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Abstract

Algorithmic pricing on online e-commerce platforms raises the concern of tacit1

collusion, where reinforcement learning algorithms learn to set collusive prices2

in a decentralized manner and through nothing more than profit feedback. This3

raises the question as to whether collusive pricing can be prevented through the4

design of suitable "buy boxes," i.e., through the design of the rules that govern5

the elements of e-commerce sites that promote particular products and prices to6

consumers. In this paper, we demonstrate that reinforcement learning (RL) can also7

be used by platforms to learn buy box rules that are effective in preventing collusion8

by RL sellers. For this, we adopt the methodology of Stackelberg POMDPs, and9

demonstrate success in learning robust rules that continue to provide high consumer10

welfare together with sellers employing different behavior models or having out-of-11

distribution costs for goods.12

1 Introduction13

The last decade has witnessed a dramatic shift of trading from retailers to online e-commerce platforms14

such as Amazon and Alibaba. In these platforms, sellers are increasingly using algorithms to set prices.15

Algorithmic pricing can be beneficial for market efficiency, enabling sellers to quickly react to market16

changes and also in enabling price competition. At the same time, the U.S. Federal Trade Commission17

(FTC) U.S. Federal Trade Commission (2018) and European Commission (The Organisation for18

Economic Co-operation and Development, 2017) have raised concerns that algorithmic pricing may19

facilitate collusive behaviors. Calvano et al. (2020a) support these concerns through a study of pricing20

agents in a simulated platform economy, and show that commonly used reinforcement-learning (RL)21

algorithms learn to initiate and sustain collusive behaviors. Assad et al. (2020) also provide empirical22

support for algorithmic collusion in a study of Germany’s retail gas stations, showing an association23

between algorithmic pricing and an increase in price markups. As highlighted by Calvano et al.24

(2020b), these kinds of collusive behaviors are unlikely to be a violation of antitrust law, as they are25

learned responses to profit signals and not the result of explicit agreements.26

One can try to prevent algorithmic collusion by introducing suitable rules by which platforms can27

choose which sellers to promote to buyers, thus promoting competition. Could Amazon’s "buy box28

algorithm," for example, play this role in the future, in determining for a given consumer search29

which products and prices to highlight to a consumer? Responding to this, Johnson et al. (2020)30

design hand-crafted rules that succeed in hindering collusion between RL algorithms. At the same31

time, their rules introduce the undesirable effect of limiting consumers to a single seller, and there32

remains potential for more effective interventions.33

In this paper, we demonstrate for the first time how RL can also be used defensively by a platform34

to automatically design rules that promote consumer welfare and prevent collusive pricing. This is35

a problem of multi-agent learning, with the interaction between the platform and sellers modeled36
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as a Stackelberg game (Fudenberg and Tirole, 1991). The leader is the platform designer and sets37

the platform rules and the sellers respond, using RL to set prices given these rules. We introduce the38

class of threshold platform rules, and formally show that this class contains rules that approximately39

maximize consumer surplus in a unique subgame perfect equilbrium. At the same time, this class of40

threshold rules is fragile to unexpected deviations by sellers, for example caused by cost perturbations.41

The role of RL on the part of the platform is to learn rules with similar performance that are also42

more robust.43

To solve the Stackelberg problem, we make use of the Stackelberg partially observable Markov44

decision process (POMDP) framework (Brero et al., 2021a), which defines an episode structure45

of a POMDP such that the RL algorithm representing the leader will learn to optimize its reward46

(here, consumer surplus) given that its rules cause re-equilibration on the part of the followers (here,47

the sellers who use Q-learning algorithms to set prices). The Stackelberg POMDP framework is48

well formed as long as the re-equilibration behavior of sellers can be modeled through Markovian49

dynamics, as is the case with Q-learning.50

We show successful results in learning effective platform policies that outperform handcrafted51

rules (Johnson et al., 2020). This demonstrates how the Stackelberg POMDP framework can be52

successfully applied in settings where followers play repeated games, and their strategies are also53

policies trained via reinforcement learning algorithms. We then show how our threshold platform54

rules allow us to obtain a similar learning performance when training the platform policy “in the55

wild,” i.e., without accessing the sellers’ private information. With this, we demonstrate how the56

