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Abstract

Although mainstream unsupervised anomaly detection (AD) algorithms perform
well in academic datasets, their performance is limited in practical application due
to the ideal experimental setting of clean training data. Training with noisy data
is an inevitable problem in real-world anomaly detection but is seldom discussed.
This paper considers label-level noise in image sensory anomaly detection for
the first time. To solve this problem, we proposed a memory-based unsupervised
AD method, SoftPatch, which efficiently denoises the data at the patch level.
Noise discriminators are utilized to generate outlier scores for patch-level noise
elimination before coreset construction. The scores are then stored in the memory
bank to soften the anomaly detection boundary. Compared with existing methods,
SoftPatch maintains a strong modeling ability of normal data and alleviates the
overconfidence problem in coreset. Comprehensive experiments in various noise
scenes demonstrate that SoftPatch outperforms the state-of-the-art AD methods on
the MVTecAD and BTAD benchmarks, and is comparable to those methods under
the setting without noise.

1 Introduction

Detecting anomalies by only nominal images without annotation is an appealing topic, especially in
industrial applications where defects can be extremely tiny and hard to collect. Unsupervised sensory
anomaly detection, also called covariate shift detection [1; 2], is proposed to solve this problem
and has been largely explored. Recent deep learning methods [3; 4; 5; 6; 7] usually model the AD
problem as a one-class learning problem and employ computer visual tricks to improve the perception
where a clean nominal training set is provided to extract representative features. To determine
whether a sample differs from the standard dataset, most previous unsupervised AD methods have
to measure the distance between the test sample and the standard dataset distribution. Even though
recent methods have achieved excellent performance, they all rely on the clean training set to extract
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nominal features for later comparison with anomalous features. Putting too much faith in training
data can lead to pitfalls. If the standard normal dataset is polluted with noisy data, i.e., the defective
samples, the estimated boundary will be unreliable, and the classification for abnormal data will have
low accuracy. In general, current unsupervised AD methods are not designed for and are not robust
to noisy data.

However, in real-world practice, it is inevitable that there are noises that sneak into the standard normal
dataset, especially for industrial manufacturing, where a large number of products are produced daily.
This noise usually comes from the inherent data shift or human misjudgment. Meanwhile, existing
unsupervised AD methods [8; 9; 10] are susceptible to noisy data due to their exhaustive strategy
to model the training set. As in Fig. 1, noisy samples easily misinform those overconfident AD
algorithms, so algorithms misclassify similar anomaly samples in the test set and generate wrong
locations. Additionally, AD with noisy data can be developed to a fully unsupervised setting, which
discards the implicit supervised signal that the training set is all defect-free, compared with the
previous unsupervised setting in AD. This setting helps to expand more industrial quality inspection
scenarios, i.e., rapid deployment to new production lines without data filtration.

In this paper, we first point out the significant of studying noisy data problem in AD and especially
in unsupervised sensory AD. Our solution is inspired by one of the recent state-of-the-art methods,
PatchCore [8]. PatchCore proposed a method to subsample the original CNN features of the standard
normal dataset with the nearest searching and establish a smaller coreset as a memory bank. However,
the coreset selection and classification process are vulnerable to polluted data. In this regard, we
propose a patch-level selection strategy to wipe off the noisy image patch of noisy samples. Compared
to conventional sample-level denoising, the abnormal patches are separated, and the normal patches
of a noise sample are exploited in coreset. Specifically, the denoising algorithm assigns an outlier
factor to each patch to be selected into coreset. Based on the patch-level denoising, we propose a
novel AD algorithm with better noise robustness named SoftPatch. Considering noisy samples are
hard to be removed completely, SoftPatch utilizes the outlier factor to re-weight the coreset examples.
Patch-level denoising and re-weighting the coreset samples are proved effective in revising misaligned
knowledge and alleviating the overconfidence of coreset in inference. Extensive experiments in
various noise scenes demonstrate that SoftPatch outperforms the state-of-the-art (SOTA) AD methods
on MVTec Anomaly Detection (MVTecAD) [11] benchmark. Meanwhile, due to the noise in existing
datasets, SoftPatch achieves optimal results on the original BTAD [12] dataset. The code can be
found in https://github.com/TencentYoutuResearch/AnomalyDetection-SoftPatch.

Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to focus on the image sensory anomaly detection
with noisy data, which is a more practical setting but seldom investigated. Existing image
sensory AD methods fully trust the training set’s cleanliness, leading to their performance
degradation in noise interference.

• We propose a patch-level denoising strategy for coreset memory bank, which essentially
improves the data usage rate compared to conventional sample-level denoising. Based on
this strategy, we apply three noise discriminators which strengthen model robustness by
combining the re-weighting of coreset.

• We set a baseline for unsupervised AD with noisy data, which performs well in the settings
with additional noisy data and the general settings without noise, providing a new view for
further research.

2 Related Work

2.1 Unsupervised Anomaly Detection

Training with agent tasks. Also known as self-supervised learning, agent tasks is a viable solution
when there is no category and shape information of anomalies. Sheynin et al. [13] employ transfor-
mations such as horizontal flip, shift, rotation, and gray-scale change after a multi-scale generative
model to enhance the representation learning. Li et al. [14] mention that naively applying existing
self-supervised tasks is sub-optimal for detecting local defects and propose a novelty agent task named
CutPaste, which simulates an abnormal sample by clipping a patch of a standard image and pasting
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Figure 1: Illustration of SoftPatch. Unlike previous methods that construct coreset without considering
the negative effect of noisy data, SoftPatch wipes off easy noisy data to formulate a clean training set
and alleviates hard noisy data’s impact by soft-reweighting.

it back at a random location. Similarity, DRAEM [15] synthesizes anomalies through Perlin Noise.
Nevertheless, the inevitable discrepancy between the synthetic anomaly and the real anomaly disturbs
the criteria of the model and limits the generalization performance. The gap between anomalies is
usually larger than that between anomaly and normal. This is why AD methods deceived by some
noisy samples can still work well when handling other kinds of anomalies.

