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Abstract
Text Worlds are virtual environments for em-001
bodied agents that, unlike 2D or 3D environ-002
ments, are rendered exclusively using textual003
descriptions. These environments offer an al-004
ternative to higher-fidelity 3D environments005
due to their low barrier to entry, providing the006
ability to study semantics, compositional infer-007
ence, and other high-level tasks with rich action008
spaces while controlling for perceptual input.009
This systematic survey outlines recent devel-010
opments in tooling, environments, and agent011
modeling for Text Worlds, while examining012
recent trends in knowledge graphs, common013
sense reasoning, transfer learning of Text World014
performance to higher-fidelity environments,015
as well as near-term development targets that,016
once achieved, make Text Worlds an attractive017
general research paradigm for natural language018
processing.019

1 Introduction020

Embodied agents offer an experimental paradigm021

to study the development and use of semantic rep-022

resentations for a variety of real-world tasks, from023

household tasks (Shridhar et al., 2020a) to navi-024

gation (Guss et al., 2019) to chemical synthesis025

(Tamari et al., 2021). While robotic agents are a026

primary vehicle for studying embodiment (e.g. Can-027

gelosi and Schlesinger, 2015), robotic models are028

costly to construct, and experiments can be slow029

or difficult to scale. Virtual agents and embodied030

virtual environments help mitigate many of these031

issues, allowing large-scale simulations to be run in032

parallel orders of magnitude faster than real world033

environments (e.g. Deitke et al., 2020), while con-034

trolled virtual environments can be constructed for035

exploring specific tasks – though this benefit in036

speed comes at the cost of having to model virtual037

3D environments, which can be substantial.038

Text Worlds – embodied environments rendered039

linguistically through textual descriptions instead040

of graphically through pixels (see Table 1) – have041

Zork

North of House
You are facing the north side of a white house. There is no door here, and all
the windows are barred.
>go north

Forest
This is a dimly lit forest, with large trees all around. One particularly large
tree with some low branches stands here.
>climb large tree

Up a Tree
You are about 10 feet above the ground nestled among some large branches.
On the branch is a small birds nest. In the bird’s nest is a large egg encrusted
with precious jewels, apparently scavenged somewhere by a childless songbird.
>take egg

Taken.
>climb down tree

Forest
>go north

Table 1: An example Text World interactive fiction envi-
ronment, Zork (Lebling et al., 1979), frequently used as a
benchmark for agent performance. User-entered actions are
italicized.

emerged as a recent methodological focus that al- 042

low studying many embodied research questions 043

while reducing some of the development costs as- 044

sociated with modeling complex and photorealistic 045

3D environments (e.g. Côté et al., 2018). More than 046

simply reducing development costs, Text Worlds 047

also offer paradigms to study developmental knowl- 048

edge representation, embodied task learning, and 049

transfer learning at a higher level than perceptually- 050

grounded studies, enabling different research ques- 051

tions that explore these topics in isolation of the 052

open problems of perceptual input, object segmen- 053

tation, and object classification regularly studied 054

in the vision community (e.g. He et al., 2016c; 055

Szegedy et al., 2017; Zhai et al., 2021). 056

1.1 Motivation for this survey 057

Text Worlds are rapidly gaining momentum as a 058

research methodology in the natural language pro- 059

cessing community. In spite of this interest, many 060

modeling, evaluation, tooling, and other barriers 061

exist to applying these methodologies, with sig- 062

nificant development efforts in the early stages of 063
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mitigating those barriers, at least in part.064