Stackelberg POMDP framework can be applied in more general learning scenarios than the offline57

learning ones for which it was originally designed. Finally, we show how the platform rules learned58

via our Stackelberg POMDP framework continue to be effective when market conditions change, for59

example as the result of a change to the cost structure of sellers.60

Further related work. Zheng et al. (2022); Tang (2017); Shen et al. (2020); Brero et al. (2021b)61

make use of RL to optimize different economic systems (including matching markets, internet62

advertising, tax policies, and auctions) under strategic agents’ responses. Unlike our work, these63

methods do not leverage the designer’s commitment power or the Stackelberg structure of the induced64

game. Brero et al. (2021a) introduce and study the Stackelberg POMDP framework for a very different65

setting than that of the present paper: the design of sequential price auctions.1 Abada and Lambin66

(2020) study collusion by RL pricing in markets for electric power, and use machine learning by a67

regulator agent for the mitigation of collusion, albeit without a Stackelberg framing (and without68

success, leading to lower welfare than the collusive outcome). The broader research program on69

differentiable economics uses representation learning for optimal economic design (Duetting et al.,70

2019; Shen et al., 2019; Kuo et al., 2020; Tacchetti et al., 2019; Rahme et al., 2021a; Curry et al.,71

2022; Rahme et al., 2021b; Curry et al., 2020; Peri et al., 2021; Weissteiner and Seuken, 2020); this72

work avoids the need for Stackelberg design by emphasizing the use of direct, incentive-compatible73

mechanisms. Also related is empirical mechanism design (Areyan Viqueira et al., 2019; Vorobeychik74

et al., 2006; Brinkman and Wellman, 2017), which applies empirical game theory to search for the75

equilibria of mechanisms with a set of candidate strategies (Wellman, 2006; Kiekintveld and Wellman,76

2008; Jordan et al., 2010); see also Bünz et al. (2018) for the design of iterative auctions.77

2 Preliminaries78

Seller Competition Model. There is a set of sellers N = {1, . . . , n}, each of whom sells a79

differentiated product on an economic platform. Each seller has the same (private) marginal cost80

c > 0 for producing one unit of its product. Sellers interact with each other repeatedly over time in81

setting prices and selling goods. At each time period, t = 0, 1, . . . , each seller i observes all past82

prices, and sets a price pi,t � 0. We let pt = (p1,t, . . . , pn,t) denote a generic price profile quoted at83

1The only other method we know for Stackelberg learning in stochastic games with provably guarantees
solves for a single follower (Mishra et al., 2020); see also Mguni et al. (2019); Cheng et al. (2017); Shi et al.
(2020) and Shu and Tian (2019), and Tharakunnel and Bhattacharyya (2007) for a partial convergence result for
a static game with two followers. For other convergence results for single-follower, static, and often zero-sum
games see Li et al. (2019); Sengupta and Kambhampati (2020); Xu et al. (2021); Fiez et al. (2020); Jin et al.
(2020). For multi-follower static games, Wang et al. (2022) make use of a differentiable relaxation of follower
best-response behavior together with a subroutine to solve an optimization problem for follower behavior.
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time t. The platform sets the rules of a buy box that govern, in each period t, which set Nt ✓ N of84

sellers are available. Consumers can only buy from these sellers and others forfeit sales. There is85

also an outside option, indexed by 0, which provides each consumer with a fallback choice with zero86

utility.87

Following Johnson et al. (2020), competition between sellers for consumer demand is modeled88

through the standard logit model of consumer choice. For this, seller i has quality index ↵i > 0,89

this providing horizontal differentiation across products, and the outside good has quality index90

↵0 > 0. In the logit model, each consumer samples ⇣0, ⇣1, ...⇣n, independently from a type I extreme91

value distribution with scale parameter µ > 0, for each product and the outside option, with utility92