Agnostic methods. Including knowledge distillation and image reconstruction, agnostic methods
based on a theory that models that have never seen anomalies will behave differently in inference
when inputting both normal and anomaly samples. Knowledge distillation is ingeniously used in
anomaly detection. Bergmann et al. [16] propose that the representations of unusual patches are
different between a pretrained teacher model and a student model, which tried its best to simulate
teacher output with an anomaly-free training set. Based on this theory, Salehi et al. [17] propose that
considering multiple intermediate outputs in distillation and using a smaller student network lead
to a better result. Reverse distillation [18] uses a reverse flow that avoids the confusion caused by
the same filters and prevents the propagation of anomaly perturbation to the student model, whose
structure is similar to reconstruction networks. Image Reconstruction methods [7; 19; 20] utilize the
assumption that the reconstruction network trained in the normal set can not reconstruct the anomaly
part. A high resolution result can be obtained by comparing the differences between the reconstructed
and original images. However, all agnostic methods need long training stages, which limit their usage,
i.e., the rapid deployment assumption in fully unsupervised learning.

Feature modeling. We specifically refers to the direct modeling of the output features of the
extractor, including distribution estimation [21; 22], distribution transformation [23; 9], pre-trained
model adaption [24; 25] and memory storage [26; 8]. PaDiM [21] utilize multivariate Gaussian
distributions to estimate the patch embedding of nominal data. In the inference stage, the embedding
of irregular patches will be out of distribution. It is a simple but efficient method, but Gaussian
distribution is inadequate for more complex data cases. So to enhance the estimation of density,
DifferNet [23] and CFLOW [9] leverage the reversible normalizing flows based on multi-scale
representation. Hou et al. [26] proposed that the granularity of division on feature maps is closely
related to the reconstruction capability of the model for both normal and abnormal samples. So
a multi-scale block-wise memory bank is embedded into an autoencoder network as a model of
past data. PatchCore [8] is a more explicit but valuable memory-based method, which stores the
sub-sampled patch features in the memory bank and calculates the nearest neighbor distance between
the test feature and the coreset as an anomaly score. Although PatchCore is outperformance in the
typical setting, it is overconfident in the training set, which leads to poor noise robustness.

2.2 Learning with Noisy Data

Noisy label recognition is becoming an emerging topic for supervised learning but has rarely been
explored in unsupervised anomaly detection because there is no apparent label. For classification,
some research [27; 28] propose to filter noisy pseudo-labeled data with a high confidence threshold.
Li et al. [29] selects noisy-labeled data with a mixture model and trains in a semi-supervised manner.
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Figure 2: Overview of the proposed method. In the training phase, the noises are distinguished at
patch level at each position of the feature map by a noise discriminator. The deeper color a patch
node has, the higher probability that it is a noise patch. After achieving outlier scores for all patches,
the top τ% patches with the highest outlier score are removed. The coreset is a subset of remaining
patches after denoising. Different from other methods, our memory bank consists of the samples in
coreset and their outlier scores which are stored as soft weights. Soft weights will be further utilized
to re-weight the anomaly score in inference.

Kong et al. [30] relabel harmful training samples. For object detection, multi-augmentation [31],
teacher-student [32], or contrastive learning [33] are adopted to alleviate noise with the help of the
expert model’s knowledge. However, current noisy label recognition methods all rely on labeled
data to co-rectify noisy data. In comparison, we target to improve the model’s noise robustness in an
unsupervised manner without introducing labor annotations.

While there are some model robustness researches on unsupervised AD, their objects and tasks are
distinguished from our work since “anomaly detection” is an overloaded term. A recent survey [34]
explores the model robustness of 30 AD algorithms. Nevertheless, unsupervised methods are excluded
from the annotation errors setting. Pang et al. [35] deals with video anomaly without manually
labeled data where information in consecutive frames can be exploited. While our work tackle
anomaly detection from a single image. Other related papers [36; 37; 38] eliminate noisy and
corrupted data in semantic anomaly detection. Unlike semantic anomaly detection, we focus on
image sensory anomaly detection [1], which has recently raised much concern and contains a new
task, anomaly localization. Although some existing methods [39; 40; 41; 42] treat covariate shift
the same way they treat semantic shift and enhance model robustness with universal processes, their
basic structures are poor compared with rapid-developed sensory AD methods, which leads to the
robustness improvement insignificant. Noise in image sensory anomaly detection is more similar to
the normal data and brings more challenges.

3 The Proposed Method

3.1 Overview

Patch-based unsupervised anomaly methods, such as PatchCore [8] and CFA [25], have three
main processes: feature extraction, coreset selection with memory bank construction, and anomaly
detection. One of the important assumptions is that the training set only contains nominal images,
and the coreset should have full coverage of the entire training data distribution. During the test,
an incoming image will directly search in the memory bank for similar features, and the anomaly
score is the dissimilarity with the nearest patches. The searching process may collapse if the assumed
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clean full coverage memory bank contains noise. Therefore, we propose SoftPatch, which filters
noisy data by a noise discriminator before coreset construction and softens the searching process for
down-weighting the hard unfiltered noisy samples.