In this review, citation graphs of recent articles065

were iteratively crawled, identifying 108 articles066

relevant to Text Worlds and other embodied envi-067

ronments that include text as part of the simula-068

tion or task. Frequent motivations for choosing069

Text Worlds are highlighted in Section 2. Tool-070

ing and modeling paradigms (in the form of sim-071

ulators, intermediate languages, and libraries) are072

surveyed in Section 3, with text environments and073

common benchmarks implemented with this tool-074

ing described in Section 4. Contemporary focuses075

in agent modeling, including coupling knowledge076

graphs, question answering, and common-sense077

reasoning with reinforcement learning, are iden-078

tified in Section 5. Recent contributions to focus079

areas in world generation and hybrid text-3D en-080

vironments are summarized in Section 6, while081

a distillation of near-term directions for reducing082

barriers to using Text Worlds more broadly as a083

research paradigm are presented in Section 7.084

2 Why use Text Worlds?085

For many tasks, Text Worlds can offer advan-086

tages over other embodied environment modelling087

paradigms – typically in reduced development088

costs, the ability to model large action spaces, and089

the ability to study embodied reasoning at a higher090

level than raw perceptual information.091

Embodied Reasoning: Embodied agents have092

been proposed as a solution to the symbol ground-093

ing problem (Harnad, 1990), or the problem of094

how concepts acquire real-world meaning. Hu-095

mans likely resolve symbol grounding at least par-096

tially by assigning semantics to concepts through097

perceptually-grounded mental simulations (Barsa-098

lou et al., 1999). Using embodied agents that take099

in perceptual data and perform actions in real or100

virtual environments offers an avenue for study-101

ing semantics and symbol grounding empirically102

(Cangelosi et al., 2010; Bisk et al., 2020; Tamari103

et al., 2020a,b). Text Worlds abstract some of the104

challenges in perceptual modeling, allowing agents105

to focus on higher-level semantics, while hybrid106

worlds that simultaneously render both text and107

3D views (e.g. Shridhar et al., 2020b) help con-108

trol what kind of knowledge is acquired, and better109

operationalize the study of symbol grounding.110

Ease of Development: Constructing embodied111

virtual environments typically has steep develop-112

ment costs, but Text Worlds are typically easier113

to construct for many tasks. Creating new ob- 114

jects does not require the expensive process of 115

creating new 3D models, or performing visual- 116

percept-to-object-name segmentation or classifi- 117

cation (since the scene is rendered linguistically). 118

Similarly, a rich action semantics is possible, and 119

comparatively easy to implement – while 3D en- 120

vironments typically have one or a small num- 121

ber of action commands (e.g. Kolve et al., 2017; 122

Shridhar et al., 2020a), Text Worlds typically im- 123

plement dozens of action verbs, and thousands 124

of valid Verb-NounPhrase action combinations 125

(Hausknecht et al., 2020). 126

Compositional Reasoning: Complex reasoning 127

tasks typically require multi-step (or composi- 128

tional) reasoning that integrates several pieces of 129

knowledge in an action procedure that arrives at a 130

solution. In the context of natural language, com- 131

positional reasoning is frequently studied through 132

question answering tasks (e.g. Yang et al., 2018; 133

Khot et al., 2020; Xie et al., 2020; Dalvi et al., 134

2021) or procedural knowledge prediction (e.g. 135

Dalvi et al., 2018; Tandon et al., 2018; Dalvi et al., 136

2019). A contemporary challenge is that the num- 137

ber of valid compositional procedures is typically 138

large compared to those that can be tractably an- 139

notated as gold, and as such automatically eval- 140

uating model performance becomes challenging 141

(Jansen et al., 2021). In an embodied environment, 142

an agent’s actions have (generally) deterministic 143

consequences for a given environment state, as ac- 144

tions are grounded in an underlying action language 145

(e.g. McDermott et al., 1998) or linear logic (e.g. 146

Martens, 2015). Embodied environments can offer 147

a more formal semantics to study these reasoning 148

tasks, where correctness of novel procedures could 149

be evaluated directly. 150

Transfer Learning: Training a text-only agent 151

for embodied tasks allows the agent to learn those 152

tasks in a distilled form, at a high-level. This per- 153

formance can then be transferred to more realistic 154

3D environments, where agents pretrained on text 155

versions of the same environment learn to ground 156

their high-level knowledge in low-level perceptual 157

information, and complete tasks faster than when 158

trained jointly (Shridhar et al., 2020b). This offers 159

the possibility of creating simplified text worlds to 160

pretrain agents for challenging 3D tasks that are 161

currently out of reach of embodied agents. 162
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3 Text World Simulators163