↵i+⇣i�pi,t for product i, and ↵0+⇣0 for the outside option. Considering a unit mass of consumers in93

period t, seller i 2 Nt receives fractional demand Di(pt;Nt) = exp((↵i�pi,t)/µ)/�(pt;Nt), where94

�(pt;Nt) =
P

j2Nt
exp((↵j�pj,t)/µ)+exp(↵0/µ), and any seller i /2 Nt has zero demand. Scale95

parameter µ > 0 serves to control the extent of horizontal differentiation, with no differentiation and96

perfect substitutes obtained as µ ! 0. The total consumer surplus is U(pt;Nt) = µ · log[�(pt;Nt)],97

and is maximized with minimum prices and all sellers displayed (so consumers have a full choice of98

products). Seller i’s profit ⇢i in period t is ⇢i(pt;Nt) = (pi,t � c) ·Di(pt;Nt), and its per-unit profit99

multiplied by demand.100

Reinforcement learning by sellers. In a single-agent Markov decision process (MDP), an agent101

faces a sequential decision problem under uncertainty. At each step t, the agent observes a state102

variable st 2 S and chooses an action at 2 A. Upon action at in state st, the agent obtains103

reward r(st, at), and the environment moves to state st+1 according to p(st+1|st, at). We let104

⌧ = (s0, a0, ..., sT , aT ) denote a state-action trajectory determined by executing policy policy105

⇡ : S ! A, and p⇡(⌧) denote the probability of trajectory ⌧ . The optimal policy ⇡⇤ solves106

⇡⇤ 2 argmax⇡E⌧⇠p⇡(⌧)[
PT

t=0 �
tr(st, at)], where � 2 [0, 1] is the discount factor and time-horizon107

T can be finite or infinite. In a partially-observable MDP (POMDP), the policy ⇡ cannot access108

state st but only observation ot sampled from p(ot|st). A multi-agent MDP (Boutilier, 1996) for109

n agents has states S common to all agents and a set of actions Ai for each agent i. When each110

agent i picks action ai,t in state st, the environment moves to state st+1 according to a distribution111

p(st+1|st, a1,t, .., an,t) and agent i obtains a reward ri(st, at) that depends on the joint action. We112

follow Calvano et al. (2020a) and Johnson et al. (2020) and adopt decentralized Q-learning by sellers113

as a positive theory for sellers in regard to their behavior in setting prices on an e-commerce platform114

(see Appendix A). Although Q-learners may not converge, we also confirm these earlier studies in115

showing convergence in our simulations (defined over a particular time horizon as detailed by Johnson116

et al. (2020)).117

3 The Platform Stackelberg Problem118

To formalize the problem facing the platform in mitigating collusive behavior by sellers, we model119

the interaction between the platform, which sets the rules of the buy box, and the sellers as a120

Stackelberg game. The platform designer is the leader, and fixes the platform rules. The sellers are121

the followers, and play an infinitely repeated game according to these rules. As discussed above, and122

following Calvano et al. (2020a) and Johnson et al. (2020), we model the sellers’ behavior through123

decentralized Q-learning. As a result, the problem facing the platform is a behavioral Stackelberg124

problem, in that the followers are modeled as Q-learners (and need not, necessarily, be playing an125

equilibrium of the induced game).126

The sellers. In this model, we fix the states that comprise the MDP of a seller to include the prices127

set by all sellers in the last period, i.e., st = pt�1. We initialize s0 to be a randomly selected price128

profile. The action of a seller is modeled as one of m equally-spaced points in the interval ranging129

from just below the sellers’ cost c to just above the monopoly price pm. At each step t � 0, each130

seller i selects a price pi,t and is rewarded by its per-period profit ⇢i(pt;Nt), which depends on131

pt = (p1,t, . . . , pn,t) and the choice of which sellers Nt are displayed by the platform.132

