. This would
make sense if the Hessian-based approach provides a worse approximation. To confirm this, we
measured the average absolute errors for both approximations. To do so we set p = 2 and sampled
uniformly 30 new points within 7". In order to not bias the experiment towards one or the other, we
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Figure 4: Performance comparison of discussed optimisers for LeNet-5 on CIFAR-10

have made the measurements while taking standard SGD steps, every k = 17 steps as we would in
Generalised Lookahead. Note that not only are we using fresh samples to evaluate the approximation
error, but when doing the fitting we use least squares, so we do not aim at minimising the absolute
error as measured, which means that the sampling and fitting approach does not have an unfair
advantage from this point of view. The results are available in Figure [3] and confirm our theory
that the sampling and fitting provides better approximation which can account for the improved
performance.

B.2 LENET-5 oN CIFAR-10

As training a LeNet-5 on CIFAR-10 converged rapidly, we used same learning rate decay scheme
as [Zhang et al| (2019). The test and train losses are plotted in Figure ] As opposed to the case
of ResNet-18 on CIFAR-10/100, Generalised Lookahead now has better train loss as well. This
time the edge that Generalised Lookahead gives over Lookahead and SGD is much smaller in terms
of final test accuracy, but it still consistently performs better than SGD, and slightly better than
Lookahead. More importantly though, the speed of convergence can be seen to be higher, in the
first two stages of learning rate decay having Generalised Lookahead clearly outperform SGD and
Lookahead in terms of optimisation as well as generalisation.

B.3 SVHN

Training either of ResNet-18 or LeNet-5 on SVHN converged even faster than LeNet-5 on CIFAR-
10, so we kept the learning rate decay scheme in place. The train and test losses can be seen
in Figure 6] for LeNet-5 and Figure 5] for ResNet-18.
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Figure 5: Performance comparison of discussed optimisers for ResNet-18 on SVHN
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Figure 6: Performance comparison of discussed optimisers for LeNet-5 on SVHN

In the case of ResNet-18, Generalised Lookahead still performs best, but by a small margin. How-
ever, it is worth mentioning that it is faster to optimise in the first two stages by a considerable
margin. The corresponding test error is much less stable and even goes up in the second stage. We
credit this to ResNet-18 being extremely large for how easy the task of classifying digits is, which
in turn leads to overfitting.

When training LeNet-5, Generalised Lookahead still yields better train loss than both SGD and
Lookahead throughout the whole training procedure, but this time it is completely outperformed by
Lookahead in terms of validation accuracy. During the first two stages, it also generalises better than
Lookahead and SGD but with the subsequent learning rate decays it gets worse.
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