Text World simulators render an agent’s world view164

directly into textual descriptions of their environ-165

ment, rather than into 2D or 3D graphical render-166

ings. Similarly, actions the agent wishes to take167

are provided to the simulator as text (e.g. “read168

the letter” in Zork), requiring agent models to both169

parse input text from the environment, and generate170

output text to to interact with that environment.171

In terms of simulators, the Z-machine (Infocom,172

1989) is a low-level virtual machine originally de-173

signed by Infocom for creating portable interactive174

fiction novels (such as Zork). It was paired with175

a high-level LISP-like domain-specific language176

(ZIL) that included libraries for text parsing, and177

other tools for writing interactive fiction novels.178

The Z-machine standard was reverse-engineered by179

others (e.g. Nelson, 2014) in an effort to build their180

own high-level interactive fiction domain-specific181

languages, and has since become a standard com-182

pilation target due to the proliferation of existing183

tooling and legacy environments.1184

Inform7 (Nelson, 2006) is a popular high-level185

language designed for interactive fiction novels that186

allows environment rules to be directly specified187

in a simplified natural language, substantially low-188

ering the barrier to entry for creating text worlds.189

The text generation engine allows substantial vari-190

ation in the way the environments are described,191

from dry formulaic text to more natural, varied,192

conversational descriptions. Inform7 is compiled193

to Inform6, an earlier object-oriented scripting lan-194

guage with C-like syntax, which itself is compiled195

to Z-machine code.196

Ceptre (Martens, 2015) is a linear-logic sim-197

ulation engine developed with the goal of spec-198

ifying more generic tooling for operational log-199

ics than Inform 7. TextWorld (Côté et al., 2018)200

adapt Ceptre’s linear logic state transitions for en-201

vironment descriptions, and add tooling for gen-202

erative environments, visualization, and RL agent203

coupling, all of which is compiled into Inform7204

source code. Parallel to this, the Jericho environ-205

ment (Hausknecht et al., 2020) allows inferring206

relevant vocabulary and template-based object in-207

teractions for Z-machine-based interactive fiction208

games, easing action selection for agents.209

1A variety of text adventure tooling, including the Adven-
ture Game Toolkit (AGT) and Text Adventure Development
System (TADS), was developed starting in the late 1980s, but
these simulators have generally not been adopted by the NLP

Object Tree Root

West of the House Top of Tree Clearing

Player (Agent) Small Mailbox Door

Leaflet

Bird Nest Pile of Leaves Grating

Egg

Figure 1: An example partial object tree from the interactive
fiction game Zork (Lebling et al., 1979).

3.1 Text World Modeling Paradigms 210

3.1.1 Environment Modelling 211

Environments are typically modeled as an object 212

tree that represents all the objects in an environ- 213

ment and their nested locations, as well as a set of 214

action rules that implement changes to the objects 215

in the environment based on an agent’s actions. 216

Objects: Because of the body of existing in- 217

teractive fiction environments for Z-machine en- 218

vironments, and nearly all popular tooling (In- 219

form7, TextWorlds, etc.) ultimately compiling to 220

Z-machine code, object models typically use the Z- 221

machine model (Nelson, 2014). Z-machine objects 222

have names (e.g. “mailbox”), descriptions (e.g. 223

“a small wooden mailbox”), binary flags called at- 224

tributes (e.g. “is_container_open”), and generic 225

properties stored as key-value pairs. Objects are 226

stored in the object tree, which represents the lo- 227

cations of all objects in the environment through 228

parent-child relationships, as shown in Figure 1. 229

Action Rules: Action rules describe how objects 230

change in response to a given world state, which is 231

frequently a collection of preconditions followed 232

by an action taken by an agent (e.g. “eat the ap- 233

ple”), but can also be due to environment states (e.g. 234

a plant dying because it hasn’t been watered for a 235

time greater than some threshold). Ceptre (Martens, 236

2015) and TextWorld (Côté et al., 2018) use linear 237

logic to represent possible valid state transitions. 238

In linear logic, a set of preconditions in the state 239

history of the world can be consumed by a rule 240

to generate a set of postconditions, such as con- 241

suming a closed(C) precondition and posting a 242

open(C) postcondition for a container-opening 243

action for some container C. 244

Côté et al. (2018) note the limitations in existing 245

implementations of state transition systems for text 246

worlds (such as single-step forward or backward 247

chaining), and suggest future systems may wish 248

community in favour of the more popular Inform series tools.
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to use mature action languages such as STRIPS249