The platform. To formalize the platform’s problem, let �⇤ = (�⇤
1 , ..,�

⇤
n) denote a strategy profile133

selected by Q-learning on the part of sellers, in response to the platform rule, and in the long run, after134

a suitably large number of steps. We leave implicit here the dependence of seller strategy profile on135
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the platform’s policy. The platform must decide in each period which sellers to display to consumers.136

For this, we denote the platform rule as policy ⇡, and we adopt for the state of the platform policy137

the prices quoted by sellers in step t, pt, so that the platform’s policy uses these prices to select a138

set of agents to display, with Nt selected according to ⇡(pt). Let p⇤t = �⇤(st) denote a price profile139

chosen under seller strategies �⇤, i.e., in response to the platform rules, and at some large enough140

time step t⇤, and let ⌧⇤ = (p⇤t⇤ , p
⇤
t⇤+1, ..) denote a trajectory of prices forward from t⇤. We denote141

the distribution of these trajectories as p⇡(⌧⇤). As above, the dependence on the platform’s policy is142

left implicit in this notation.143

The Stackelberg problem facing the platform is to find a platform policy ⇡ that maximizes consumer144

surplus given the effect of this policy on the induced strategy profile of sellers.145

Definition 1 (Behavioral Stackelberg Problem) The optimal platform policy solves ⇡⇤ 2146

argmax⇡CS (⇡), where CS (⇡) is the expected sum consumer surplus when sellers follow strategy �⇤147

forward from period t⇤, i.e.,148

CS (⇡) = E⌧⇤⇠p⇡(⌧⇤)

"
T⇤X

t=t⇤

U(p⇤t ;⇡(p
⇤
t ))

#
, (1)

where T ⇤
is suitably chosen horizon and p⇡(⌧⇤) denotes the distribution over Q-learning induced,149

seller pricing trajectories, in response to platform policy ⇡.150

4 Learning Optimal Platform Rules151

In this section, we solve the platform’s problem, in responding to Q-learning sellers, through the152

Stackelberg POMDP framework (Brero et al., 2021a). This creates a suitably defined POMDP in153

which the optimal policy solves the behavioral Stackelberg problem (Definition 1).154

Definition 2 (Stackelberg POMDP for platform rules) The Stackelberg POMDP for platform155

rules is a finite-horizon POMDP, where each episode has the following two phases:156

• An equilibrium phase, consisting of ne � 1 steps. In this phase, each state st includes the step157

counter t, the sellers’ current Q-matrices, and the prices pt quoted by the agents. Observations158

consists of the prices quoted by the sellers (ot = pt) and policy actions determine the set of agents159

displayed (in their more general version, at = Nt). State transitions are determined by Q-learning,160

where each seller i updates its Q-matrix after being rewarded by ⇢i(pt;Nt). The policy has zero161

reward in every time step (r(st, at) = 0, for t  ne).162

• A reward phase, consisting of nr � 1 steps, each with the same actions, states, and observations as163

the equilibrium steps. The reward phase differs in two ways. First, the Q-matrices of sellers are not164

updated, and second, the platform policy now receives a non-zero reward, and this is set in each step165

to be equal to the consumer surplusin that step (r(st, at) = U(pt;Nt), for t > ne).166

This Stackelberg POMDP formulation is an adaptation of that provided by Brero et al. (2021a),167

who used it to learn sequential price mechanisms (SPMs) in the presence of communication from168

bidders. Here, our stage games replace SPMs, and the followers respond through Q-learning169

dynamics rather than no-regret algorithms. Following Brero et al. (2021a), we show the Stackelberg170

POMDP formulation is well-founded by showing that an optimal policy will also solve the Behavioral171

Stackelberg design problem of Definition 1. Specifically, when the number of reward steps nr is172

large enough and when ne � t⇤, the optimal policy, denoted ⇡⇤
ne,nr

, for the Stackelberg POMDP173

with ne equilibrium and nr reward steps maximizes the objective in Equation (1).174