The general denoising methods against the label contamination at the sample level are sub-optimal in
image sensory anomaly detection. The abnormalities in image sensory AD, represented by industrial
defect detection and medical image analysis, usually occupy only a tiny area of the image. At the
sample level, noisy data is hard to distinguish, but the sample’s inherent deviation may be more
remarkable. So we propose a patch-level denoising strategy that works on the feature space to
judge the noisy patch better. Specially, we insert the patch-level noise discrimination process before
the coreset sampling, which generates the noise score according to the feature distribution of each
position. Since most areas of the noisy image are usually anomaly-free, we remove those noisy
patches and retain the rest to maximize the use of data. At the same time, the rest denoising scores
reflecting the behavior of clustering are used to scale the anomaly score in inference. The other
parts of the algorithm, such as feature extraction, dimension reduction, coreset sampling, and nearest
neighbor search, follow the baseline PatchCore[8]. Figure 2 shows the framework of SoftPatch.

The target of image-level denoising is to find Xnoise from X , where X = {xi : i ∈ (1, ..., N), xi ∈
RC×H×W } denotes training images (channels C, height H , width W ). Following convention in
existing work[8], we use ϕi ∈ Rc∗×h∗×w∗

as the feature map (channels c∗, height h∗, width w∗) of
image xi ∈ X , ϕi(h,w) ∈ Rc∗ as the patch at (h,w) on the aggregated feature map with dimension
c.

3.2 Noise Discriminative Coreset Selection

With increasing training images, the features memory can become exceedingly large and infeasible to
discriminate noise by overall statistics. Therefore, we group all features by position and count their
outlier scores. Then all the scores are aggregated to determine noise patches, after which we just
remove the features with top τ percent scores. We apply three noise reduction methods in total.

3.2.1 Nearest Neighbor

With the assumption that the amount of noisy samples Xnoise is much less than clean samples
Xnominal, we set Nearest neighbor distance as our baseline [43] where a large distance means an
outlier. Given a set of images, ϕ ∈ RN×c∗×h∗×w∗

represents all features. Each patch’s nearest
neighbor distance Wnn

i is defined as:

Wnn
i (h,w) = min

n∈N
∥ϕi(h,w)− ϕn(h,w)∥2, (1)

We first calculate the distances, then take the minimum among batch dimensions (neighbor) as Wnn.
Previous methods [8; 25] have proved that the minimum feature distance from a pretrained network
can be an indicator to discriminate anomaly. This method can discriminate apparent outliers but
suffer from uneven distribution of different clusters, where some clusters can have large inter-distance
and lead to being mistakenly threshed as noisy data. To treat all clusters equally, we propose another
multi-variate Gaussian method to calculate the outlier score without the interference of different
clusters’ densities.

3.2.2 Multi-Variate Gaussian

With Gaussian’s normalizing effect, all clean images’ features can be treated equally. To apply
Gaussian distribution on image characteristics dynamically, we calculate the inlier probabilities on
the batch dimension for each patch ϕi(h,w), similar to 3.2.1. The multi-variate Gaussian distribution
N(µh,w,Σh,w) can be formulated that µh,w is the batch mean of ϕi(h,w) and sample covariance
Σh,w is:

Σh,w =
1

N − 1

∑
n∈N

(ϕn(h,w)− µh,w)(ϕn(h,w)− µh,w)
T ) + ϵI, (2)

where the regularization term ϵI makes
∑

h,w full rank and invertible [21]. Finally, with the estimated
multi-variate Gaussian distribution N (µh,w,

∑
h,w), Mahalanobis distance is calculated as the noisy
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magnitude Wmvg
i (h,w) of each patch:

Wmvg
i (h,w) =

√
(ϕi(h,w)− µ(h,w))TΣ

−1
h,w(ϕi(h,w)− µ(h,w)), (3)

High Mahalanobis distance means high outlier score. Even though Gaussian distribution normalizes
and captures the essence of image characteristics, small feature clusters may be overwhelmed by large
feature clusters. In the scenario of a prominent feature cluster and a small cluster in a batch, the small
cluster may be out of 1-, 2- or 3-Σ of calculated N(µh,w,Σh,w) and erroneously classified as outliers.
After analyzing the above two methods, we need a method that can: 1. treat all image characteristics
equally; 2. treat large and small clusters equally; 3. high dimension calculation applicable.

3.2.3 Local Outlier Factor (LOF)

LOF[44] is a local-density-based outlier detector used mainly on E-commerce for criminal activity
detection. Inspired by LOF, we can solve above mentioned three questions in 3.2.2: 1. Calculating
the relative density of each cluster can normalize different density clusters; 2. Using local k-distance
as a metric to alleviate the overwhelming effect of large clusters; 3. Modeling distance as normalized
feature distance can be used on high dimensional patch features. Therefore, the k-distance-based
absolute local reachability density lrdi(h,w) is first calculated as:

lrdi(h,w) = 1/(

∑
b∈Nk(ϕi(h,w)) dist

reach
k (ϕi(h,w), ϕb(h,w))

|Nk(ϕi(h,w))|
), (4)

distreachk (ϕi(h,w), ϕb(h,w)) = max(distk(ϕi(h,w)), d(ϕi(h,w), ϕb(h,w))), (5)
where d(ϕi(h,w), ϕb(h,w)) is L2-norm, distk(ϕi(h,w)) is the distance of kth-neighbor and
Nk(ϕi(h,w)) is the k-nearest neighbors set of ϕi(h,w). With local rechability density of each
patch, the overwhelming effect of large clusters is largely reduced. To normalize local density to
relative density for treating all clusters equally, the relative density WLOF

i of image i is defined
below:

WLOF
i (h,w) =

∑
b∈Nk(ϕi(h,w)) Irdb((h,w))

|Nk(ϕi(h,w))| · Irdi(h,w)
, (6)

WLOF
i (h,w) is the relative density of the neighbors over patch’s own, and represents as a patch’s

the confidence of inlier. Our experiments found that all three noise reduction methods above are
helpful in data pre-selection before coreset construction, while LOF provides the best performance.
However, after visualization of our cleaned training set, we found that hard noisy samples, which are
similar to nominal samples, are still hidden in the dataset. To further alleviate the effect of noisy data,
we propose a soft re-weighting method that can down-weight noisy samples by anomalous level.

3.3 Anomaly Detection based on SoftPatch

Besides the construction of the Coreset, outlier factors of all the selected patches are stored as soft
weights in the memory bank. With the denoised patch-level memory bank M as shown in figure 2, the
image-level anomaly score s ∈ R can be calculated for a test sample xi ∈ X test by nearest neighbor
searching at patch level. Denoting the collection of patch features of a test sample as P(xi), for each
patch pi,j ∈ Pxi the nearest neighbour searching can be formulated as the following equation:

m∗ = argmin
m∈M

∥p−m∥2 (7)

After nearest searching, pairs of test patch and its corresponding nearest neighbor in M can be
achieved as (p,m∗). For each patch pi,j ∈ Pxi

, the patch-level anomaly score is calculated by
sij = Wm∗

i,j
∥pi,j −m∗

i,j∥2. The image-level anomaly score is attained by finding the largest soft
weights re-weighted patch-level anomaly score:

s∗ = argmax
(p,m∗)

si,j (8)

Different from PatchCore which directly considers patches equally, SoftPatch softens anomaly scores
by noisy level from noise discriminater. The soft weights, i.e., local outlier factors, have considered
the local relationship around the nearest node. Thus, a similar effect can be achieved as PatchCore
but with more noise robustness and fewer searches. According to the image-level anomaly score, a
sample is classified into a normal sample or abnormal sample.
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Table 1: Anomaly detection performance on MVTecAD with noise. The results are evaluated on
MVTecAD-noise-0.1. Overlap means the injected anomalous images are included in the test set.
PaDiM* uses ResNet18 as the backbone. PatchCore-random uses 1% random subsampler instead of
the default greedy subsampler. Gap row shows the performance gap between a noisy scene and a
normal scene.

Noise=0.1 No overlap | Overlap

Category PaDiM CFLOW PatchCore SoftPatch-
nearest

SoftPatch-
gaussian

SoftPatch-
lof PaDiM* PatchCore PatchCore-

random
SoftPatch-

lof

bottle 0.994 0.998 1.000 1.000 0.997 0.937 1.000 0.692 0.998 1.000
cable 0.873 0.925 0.982 0.935 0.952 0.995 0.680 0.756 0.920 0.994
capsule 0.920 0.947 0.976 0.916 0.662 0.963 0.796 0.783 0.779 0.955
carpet 0.999 0.961 0.996 0.995 0.999 0.991 0.890 0.681 0.973 0.993
grid 0.966 0.891 0.971 0.972 0.997 0.968 0.674 0.526 0.793 0.969
hazelnut 0.956 1.000 0.998 1.000 1.000 1.000 0.543 0.441 0.998 1.000
leather 1.000 1.000 1.000 1.000 1.000 1.000 0.964 0.739 1.000 1.000
metal_nut 0.987 0.959 0.999 0.994 0.997 0.999 0.820 0.765 0.969 1.000
pill 0.918 0.929 0.975 0.921 0.873 0.963 0.722 0.770 0.874 0.955
screw 0.838 0.784 0.966 0.862 0.475 0.960 0.567 0.710 0.462 0.923
tile 0.977 0.991 0.985 0.996 0.997 0.993 0.830 0.716 1.000 0.981
toothbrush 0.927 0.906 0.997 1.000 0.997 0.997 0.700 0.800 0.797 0.994
transistor 0.953 0.896 0.953 1.000 0.992 0.990 0.471 0.491 0.943 0.999
wood 0.991 0.972 0.984 0.984 0.997 0.987 0.831 0.579 0.980 0.986
zipper 0.852 0.928 0.981 0.976 0.979 0.978 0.679 0.792 0.950 0.974

Average 0.943 0.939 0.984 0.970 0.927 0.986 0.740 0.683 0.896 0.982
Gap -0.007 -0.03 -0.008 +0.002 -0.001 0.0 -0.151 -0.309 -0.015 -0.004

4 Experiments

4.1 Experimental Details

Datasets. Our experiments are mainly conducted on the MVTecAD and BTAD benchmarks[11; 12].
MVTecAD contains 15 categories with 3629 training images and 1725 test images in total, and
BTAD has three categories with 1799 images, where different classes of industry production mean
a comprehensive challenge, such as object or texture and whether rotation. Since each category of
MVTecAD is divided into nominal-only images and a test set with both nominal and anomalous
samples, to create a noisy training set, we sample anomalous images randomly from the test set and
mix them with the existing training images. Notice that the original normal number of samples in the
training set remains unchanged compared with the noiseless case. In this setting(No overlap), the
injected anomalous samples will not be evaluated, which is more likely the case in the real application.
We also construct a different setting(Overlap) where the injected anomalous samples are also in
the test set to demonstrate the risk that defects with similar appearance will severely exacerbate the
performance of an anomaly detector trained with noisy data. Meanwhile, the overlap samples test the
outlier detection performance of our algorithm. By controlling the proportion of negative samples
being injected into the train set, we obtain several new datasets with different noise ratios dubbed
MVTecAD-noise-n, where n refers to the ratio of noise. For BTAD, we just use the original fold.