(Fikes and Nilsson, 1971) or GDL (Genesereth250

et al., 2005; Thielscher, 2010, 2017) as the ba-251

sis of a world model, though each of these lan-252

guages have tradeoffs in features (such as object253

typing) and general expressivity (such as being254

primarily agent-action centered, rather than imple-255

menting environment-driven actions and processes)256

that make certain kinds of complex modeling more257

challenging. As a proof-of-concept, ALFWorld258

(Shridhar et al., 2020b) uses the Planning Domain259

Definition Language (PDDL, McDermott et al.,260

1998) to define the semantics for the variety of261

pick-and-place tasks in its text world rendering of262

the ALFRED benchmark.263

3.1.2 Agent Modelling264

While environments can be modelled as a collec-265

tion of states and allowable state transitions (or266

rules), agents typically have incomplete or inac-267

curate information about the environment, and268

must make observations of the environment state269

through (potentially noisy or inadequate) sensors,270

and take actions based on those observations. Be-271

cause of this, agents are typically modelled as272

partially-observable Markov decision processes273

(POMDP) (Kaelbling et al., 1998).274

A Markov decision process (MDP) contains the275

state history (S), valid state transitions (T ), avail-276

able actions (A), and (for agent modeling) the ex-277

pected immediate reward for taking each action278

(R). POMDPs extend this to account for partial279

observability by supplying a finite list of observa-280

tions the agent can make (Ω), and an observation281

function (O) that returns what the agent actually282

observes from an observation, given the current283

world state. For example, the observation function284

might return unknown if the agent tries to examine285

the contents of a locked container before unlock-286

ing it, because the contents cannot yet be observed.287

Similarly, when observing the temperature of a cup288

of tea, the observation function might return coarse289

measurements (e.g. hot, warm, cool) if the agent290

uses their hand for measurement, or fine-grained291

measurements (e.g. 70◦C) if the agent uses a ther-292

mometer. A final discount factor (γ) influences293

whether the agent prefers immediate rewards, or294

eventual (distant) rewards. The POMDP defined295

by defined by (S, T,A,R,Ω, O, γ) then serves as296

a model for a learning framework, typically re-297

inforcement learning (RL), to learn a policy that298

enables the agent to maximize the reward.299

4 Text World Environments 300

Environments are worlds implemented in simu- 301

lators, that agents explore to perform tasks. En- 302

vironments can be simple or complex, evaluate 303

task-specific or domain-general competencies, be 304

static or generative, and have small or large ac- 305

tion spaces compared to higher-fidelity simulators 306

(see the Appendix for a comparison of action space 307

sizes across environments and simulators). 308

4.1 Single Environment Benchmarks 309

Single environment benchmarks typically consist 310

of small environments designed to test specific 311

agent competencies, or larger interactive fiction 312

environments that test broad agent competencies to 313

navigate a large world and interact with the environ- 314

ment toward achieving some distant goal. Toy en- 315

vironments frequently evaluate an agent’s ability to 316

perform compositional reasoning tasks of increas- 317

ing lengths, such as in the Kitchen Cleanup and re- 318

lated benchmarks (Murugesan et al., 2020b). Other 319

toy worlds explore searching environments to lo- 320

cate specific objects (Yuan et al., 2018), or combin- 321

ing source materials to form new materials (Jiang 322

et al., 2020). While collections of interactive fic- 323

tion environments are used as benchmarks (see Sec- 324

tion 4.3), individual environments frequently form 325

single benchmarks. Zork (Lebling et al., 1979) and 326

its subquests are medium-difficulty environments 327

frequently used in this capacity, while Anchorhead 328

(Gentry, 1998) is a challenging environment where 329

state-of-the-art performance remains below 1%. 330

4.2 Domain-specific Environments 331

Domain-specific environments allow agents to 332

learn highly specific competencies relevant to a 333

single domain, like science or medicine, while typi- 334

cally involving more modeling depth than toy envi- 335

ronments. Tamari et al. (2021) create a TextWorld 336

environment for wet lab chemistry protocols, that 337

describe detailed step-by-step instructions for repli- 338

cating chemistry experiments. These text-based 339

simulations can then be represented as process exe- 340

cution graphs (PEG), which can then be run on real 341

lab equipment. A similar environment exists for 342

the materials science domain (Tamari et al., 2019). 343

4.3 Environment Collections as Benchmarks 344

To test the generality of agents, large collections of 345

interactive fiction games (rather than single environ- 346

ments) are frequently used as benchmarks. While 347
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the Text-Based Adventure AI Shared Task initially348