Proposition 1 The optimal Stackelberg POMDP policy ⇡⇤
ne,nr

, for an equilibrium phase with ne � 1175

steps and a reward phase with nr � 1 steps, maximizes CS (⇡), for seller behavior induced after ne176

steps when nr = T ⇤
.177

The proposition follows from the construction of the Stackelberg POMDP, especially the fact the our178

policy is only rewarded under the response behavior reached after ne steps, in line with the definition179

of CS (⇡) (see Appendix B for the full proof argument).180

Brero et al. (2021a) use the Stackelberg POMDP framework in an “offline” environment, i.e., in181

a simulation that assumes access, at design time, to followers’ internal information. This allows182
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them to solve their POMDP using the paradigm of centralized training and decentralized execution183

(Lowe et al., 2017). The leader policy is trained via an actor-critic deep RL algorithm, and the critic184

network (which estimates the sum of rewards until the end of the episode) accesses the full state185

during training. Only the actor network, which represents the policy, is restricted to the partial-state186

information.187

Here, we also study the use of the Stackelberg POMDP framework to train useful leader policies “in188

the wild,” where the learning algorithm of the platform can only access the kind of information that an189

economic platform would have based on observations of sellers. As we will empirically demonstrate,190

we can successfully relax the offline learning requirements—i.e., we operate without (1) access to191

sellers’ private information in regard to Q-matrices and exploration rate, and (2) requiring that the192

Q-matrices of sellers become frozen for the reward phase of the Stackelberg POMDP—without193

affecting learning performance.2194

Threshold platform rules. In our experiments, we consider the class of threshold platform rules.195

These rules use the current prices set by sellers to set a price threshold above which a seller will not196

be displayed, with the same threshold set for all sellers.197

Definition 3 (Threshold Platform Rule) A threshold platform rule sets a threshold ⌧(pt) � 0, for198

each price profile pt, such that Nt = {i 2 {1, .., n} : pi,t  ⌧(pt)}, i.e., any seller whose price is no199

greater than the threshold is displayed to consumers.200

This class of threshold rules has a corresponding optimality result: there is a threshold rule that makes201

the market competitive, with all sellers displayed and consumer surplus maximized in the unique202

subgame perfect Nash equilibrium (SPE) of the induced continuous pricing game. Even though the203

pricing behaviors that arise from Q-learning need not converge to SPEs, we find empirical evidence,204

consistent with Johnson et al. (2020), that the seller learning dynamics invariably converge to this205

equilibrium. As such, this provides useful theoretical support for adopting the family of threshold206

platform rules by the platform learner. We have the following result:207

Proposition 2 For any ✏ > 0, there exists a threshold platform rule ⇡ such that CS (⇡) � CS (⇡⇤)�208 P
t �

t✏ under the unique subgame perfect Nash equilibrium (SPE) of any finitely-repeated continuous209

pricing game induced by platform rule ⇡.210

This proposition follows from a platform rule with a limiting threshold that is arbitrarily close to the211

sellers’ cost c (see Appendix C for the proof). Under this rule, sellers are displayed only if their price212

is minimal. At the same time, this particular threshold rule is fragile, and would lead to market failure213

if seller costs vary in unexpected ways. By letting the threshold ⌧ also vary with the price profile pt,214

as is allowed by the family of threshold platform rules, we seek to learn milder interventions that still215

mitigate collusion but remain robust to variations in the costs faced by sellers in the marketplace.216

5 Experimental Results217

In this section, we evaluate our learning approach via three main experiments. We first consider218

performance in terms of consumer surplus, benchmarking our RL interventions against the ones219

introduced by Johnson et al. (2020). We demonstrate the ability to learn optimal leader strategies in220

the Stackelberg game with the followers across all the seeds we tested, significantly outperforming221

existing interventions. We then train platform rules without access to the sellers’ private information222