Evaluation Metrics. We report both image-level and pixel-level AUROC for each category in
MVTecAD and average them to get the average image/pixel level AUROC. In order to represent noise
robustness, the performance gaps between noise-free data and noisy data are also displayed. When
not otherwise stated, our method SoftPatch refers to SoftPatch-LOF that uses LOF in Section 3.2.3.

Implementation Details. We test three SOTA AD algorithms, PatchCore [8], PaDim [21] and
CFLOW [9] in noise scene and follow their main settings. In the absence of specific instructions,
the backbone of feature extractor is Wide-ResNet50 and the coreset sampling ratio of PatchCore
and SoftPatch is 10%. For MVTecAD images, we only use 256× 256 resolution and center crops
them into 224 × 224 along with a normalization. For BTAD, we use 512 × 512 resolution. We
train a separate model for each class. Notice that unlike many methods setting the hyperparameters
according to the noise ratio, which is unknowable in reality, we set the threshold τ in SoftPatch and
the LOF-K to constant 0.15 and 6 for all noisy scenarios and classes. The effects of hyperparameters
are studied in the ablation study. All our experiments are run on Nvidia V100 GPU and repeated
three times to report the average results.
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Table 2: Anomaly localization performance on MVTecAD with noise. The results are evaluated on
MVTecAD-noise-0.1.

Noise=0.1 No overlap | Overlap

Category PaDiM CFLOW PatchCore SoftPatch-
nearest

SoftPatch-
gaussian

SoftPatch-
lof PaDiM* PatchCore PatchCore-

random
SoftPatch-

lof

Average 0.972 0.969 0.956 0.971 0.977 0.979 0.955 0.654 0.951 0.969
Gap -0.007 -0.006 -0.025 -0.008 -0.001 -0.002 -0.013 -0.327 -0.021 -0.012

Table 3: Anomaly detection performance on BTAD without additional noise. The best results are in
bold, and the second-best results are underlined. The last column lists the count of anomaly samples
in the test set.

Category SPADE P-SVDD PatchCore PaDiM SoftPatch(ours) Anomaly samples

01 0.914 0.957 1.000 1.000 0.999 50
02 0.714 0.721 0.871 0.871 0.934 200
03 0.999 0.821 0.999 0.971 0.997 41

Mean 0.876 0.833 0.957 0.947 0.977 -

4.2 Anomaly Detection Performance with Noise

Experiments on MVTecAD. As indicated in Table 1 and Table 2, when 10% of anomalous samples
are added to corrupt the train set, all existing methods have different extend of performance decrease,
although not disastrously in No overlap setting. Compared to other methods, the proposed SoftPatch
exhibits much stronger robustness against noisy data both in terms of anomaly detection and localiza-
tion, no matter which noise discriminator is used. Among three variants of SoftPatch, SoftPatch-lof
achieves the best overall performance with the highest accuracy and strongest robustness. Interest-
ingly, PaDiM[21], CFLOW[9] and SoftPatch-gaussian show significantly less performance drop
than PatchCore, which indicates that modeling feature as Gaussian distribution does help denoising .
While modeling feature distribution at each spatial location as a single Gaussian distribution can’t
handle misaligned images, such as screw class in MVTecAD, which explains the poor performance
on these classes(see screw row). On the other hand, PatchCore’s greedy-sampling strategy is a
double-edged sword with higher feature space coverage and higher sensitivity to noise. That’s why
using random sampling in PatchCore is more robust with compromised performance(see PatchCore
1%-Random column). SoftPatch-nearest does a slightly better job in the misaligned cases. However,
it doesn’t take feature distribution into account, which leads to inferior performance.

Experiments on BTAD. We also compare SoftPatch with other SOTA methods on another dataset,
BTAD. Surprisingly, SoftPatch gives out a new SOTA result, even in the original setting that contains
no additional noise (Table 3). By reviewing all the training samples, we find that there are already
many noisy samples (usually small scratches) in the training set of category BTAD-02, which is more
consistent with our setting and further demonstrates the necessity of our approach. The noisy images
are provided in Appendix A.6 (Table 8). Moreover, the BTAD-02 contains more anomaly samples
with similar appearance anomalies. In the category of BTAD-02, our method attains significant
improvement compared to others. SoftPatch can also maintain the leading performance if the noise is
added artificially(Appendix A.8).
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Figure 3: The comparison of anomaly detection performance under noisy training. no overlap means
the injected anomalous images are removed from test set while overlap are not.
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Performance trends. In order to explore how different methods behave with the increasing noise
level, experiments are further performed on MVTecAD-noise-{0 ∼ 0.15} . The results of the
proposed methods are provided in Figure 3. Under the No overlap setting, as the noise ratio increases,
PatchCore shows a pixel-level AUROC drop up to 3.7%. The performance decreases as the noise ratio
rises. On the contrary, although the default performance is slightly poorer than PatchCore(about 0.006
and 0 decrease in image-level and pixel-level AUROC), the proposed SoftPatch-lof deteriorates much
slower, which demonstrates better denoising ability. As for SoftPatch-nearest and SoftPatch-gaussian,
they are also more robust, however, with worse base performance(see Figure 3 at noise ratio=0). The
visualization of the coreset in Figure 5 also shows that random sampling avoids sampling the outlier
but can not model normal adequately. Being consistent with the discussion above, under the Overlap
setting, PatchCore’s performance is getting worse and worse catastrophically(up to 40% AUROC
drop in both image and pixel level) as more noises are added. This is expectable since PatchCore
uses a greedy strategy for coreset sampling, which favors outliers in feature space. SoftPatch-lof
consistently outperforms other methods with no significant performance drop as the noise level goes
up. Appendix A.3 (Figure 6 and 7) shows more comparison with others. The experimental results
indicate that the risk is hidden by the fact that defects in MVTecAD have very different appearances.
In this case, even if some anomalous features are added mistakenly to the coreset, they are unlikely to
be retrieved during test time. However, the risk still exists and will be triggered when similar defects
show up at test time.