evaluated on a single benchmark environment, later349

instances switched to evaluating on 20 varied envi-350

ronments to gauge generalization (Atkinson et al.,351

2019). Fulda et al. (2017a) created a list of 50352

interactive fiction games to serve as a benchmark353

for agents to learn common-sense reasoning. Côté354

et al. (2018) further curate this list, replacing 20355

games without scores to those more useful for RL356

agents. The Jericho benchmark (Hausknecht et al.,357

2020) includes 32 interactive fiction games that358

support Jericho’s in-built methods for score and359

world-change detection, out of a total of 56 games360

known to support these features.361

4.4 Generative Environments362

A difficulty with statically-initialized environments363

is that because their structure is identical each time364

the simulation is run, rather than learning general365

skills, agents quickly overfit to a particular task366

and environment, and rarely generalize to unseen367

environments (Chaudhury et al., 2020). Procedu-368

rally generated environments help address this need369

by generating variations of environments centered370

around specific goal conditions.371

The TextWorld simulator (Côté et al., 2018) al-372

lows specifying high-level parameters such as the373

number of rooms, objects, and winning conditions,374

then uses a random walk to procedurally generate375

environment maps in the Inform7 language meeting376

those specifications, using either forward or back-377

ward chaining during generation to verify tasks can378

be successfully completed in the random environ-379

ment. As an example, the First TextWorld Prob-380

lems shared task2 used TextWorld to generate 5k381

variations of a cooking environment, divided into382

train, development, and test sets. Similarly, Mu-383

rugesan et al. (2020a) introduce TextWorld Com-384

monSense (TWC), a simple generative environ-385

ment for household cleaning tasks, modelled as386

a pick-and-place task where agents must pick up387

common objects from the floor, and place them in388

their common household locations (such as placing389

shoes in a shoe cabinet). Other related environ-390

ments include Coin Collector (Yuan et al., 2018), a391

generative environment for a navigation task, and392

Yin et al.’s (2019b) procedurally generated envi-393

ronment for cooking tasks.394

Adhikari et al. (2020) generate a large set of395

2https://competitions.codalab.org/
competitions/21557

recipe-based cooking games, where an agent must 396

precisely follow a cooking recipe that requires col- 397

lecting tools (e.g. a knife) and ingredients (e.g. 398

carrots), and processing those ingredients correctly 399

(e.g. dice carrots, cook carrots) in the correct order. 400

Jain et al. (2020) propose a similar synthetic bench- 401

mark for multi-step compositional reasoning called 402

SaladWorld. In the context of question answering, 403

Yuan et al. (2019) procedurally generate a simple 404

environment that requires an agent to search and 405

investigate attributes of objects, such as verifying 406

their existence, locations, or specific attributes (like 407

edibility). On the balance, while tooling exists to 408

generate simple procedural environments, when 409

compared to classic interactive fiction games (such 410

as Zork), the current state-of-the-art allows for gen- 411

erating only relatively simple environments with 412

comparatively simple tasks and near-term goals 413

than human-authored interactive fiction games. 414

5 Text World Agents 415

Recently a large number of agents have been 416

proposed for Text World environments. This 417

section briefly surveys common modeling meth- 418

ods, paradigms, and trends, with the performance 419

of recent agents on common interactive fiction 420

games (as categorized by the Jericho benchmark, 421

Hausknecht et al., 2020) shown in Table 2. 422

Reinforcement Learning: While some agents 423

rely on learning frameworks heavily coupled with 424

heuristics (e.g., Kostka et al., 2017, Golovin), ow- 425

ing to the sampling benefits afforded by operating 426

in a virtual environment, the predominant model- 427

ing paradigm for most contemporary text world 428

agents is reinforcement learning. Narasimhan et 429

al. (2015) demonstrate that “Deep-Q Networks” 430

(DQN) (Mnih et al., 2015) developed for Atari 431

games can be augmented with LSTMs for represen- 432

tation learning in Text Worlds, which outperform 433

simpler methods using n-gram bag-of-words rep- 434

resentations. He et al. (2016a, DRRN) extend this 435

to build the Deep Reinforcement Relevance Net- 436

work (DRRN), an architecture that uses separate 437

embeddings for the state space and actions, to im- 438

prove both training time and performance. Madotto 439

et al. (2020) show that the Go-Explore algorithm 440

(Ecoffet et al., 2019), which periodically returns 441

to promising but underexplored areas of a world, 442

can achieve higher scores than the DRRN with 443

fewer steps. Zahvey et al. (2018, AE-DQN) use an 444

Action Elimination Network (AEN) to remove sub- 445
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DRRN (He et al., 2016b) 0.55 0.09 0.07 0.20 0.05 0.00
BYU-Agent (Fulda et al., 2017a) 0.59 0.03 0.00 0.10 0.00 0.01
Golovin (Kostka et al., 2017) 0.20 0.04 0.10 0.15 0.00 0.01
AE-DQN (Zahavy et al., 2018) – 0.05 – – – –
NeuroAgent (Rajalingam and Samothrakis, 2019) 0.19 0.03 0.00 0.20 0.00 0.00
NAIL (Hausknecht et al., 2019) 0.38 0.03 0.26 – 0.00 0.00
CNN-DQN (Yin and May, 2019a) – 0.11 – – – –
IK-OMP (Tessler et al., 2019) – 1.00 – – – –
TDQN (Hausknecht et al., 2020) 0.47 0.03 0.00 0.34 0.02 0.00
KG-A2C (Ammanabrolu and Hausknecht, 2020) 0.58 0.10 0.01 0.06 0.03 0.01
SC (Jain et al., 2020) – 0.10 – – 0.0 –
CALM (N-gram) (Yao et al., 2020) 0.79 0.07 0.00 0.09 0.00 0.00
CALM (GPT-2) (Yao et al., 2020) 0.80 0.09 0.07 0.14 0.05 0.01
RC-DQN (Guo et al., 2020a) 0.81 0.11 0.40 0.20 0.05 0.02
MPRC-DQN (Guo et al., 2020a) 0.88 0.11 0.52 0.20 0.05 0.02
SHA-KG (Xu et al., 2020) 0.86 0.10 0.10 – 0.05 0.02
MC!Q*BERT (Ammanabrolu et al., 2020b) 0.92 0.12 – – 0.00 –
INV-DY (Yao et al., 2021) 0.81 0.12 0.06 0.11 0.05 –