("in the wild,") and show that this is not crucial for our learning performances. We conclude by223

testing the robustness of our interventions, adding price perturbation during training and evaluating224

the effect on the robustness of our learned platform rules in environments where sellers have different225

costs from those assumed during training.226

Experimental set-up. As in Calvano et al. (2020a) and Johnson et al. (2020), we consider settings227

with two pricing agents with cost c = 1, quality indexes ↵1 = ↵2 = 2, and ↵0 = 0, and we set228

parameter µ = 0.25 to control horizontal differentiation. The seller Q-learning algorithms are also229

2We notice this is also in line with the recent findings in Fujimoto et al. (2022) highlighting how the Bellman
error minimization (for which we require environments to be Markovian) may not be a good proxy of the
accuracy of the value function.
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trained using discount factor � = 0.95, exploration rate "t = e��t with � = 1e � 5, and learning230

rate ↵ = 0.15. We also include results for variations of this default setting in the Appendix.231

We adopt five prices choices for the action of each seller, these prices ranging from just below the232

sellers’ cost to the monopoly price. Earlier work provided sellers with a choice of fifteen different233

prices (over a similar range). We need a smaller grid in order to satisfy our computational constraints;234

earlier work studied the effect of different, hand-designed platform rules, and did not also use RL for235

the automated design of suitable platform rules. We also follow the choices of earlier work, and study236

an economy with two sellers (again, for reasons of computational resources). This coarsened price237

grid allows us to train a platform policy through Stackelberg POMDP for 50 million steps in 18 hours238

using a single core on a Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz machine.239

Learning algorithm. To train the platform policy, we start from the A2C algorithm provided by240

Stable Baselines3 (Raffin et al., 2021, MIT License). Given that our policy is only rewarded at241

the end of a Stackelberg POMDP episode, we configure A2C so that neural network parameters242

are only updated after this reward phase. In this way, we guarantee that policies inducing desired243

followers’ equilibria are properly rewarded. Furthermore, to reduce variance in sellers’ responses244

due to non-deterministic policy behavior, we maintain an observation-action map throughout each245

episode. When a new observation is encountered during the episode, the policy chooses an action246

following the default training behavior and stores this new observation-action pair in the map. We247

will show the importance of this variation via an ablation study that is presented in the Appendix.248

Sellers restart the Q-learning process by re-initializing exploration rates every time the platform rules249

change (i.e., at the beginning of every Stackelberg POMDP episode). We also show how the training250

approach is robust to different sellers’ behavior models in the Appendix, where the sellers restart the251

learning rate asynchronously, and not necessarily at the beginning of episodes.252

5.1 Platform Learning Performance253

In this section, we evaluate the performance of our learned platform policies. For this, we train our254

policies for 50 million steps in total. We set up the Stackelberg POMDP environment using 50k255

equilibrium steps and 30 reward steps.3 In these initial experiments, we train our policies using the256

centralized training-decentralized execution paradigm as used for this Stackelberg learning problem257

by Brero et al. (2021a), giving the critic network access to the sellers’ learning information (i.e.,258

Q-tables and exploration rates). We relax this below in studying the robustness of the computational259

framework to online training (“in the wild.") We consider the following interventions on behalf of the260

platform designer:261

• No intervention: Sellers are always displayed, no matter the price they quote. To derive this baseline,262

we run our Q learning dynamics until convergence (as described in Johnson et al. (2020)) for each263

seed and then average the surplus at final strategies.264

• PDP: We test price-directed prominence, a platform intervention introduced by Johnson et al.265

(2020). Here, the platform only displays the seller who quotes the lower price (breaking ties at266

random), thus enhancing competition. As for no intervention, we compute the performance of PDP267

by averaging consumer surplus after Q-learning dynamics converge.268

• DPDP: Dynamic price-directed prominence is another intervention introduced by Johnson et al.269

(2020), which also conditions the choice of the (unique) displayed seller on past prices. Under this270

intervention, quoting prices equal to cost is a subgame perfect equilibrium of the induced game (under271

suitable discount factors). As for the previous baselines, we compute the performance of DPDP by272

averaging consumer surplus after Q-learning dynamics converge.273

• No State RL: Here we use the Stackelberg POMDP methodology to train a platform policy that274

does not use prices pt to determine the threshold at which to admit each seller to the buy box (thus,275