More experiments can be found in appendix, such as the comparison of image-level and patch-
level denoising(Appendix A.4), computational analysis(Appendix A.5) and an augmented overlap
setting(Appendix A.7).

Table 4: The ablation study of soft weight. The performance scores are Image/pixel-level AUROC on
MVTecAD.

No overlap | Overlap

Noise discriminator Soft weight Image level Pixel level Image level Pixel level

None 0.985 0.946 0.685 0.693
Gaussian 0.927 0.977 0.925 0.961
Gaussian ✓ 0.922 0.974 0.924 0.965
Nearest 0.970 0.971 0.966 0.944
Nearest ✓ 0.972 0.978 0.968 0.958
LOF 0.985 0.984 0.984 0.963
LOF ✓ 0.986 0.979 0.982 0.969

4.3 Ablation Study

4.3.1 Effectiveness of the Proposed Modules

We validated the effectiveness of two proposed modules noise discriminator and soft weight
by removing them from the pipeline. As shown in Table 4, the noise discriminator significantly
improves the noise robustness in terms of pixel-level AUROC. Among three decision choices of noise
discriminator, LOF achieved the best balance between robustness and capacity, resulting in the most
performance boost under all settings. We further analyzed the intermediate results by visualizing
the sampled coreset of different methods, which shows that SoftPatch-LOF sampled much fewer
anomalous features than the baseline(see Figure 5). Soft weight is used alongside noise discriminator
to further improve the final results. We only observed minor improvement for using Soft weight in
SoftPatch-Nearest. We suspect that the other two kinds of noise discriminators are already robust
against noise data.

Table 5: Image/pixel-level AUROC result for different LOF-K on two settings.

K 3 4 5 6 7 8 9

Overlap 0.983/0.955 0.982/0.951 0.983/0.959 0.982/0.975 0.981/0.973 0.982/0.968 0.980/0.968
No overlap 0.985/0.972 0.985/0.975 0.984/0.977 0.984/0.982 0.985/0.980 0.984/0.983 0.981/0.982
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Figure 4: Performance trend with the threshold τ in SoftPatch-LOF. The results are evaluated on
MVTecAD-noise-0.1.

4.3.2 Parameter Selection

To explore the impact of two parameters (LOF-k and threshold τ ) on the final performance, we
perform parameters searching on our method. As in Table 5, our method achieves better performance
when LOF-k is greater than 5, which suggests that our method is not sensitive to LOF-k, as long as it
is not too small or too large. If LOF-k is too small, it fails to estimate the local density accurately
because too few neighbors are considered. On the contrary, a large LOF-k may lead to undesirable
cross-clusters connection that can not capture real data distribution.

Threshold τ refers to the ratio of eliminated patch features when building coreset. Figure 4 indicates
an increasing trend of AUROC as threshold τ increases under Overlap setting, which is expected since
a higher threshold means a more aggressive denoising strategy. In Overlap setting, the mistakenly
sampled features are the direct reason for the drastic performance drop. Therefore more aggressive
denoising improves the result significantly. However, In No Overlap setting, the effect of the noisy
feature is less prominent. Although the best LOF-k and threshold τ are changed according to the
class and noise level, we simply use fixed values, 6 and 0.15, in all situations.

5 Conclusions

This paper emphasizes the practical value of investigating noisy data problems in unsupervised
AD. Introducing a novel noisy setting on the previous task, we test the performance of existing
methods and SoftPatch. For existing methods, despite no adaptation to noisy settings, some of them
have a slight performance decrease in some scenes. However, the performance decrease could be
more significant and catastrophic for other methods or in other scenes. For the proposed SoftPatch,
although performance degrades slightly compared with the SOTA result in the no-noise situation. It
shows consistent performance in all noise settings, which outperforms other methods.

Industrial inspection systems are an important computer vision application that requires good ro-
bustness. The noise injected into the training set break with the naive assumption that the training
samples were normal. Noise also gives the model an early exposure to the distribution of anomalies.
The unsupervised AD with noisy data needs more research in the future.
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A Appendix

A.1 Visualization of Coreset

Figure 5 shows the visualization of coreset in the memory bank. PatchCore reserve too many noisy
features, which are obviously outliers. Though replacing the greedy sampling with random sampling,
PatchCore avoids most noisy features but is poor at model training set and still misled by some noise.
The coreset of SoftPatch is clean and decentralized. Our coreset saves some features from noisy
samples because we believe that abnormal images also contain a large number of normal patches. So
the features conforming to the normal distribution are reserved to enhance the model perception.