Table 2: Agent performance on benchmark interactive fiction environments. All performance values are normalized to
maximum achievable scores in a given environment. Due to the lack of standard reporting practice, performance reflects values
reported for agents, but is unable to hold other elements (such as number of training epochs, number of testing epochs, reporting
average vs maximum performance) constant. Parentheses denote environment difficulty (E:Easy, M:Medium, H:Hard) as
determined by the Jericho benchmark (Hausknecht et al., 2020).

optimal actions, showing improved performance446

over a DQN on Zork. Yao et al (2020, CALM)447

use a GPT-2 language model trained on human448

gameplay to reduce the space of possible input449

command sequences, and produce a shortlist of can-450

didate actions for an RL agent to select from. Yao451

et al. (2021, INV-DY) demonstrate that semantic452

modeling is important, showing that models that ei-453

ther encode semantics through an inverse dynamic454

decoder, or discard semantics by replacing words455

with unique hashes, have different performance456

distributions in different environments. Taking a457

different approach, Tessler et al. (2019, IK-OMP)458

show that imitation learning combined with a com-459

pressed sensing framework can solve Zork when460

restricted to a vocabulary of 112 words extracted461

from walk-through examples.462

Constructing Graphs: Augmenting reinforce-463

ment learning models to produce knowledge graphs464

of their beliefs can reduce training time and im-465

prove overall agent performance (Ammanabrolu466

and Riedl, 2019). Ammanabrolu et al. (2020, KG-467

A2C) demonstrate a method for training an RL468

agent that uses a knowledge graph to model its469

state-space, and use a template-based action space470

to achieve strong performance across a variety of in-471

teractive fiction benchmarks. Adhikari et al. (2020)472

demonstrate that a Graph Aided Transformer Agent473

(GATA) is able to learn implicit belief networks474

about its environment, improving agent perfor- 475

mance in a cooking environment. Xu et al. (2020, 476

SHA-KG) extend KG-A2C to use hierarchical RL 477

to reason over subgraphs, showing substantially 478

improved performance on a variety of benchmarks. 479

To support these modelling paradigms, Zelinka 480

et al. (2019) introduce TextWorld KG, a dataset for 481

learning the subtask of updating knowledge graphs 482

based on text world descriptions in a cooking do- 483

main, and show their best ensemble model is able 484

to achieve 70 F1 at this subtask. Similarly, An- 485

namabrolu et al. (2021a) introduce JerichoWorld, a 486

similar dataset for world modeling using knowl- 487

edge graphs but on a broader set of interactive 488

fiction games, and subsequently introduce World- 489

Former (Ammanabrolu and Riedl, 2021b), a multi- 490

task transformer model that performs well at both 491

knowledge-graph prediction and next-action pre- 492

diction tasks. 493

Question Answering: Agents can reframe Text 494

World tasks as question answering tasks to gain 495

relevant knowledge for action selection, with these 496

agents providing current state-of-the-art perfor- 497

mance across a variety of benchmarks. Guo et 498

al. (2020b, MPRC-DQN) use multi-paragraph read- 499

ing comprehension (MPRC) techniques to ask ques- 500

tions that populate action templates for agents, sub- 501

stantially reducing the number of training examples 502

required for RL agents while achieving strong per- 503
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formance on the Jericho benchmark. Similarly,504