“no state").4 Here, Q-learning is restarted whenever a Stackelberg POMDP episode begins.276

•No Stackelberg No State RL: A variation on “No State RL" that does not use the Stackelberg MDP277

methodology. Rather, the platform and sellers each follow decentralized learning, and the platform278

3See the Appendix for a discussion around parameter selection.
4This class of policies already includes the optimal policy described in the proof of Proposition 2.
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Figure 1: Learning performance of No State RL and State-based RL compared with different
baselines. The results are averaged over 10 runs and shaded regions show 95% conf. intervals. The
No-Stackelberg interventions are displayed on the left, the Stackelberg ones are on the right.

receives a consumer surplus reward at every step. Q-learning is restarted after the same number of279

steps that are used in a Stackelberg MDP episode.280

• State-based RL: Here we use the Stackelberg POMDP methodology to train a platform policy that281

sets a threshold at which to admit each seller as a function of the price profile quoted by the sellers282

(thus, “state-based"). This is the full class of threshold platform rules. Here, Q-learning is restarted283

whenever a Stackelberg POMDP episodes begins.284

• No Stackelberg State-based RL: A variation on “State-based RL" that does not use the Stackelberg285

MDP methodology. Rather, the platform and sellers each follow decentralized learning, and the286

platform receives a consumer surplus reward at every step. Q-learning is restarted after the same287

number of steps that are used in a Stackelberg MDP episode.288

Figure 1 shows the consumer surplus that is realized under these different interventions. First, we289

confirm the results of Johnson et al. (2020), and see consumer surplus improvements from both290

PDP and DPDP compared to No intervention, with DPDP outperforming PDP. At the same time,291

the no Stackelberg baselines are not able to outperform DPDP, confirming the benefits of using292

learning methodologies that exploit the leader-follower structure of our game. Indeed, our RL293

interventions based on the Stackelberg framework dramatically improve consumer surplus, driving it294

to (approximately, in the state-based scenario) its maximal level. In our setting, this optimal level for295

surplus is approximately 0.94. This is confirmed by the fact that, for both No State and State-based296

RL, all sellers are displayed and they invariably quote minimum prices at the end of training. This is297

the optimal (i.e., surplus maximizing) seller behavior, confirming the effectiveness of the Stackelberg-298

based learning methodology in finding an optimal leader strategy given the Q-learning behavior of299

sellers. It is easier for No State RL to reach the optimal performance since its class of policies is300

much smaller than the class considered by State-based RL. However, as we will see in Section 5.3,301

the state-based policy is more flexible and is robust to the case that the cost basis changes for sellers302

while No State RL is not.303

5.2 Learning in the Wild304

We now test the performance of the Stackelberg POMDP learning methodology when it has no access305

to sellers’ private information during training. This can potentially create learning instabilities given306

that actor-critic training such as A2C generally require that the environment accessed by their critic307

networks is Markovian (Grondman et al., 2012). Despite this, we find success in this test of “in308

the wild" learning. The results are displayed in Figure 5.2 and show, despite relaxing this Markov309

assumption, that the A2C algorithm is able to learn optimal policies for both policy classes (No310

State and State-based). For No State RL this comes along with lower variance. For State-based311

RL, the empirical performance is roughly unaffected. We conjecture that the reason behind this312
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Figure 2: Offline learning (left) vs. online, “learning in the wild" (right) performance. The results are
averaged over 10 runs, and the shaded regions show 95% conf. intervals.