(c) Ours(b) PatchCore-Random(a) PatchCore

Figure 5: Comparison between corsets of AD methods with same noisy train set, MVTecAD-Pill
with noise-0.1. We use t-SNE for dimension reduction for visualization. The yellow dots represent
patch features from noisy sample, while the purple dots are nominal. Compared with the other two,
SoftPatch wipe off the noisy patch and model the nominal data properly.

A.2 Details of Experimental Results

Table 6: Anomaly localization performance details of all classes. The results are evaluated on
MVTecAD-noise-0.1.

Noise=0.1 No overlap | Overlap

Category PaDiM CFLOW PatchCore SoftPatch-
nearest

SoftPatch-
gaussian

SoftPatch-
lof PaDiM* PatchCore PatchCore-

random
SoftPatch-

lof

bottle 0.986 0.984 0.987 0.987 0.986 0.987 0.981 0.714 0.979 0.975
cable 0.916 0.958 0.843 0.915 0.981 0.983 0.946 0.670 0.969 0.971
capsule 0.986 0.985 0.986 0.988 0.977 0.990 0.984 0.883 0.984 0.989
carpet 0.992 0.989 0.992 0.992 0.993 0.992 0.980 0.765 0.951 0.989
grid 0.974 0.947 0.991 0.990 0.989 0.990 0.879 0.482 0.882 0.974
hazelnut 0.987 0.991 0.990 0.990 0.991 0.990 0.978 0.418 0.957 0.924
leather 0.994 0.994 0.991 0.994 0.994 0.993 0.992 0.683 0.987 0.993
metal_nut 0.933 0.956 0.842 0.894 0.964 0.984 0.911 0.779 0.938 0.983
pill 0.956 0.983 0.971 0.974 0.972 0.981 0.960 0.608 0.971 0.976
screw 0.989 0.977 0.995 0.991 0.969 0.994 0.974 0.745 0.953 0.969
tile 0.956 0.953 0.953 0.960 0.962 0.954 0.921 0.700 0.919 0.954
toothbrush 0.991 0.988 0.989 0.988 0.988 0.985 0.954 0.692 0.984 0.985
transistor 0.960 0.887 0.847 0.965 0.954 0.942 0.939 0.317 0.914 0.936
wood 0.973 0.964 0.969 0.947 0.946 0.939 0.946 0.522 0.896 0.929
zipper 0.986 0.978 0.986 0.989 0.988 0.988 0.978 0.823 0.975 0.986

Average 0.972 0.969 0.956 0.971 0.977 0.979 0.955 0.654 0.951 0.969
Gap -0.007 -0.006 -0.025 -0.008 -0.001 -0.002 -0.013 -0.327 -0.021 -0.012

A.3 Performance Trends in Noise

Figure 6 and 7 show the performance trends of SOTA AD methods and SoftPatch in different noisy
scenes. Since overconfident in the training data and the greedy subsampling algorithm, PatchCore
performance decreases most obviously with the noise increase. In contrast, CFLOW and PaDiM
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are also affected by noise, but the amplitudes are smaller. SoftPatch maintains a consistent level
of performance at all noise levels. Unfortunately, SoftPatch is slightly weaker than PatchCore in
noiseless scenes, which may be due to the excessively conservative threshold setting.
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Figure 6: Performance in different level of no overlap noise.
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Figure 7: Performance in different level of overlap noise.

A.4 Image-level Denoising V.S. Patch-level Denoising

A simple strategy to eliminate the noisy data is to delete the anomaly samples before training, which
is an unsupervised outlier detection task. However, the existing outlier detection methods do not work
well because the distance between abnormal and normal images is much smaller than the distance
between different classes. Meanwhile, we found that some AD methods could also detect outliers
in the training set. Following [41], we apply PaDiM* as the image-level denoising method which
give consideration to the costs and effects. PaDiM* is a simplified version of PaDiM, which uses
ResNet18 as the backbone with faster computing speed. PaDiM* scores all training samples and
then removes the pieces with high outliers based on the threshold. The comparison in Table 7 and
Table 8 show that image-level denoising dramatically improves the performance of existing SOTA
AD methods in the noisy scene. But there is still a gap when compared with SoftPatch.

A.5 Computational Analysis

SoftPatch does not require more runtime than PatchCore, according to theoretical analysis. The
complexity of the greedy sampling process in PatchCore is O(N2h2w2), which is most expensive
part. The complexity of the noise discrimination process in SoftPatch-LOF is O(N2hw), since
features are grouped before. So the computational complexity of SoftPatch is equal PatchCore by
O(N2hw +N2h2w2) = O(N2h2w2). In fact, SoftPatch will be faster because it removes a part of
the patch as noise.

Excluding the loading time of data, the comparison of the remaining time overhead between SoftPatch
and PatchCore is shown in Figure 9. The GPU used in this experiment is RTX TITAN 24G. Both spend
almost the same amount of time training and testing, which means that our patch-level denoising does
not bring unacceptable overhead. On the contrary, the image-level denoising dramatically increases
training time.
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Table 7: The anomaly detection performance of image-level denoising and patch-level denoising. The
PaDiM*+PaDiM*, PaDiM*+CFLOW, and PaDiM*+PatchCore are AD methods with image-level
denoising. PaDiM* is used in image level denoising, where we use the same threshold (0.15) as it
in SoftPatch. And we also tried the tricky threshold-0.1 as the noise ratio, but it works worse. The
results are evaluated on MVTecAD-noise-0.1 with overlap.