Ammanabrolu et al. (2020b, MC!Q*BERT) use505

contextually-relevant questions (such as “Where506

am I?”, “Why am I here?”) to populate their507

knowledge base to support task completion.508

Common-sense Reasoning: Agents arguably re-509

quire a large background of common-sense or510

world knowledge to perform embodied reasoning511

in virtual environments. Fulda et al. (2017a) ex-512

tract common-sense affordances from word vectors513

trained on Wikipedia using word2vec (Mikolov514

et al., 2013), and use this to increase performance515

on interactive fiction games, as well as (more gener-516

ally) on robotic learning tasks (Fulda et al., 2017b).517

Murugesan et al. (2020b) combine the Concept-518

Net common-sense knowledge graph (Speer et al.,519

2017) with an RL agent that segments knowledge520

between general world knowledge, and specific be-521

liefs about the current environment, demonstrating522

improved performance in a cooking environment.523

Similarly, Dambekodi et al. (2020) demonstrate524

that RL agents augmented with either COMET525

(Bosselut et al., 2019), a transformer trained on526

common-sense knowledge bases, or BERT (De-527

vlin et al., 2019), which is hypothesized to con-528

tain common-sense knowledge, outperform agents529

without this knowledge on the interactive fiction530

game 9:05. In the context of social reasoning, Am-531

manabrolu et al. (2021) create a fantasy-themed532

knowledge graph, ATOMIC-LIGHT, and show that533

an RL agent using this knowledge base performs534

well at the LIGHT social reasoning tasks.535

6 Contemporary Focus Areas536

World Generation: Generating detailed environ-537

ments with complex tasks is labourious, while ran-538

domly generating environments currently provides539

limited task complexity and environment cohe-540

siveness. World generation aims to support the541

generation of complex, coherent environments, ei-542

ther through better tooling for human authors (e.g.543

Temprado-Battad et al., 2019), or automated gener-544

ation systems that may or may not have a human-545

in-the-loop. Fan et al. (2020) explore creating co-546

hesive game worlds in the LIGHT environment547

using a variety of embedding models including548

Starspace (Wu et al., 2018a) and BERT (Devlin549

et al., 2019). Automatic evaluations show perfor-550

mance of between 36-47% in world building, de-551

fined as cohesively populating an environment with552

locations, objects, and characters. Similarly, hu-553

man evaluation shows that users prefer Starspace- 554

generated environments over those generated by 555

a random baseline. In a more restricted domain, 556

Ammanabrolu et al. (2019) show that two models, 557

one Markov chain model, the other a generative 558

language model (GPT-2), are capable of generating 559

quests in a cooking environment, while there is a 560

tradeoff between human ratings of quest creativity 561

and coherence. 562

Ammanabrolu et al. (2020a) propose a large- 563

scale end-to-end solution to world generation that 564

automatically constructs interactive fiction environ- 565

ments based on a story (such as Sherlock Holmes) 566

provided as input. Their system first builds a 567

knowledge graph of the story by framing KG con- 568

struction as a question answering task, using their 569

model (AskBERT) to populate this graph. The 570

system then uses either a rule-based baseline or a 571

generative model (GPT-2) to generate textual de- 572

scriptions of the world from this knowledge graph. 573

User studies show that humans generally prefer 574

these neural-generated worlds to the rule-generated 575

worlds (measured in terms of interest, coherence, 576

and genre-resemblance), but that neural-generated 577

performance still substantially lags behind that of 578

human-generated worlds. 579

Hybrid 3D-Text Environments: Hybrid simula- 580

tors that can simultaneously render worlds both 581

graphically (2D or 3D) as well as textually of- 582

fer a mechanism to quickly learn high-level tasks 583

without having to first solve grounding or percep- 584

tual learning challenges. The ALFWorld simulator 585

(Shridhar et al., 2020b) combines the ALFRED 3D 586

home environment (Shridhar et al., 2020a) with 587

a simultaneous TextWorld interface to that same 588

environment, and introduce the BUTLER agent, 589

which shows increased task generalization on the 590

3D environment when first trained on the text world. 591

Prior to ALFWorld, Jansen (2020) showed that a 592

language model (GPT-2) was able to successfully 593

generate detailed step-by-step textual descriptions 594

of ALFRED task trajectories for up to 58% of un- 595

seen cases using task descriptions alone, without 596

visual input. Building on this, Micheli (2021) con- 597

firmed GPT-2 also performs well on the text world 598

rendering of ALFWorld, and is able to successfully 599

complete goals in 95% of unseen cases. Taken to- 600

gether, these results show the promise of quickly 601

learning complex tasks at a high-level in a text-only 602

environment, then transferring this performance to 603

agents grounded in more complex environments. 604
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7 Contemporary Limitations and605