good performance is related to the class of threshold platform policies. Given a threshold policy, it313

is possible to predict the overall episode reward based only on the action taken by the policy (the314

threshold) and ignoring the part of the state that is internal to the sellers (i.e., the Q-matrix and315

exploration rate). Thus, we see empirically that the additional information that relates to sellers’316

learning can actually make the platform’s learning problem harder.317

In the Appendix, we also demonstrate successful experimental results when we replace the use of318

consumer surplus (1) for reward with a reward that corresponds to the number of agents displayed319

and the sum of the negated prices offered by sellers. This shows robustness to a possible knowledge320

gap in knowing the specific functional form of consumer surplus.321

5.3 Robustness of Learned Platform Rules322

As observed in our previous experiments, the Stackelberg-based RL algorithm is effective in learning323

interventions that maximize consumer surplus for a given economic setting. However, as they are324

tailored to the economic setting at hand, these interventions can perform poorly when facing settings325

that are different from those during training. To learn more robust platform rules, we also train326

with a modified version of the Stackelberg POMDP: at each reward step, with some random-price327

probability, sellers quote prices sampled uniformly at random from the price grid. In this way,328

the platform is rewarded during training for performance that remains robust to prices that are not329

produced by the Q-learning equilibrium dynamics (given seller costs at training).330

We evaluate the effect of adding this perturbation-based robustness to the training procedure in331

settings with different seller costs: in addition to the default c = 1.0, we also test with cost c = 1.38332

(between the second and the third price in the grid of prices between 0.95 and 2.1) and cost c = 1.67333

(between the third and the fourth price in the price grid). Here, and for additional realism, we334

also continue to train the platform rule according to the “in the wild” approach described above, in335

Section 5.2.336

As we see in Figure 5.3 (right), this training approach (and in particular with probability 0.4 of337

random-price perturbation) succeeds in making the state-based policy much more robust in the338

face of sellers who experience a different cost environment at test time. The robust, state-based339

policy displays sellers with higher prices (due to their higher costs), while continuing to significantly340

mitigate collusion when seller costs are as they were during training. This is also confirmed by the341

policy visualizations in Figure 5.3 (left), which show how the buy box learned for State-based RL342

tends to be much more open under this modified training regime. In contrast, the policy learned by343

No State RL performs very poorly (zero consumer surplus) when tested at costs that differ from those344

assumed during training, and even under this modified training regime. There is no single threshold345

that provides a good compromise between performance at cost 1 and handling price perturbations.346
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Figure 3: Left: Policy visualization, with number of displayed agents given price selection, averaged
over 10 seeds (white–avg. num. sellers displayed 2, black–avg. num. sellers displayed 0). A: No
State RL with no price perturbation during training. B: No State RL with 40% random price
perturbation(rpp) during training. C: State-based RL with no price perturbation during training. D:
State-based RL with 40% random price perturbation during training. Right: Robustness test, with
buy box policy trained without price perturbation and with price perturbation with prob. 0.4, averaged
over 10 runs.

6 Conclusion347

This work has demonstrated that rules that are effective in preventing collusion by sellers can be348

learned through a framework that correctly solves the two-level, Stackelberg problem (making use of349

the platform’s commitment power). Specifically, we have introduced the class of threshold policies350

that contain policies that optimize consumer surplus and a learning methodology that is effective in351

learning optimal leader policies in this class. The interventions we learned are shown to substantially352

outperform the hand-designed interventions introduced in prior work when the cost environment at353

test time is as anticipated during training. We also showed how our learned platform interventions354

can be made more robust when settings are dynamic, with varying seller cost structures, by adopting355

a suitably-modified training methodology. This also highlights the importance of the state-based356

platform rule relative to a no-state rule.357

Interesting future directions include testing our approach in more complex settings, e.g., when sellers’358

costs vary between training episodes. In this case, optimal policy actions are based on the prices359

quoted during the sellers’ equilibration phase, as these prices may provide useful information about360

the current underlying costs (intuitively, the quoted prices will be higher under higher costs). In361

this scenario, it may be necessary to represent our platform policies via recurrent neural network,362

keeping a memory of past prices. Finally, we believe that this approach can also be effective in other363

applications, e.g., to design and understand effective interventions for the electricity markets studied364

by Abada and Lambin (2020), a setting where the successful use of RL as a defensive response by a365

platform is not yet established.366
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