Category PaDiM* PaDiM*+
PaDiM* CFLOW PaDiM*+

CFLOW PatchCore PaDiM*(threshold
-0.1)+PatchCore

PaDiM*+
PatchCore SoftPatch-lof

bottle 0.937 0.994 1.000 1.000 0.692 0.984 1.000 1.000
cable 0.680 0.741 0.916 0.841 0.756 0.890 0.888 0.994
capsule 0.796 0.854 0.945 0.939 0.783 0.892 0.909 0.955
carpet 0.890 0.937 0.960 0.950 0.681 0.963 0.974 0.993
grid 0.674 0.765 0.799 0.830 0.526 0.850 0.870 0.969
hazelnut 0.543 0.725 0.999 0.990 0.441 0.871 0.929 1.000
leather 0.964 0.979 0.996 1.000 0.739 0.957 0.989 1.000
metal_nut 0.820 0.949 0.957 0.986 0.765 0.965 0.977 1.000
pill 0.722 0.745 0.897 0.924 0.770 0.898 0.913 0.955
screw 0.567 0.542 0.570 0.639 0.710 0.916 0.907 0.923
tile 0.830 0.906 0.980 0.981 0.716 0.939 0.957 0.981
toothbrush 0.700 0.869 0.878 0.928 0.800 0.981 0.997 0.994
transistor 0.471 0.770 0.872 0.788 0.491 0.777 0.825 0.999
wood 0.831 0.966 0.954 0.970 0.579 0.943 0.976 0.986
zipper 0.679 0.678 0.931 0.873 0.792 0.909 0.914 0.974

Average 0.740 0.828 0.910 0.909 0.683 0.916 0.935 0.982

Table 8: The anomaly localization performance of image-level denoising and patch-level denoising.

Category PaDiM* PaDiM*+
PaDiM* CFLOW PaDiM*+

CFLOW PatchCore PaDiM*(threshold
-0.1)+PatchCore

PaDiM*+
PatchCore SoftPatch-lof

bottle 0.937 0.983 1.000 0.986 0.692 0.984 0.985 1.000
cable 0.680 0.954 0.916 0.956 0.756 0.738 0.739 0.994
capsule 0.796 0.982 0.945 0.985 0.783 0.851 0.876 0.955
carpet 0.890 0.984 0.960 0.988 0.681 0.960 0.988 0.993
grid 0.674 0.876 0.799 0.948 0.526 0.797 0.818 0.969
hazelnut 0.543 0.977 0.999 0.987 0.441 0.798 0.825 1.000
leather 0.964 0.993 0.996 0.995 0.739 0.966 0.979 1.000
metal_nut 0.820 0.968 0.957 0.984 0.765 0.784 0.834 1.000
pill 0.722 0.956 0.897 0.984 0.770 0.706 0.713 0.955
screw 0.567 0.968 0.570 0.970 0.710 0.887 0.889 0.923
tile 0.830 0.927 0.980 0.946 0.716 0.924 0.968 0.981
toothbrush 0.700 0.986 0.878 0.983 0.800 0.977 0.986 0.994
transistor 0.471 0.965 0.872 0.908 0.491 0.932 0.945 0.999
wood 0.831 0.947 0.954 0.943 0.579 0.800 0.918 0.986
zipper 0.679 0.973 0.931 0.967 0.792 0.875 0.878 0.974

Average 0.740 0.963 0.910 0.969 0.683 0.865 0.889 0.982

Table 9: Mean training and inference time per category on MVTecAD. The unit of time is second.

Training time Inference time

SoftPatch-LOF 21.2958 15.6146
PatchCore 21.3869 15.8763

PaDiM*+PatchCore 74.2912 15.5386
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Figure 8: Noisy examples in (a) MVTecAD dataset and (b) BTAD dataset.

Table 10: Performance on MVTecAD in augmented overlap setting.

Setting Overlap with gaussian noise Overlap with noise and blur Overlap with rotation Overlap with affine transformation

Method PatchCore / Ours PatchCore / Ours PatchCore / Ours PatchCore / Ours

Detection 0.760 / 0.984 0.848 / 0.984 0.950 / 0.984 0.933 / 0.984
Localization 0.790 / 0.969 0.864 / 0.970 0.924 / 0.978 0.915 / 0.978

A.6 The Noise in Existing Datasets

Although existing research datasets are well organized, some abnormal samples are misclassified.
Fig. 8 show anomaly samples in normal set in two wide-used datasets. In the actual production data,
the noise interference will be more serious.

A.7 Performance in Augmented Overlap Setting

We make another experiment where the overlap images are augmented in the train set to make them
different from the images in the test set. We experiment with varying degrees of appearance and
structural augmentation. The result in Table 10 shows that our method still presents better robustness
when the overlap samples have been transformed, though the performance of PatchCore is improved.

Table 11: Anomaly detection performance on BTAD-noise-0.1.

Noise = 0.1 No overlap | Overlap

Category PatchCore SoftPatch-LOF PatchCore SoftPatch-LOF

01 1.000 1.000 0.522 1.000
02 0.860 0.922 0.738 0.912
Mean 0.930 0.961 0.630 0.956

A.8 Performance on BTAD with noise

The performance comparisons are provided in table 11 and 12. Since the anomaly samples in
category BTAD-03 are not enough to meet the requirement of the number of noise samples, we
experience the other two.
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Table 12: Anomaly localization performance on BTAD-noise-0.1.

Noise = 0.1 No overlap | Overlap

Category PatchCore SoftPatch-LOF PatchCore SoftPatch-LOF

01 0.982 0.999 0.319 0.815
02 0.949 0.953 0.754 0.936
Mean 0.966 0.976 0.536 0.875
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