Challenges606

Environment complexity is limited, and it’s cur-607

rently difficult to author complex worlds. Two608

competing needs are currently at odds: the de-609

sire for complex environments to learn complex610

skills, and the desire for environment variation611

to encourage robustness in models. Current tool-612

ing emphasizes creating varied procedural environ-613

ments, but those environments have limited com-614

plexity, and require agents to complete straight-615

forward tasks. Economically creating complex,616

interactive environments that simulate a significant617

fraction of real world interactions is still well be-618

yond current simulators or libraries – but required619

for higher-fidelity interactive worlds that have mul-620

tiple meaningful paths toward achieving task goals.621

Generating these environments semi-automatically622

(e.g. Ammanabrolu et al., 2020a) may offer a par-623

tial solution. Independent of tooling, libraries and624

other middleware offer near-term solutions to more625

complex environment modeling, much in the same626

way 3D game engines are regularly coupled with627

physics engine middleware to dramatically reduce628

the time required to implement forces, collisions,629

lighting, and other physics-based modeling. Cur-630

rently, few analogs exist for text worlds. The addi-631

tion of a chemistry engine that knows ice warmed632

above the freezing point will change to liquid wa-633

ter, or a generator engine that knows the sun is a634

source of sunlight during sunny days, or an obser-635

vation engine that knows tools (like microscopes or636

thermometers) can change the observation model637

of a POMDP – may offer tractability in the form638

of modularization. Efforts using large-scale crowd-639

sourcing to construct knowledge bases of common-640

sense knowledge (e.g., ATOMIC, Sap et al., 2019)641

may be required to support these efforts.642

Current planning languages offer a partial so-643

lution for environment modelling. While simu-644

lators partially implement facilities for world mod-645

eling, some (e.g. Côté et al., 2018; Shridhar et al.,646

2020b) suggest using mature planning languages647

like STRIPS (Fikes and Nilsson, 1971) or PDDL648

(McDermott et al., 1998) for more full-featured649

modeling. This would not be without significant650

development effort – existing implementations of651

planning languages typically assume full-world ob-652

servability (in conflict with POMDP modelling),653

and primarily agent-directed state-space changes,654

making complex world modeling with partial ob-655

servability, and complex environment processes 656

(such as plants that require water and light to sur- 657

vive, or a sun that rises and sets causing different 658

items to be observable in day versus night) out- 659

side the space of being easily implemented with 660

off-the-shelf solutions. In the near-term, it is likely 661

that a domain-specific language specific to complex 662

text world modeling would be required to address 663

these needs while simultaneously reducing the time 664

investment and barrier-to-entry for end users. 665

Analyses of environment complexity can inform 666

agent design and evaluation. Text world articles 667

frequently emphasize agent modeling contributions 668

over environment, methodological, or analysis con- 669

tributions – but these contributions are critical, es- 670

pecially in the early stages of this subfield. Agent 671

performance in easy environments has increased in- 672

crementally, while medium-to-hard environments 673

have seen comparatively modest improvements. 674

Agent performance is typically reported as a distri- 675

bution over a large number of environments, and 676

the methodological groundwork required to under- 677

stand when different models exceed others in time 678

or performance over these environment distribu- 679

tions is critical to making forward progress. Trans- 680

fer learning in the form of training on one set of 681

environments and testing on others has become a 682

standard feature of benchmarks (e.g. Hausknecht 683

et al., 2020), but focused contributions that work 684

to precisely characterize the limits of what can be 685

learned from (for example) OmniQuest and trans- 686

ferred to Zork, and what capacities must be learned 687

elsewhere, will help inform research programs in 688

agent modeling and environment design. 689

Transfer learning between text world and 3D 690

environments. Tasks learned at a high-level in 691

text worlds help speed learning when those same 692

models are transferred to more complex 3D envi- 693

ronments (Shridhar et al., 2020b). This framing of 694

transfer learning may resemble how humans can 695

converse about plans for future actions in locations 696

remote from those eventual actions (as when we 697

apply knowledge learned in classrooms to the real 698

world). As such, text-plus-3D environment render- 699

ing shows promise as a manner of controlling for 700

different sources of complexity in multi-modal task 701

learning (from high-level task-specific knowledge 702

to low-level perceptual knowledge), and appears 703

a promising research methodology for imparting 704

complex task knowledge on agents that are able to 705

navigate high-fidelity virtual environments. 706
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A Extended List of Simulators 1218

Simulators provide the infrastructure to implement 1219

the environments, objects, characters, and interac- 1220

tions of a virtual world, typically through a combi- 1221

nation of a scripting engine to define the behavior 1222

of objects and agents, with a rendering engine that 1223

provides a view of the world for a given agent or 1224

user. Simulators for embodied agents exist on a 1225

fidelity spectrum, from photorealistic 3D environ- 1226

ments to worlds described exclusively with lan- 1227

guage, where a trade-off typically exists between 1228

richer rendering and richer action spaces. This fi- 1229

delity spectrum (paired with example simulators) is 1230

shown in Table 3, and described briefly below. Note 1231

that many of these higher-fidelity simulators are 1232

largely out-of-scope when discussing Text Worlds, 1233

except as a means of contrast to text-only worlds, 1234

and in the limited context that these simulators 1235

make use of text. 1236

3D Environment Simulators: 3D simulators pro- 1237

vide the user with complex 3D environments, in- 1238

cluding near-photorealistic environments such as 1239

AI2-Thor (Kolve et al., 2017), and include physics 1240

engines that model forces, liquids, illumination, 1241

containment, and other object interactions. Be- 1242

cause of their rendering fidelity, they offer the pos- 1243

sibility of inexpensively training robotic models in 1244

virtual environments that can then be transferred to 1245

the real world (e.g. RoboThor, Deitke et al., 2020). 1246

Adding objects to 3D worlds can be expensive, as 1247

this requires 3D modelling expertise that teams 1248

may not have. Similarly, adding agent actions or 1249

object-object interactions through a scripting lan- 1250

guage can be expensive if those actions are outside 1251

what is easily implemented in the simulator (like 1252

creating gasses, or using a pencil or saw to modify 1253
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3D Environment Simulators

– AI2-Thor (Kolve et al., 2017)
– CHALET (Yan et al., 2018)
– House3D (Wu et al., 2018b)
– RoboThor (Deitke et al., 2020)
D ALFRED (Shridhar et al., 2020a)

D I ALFWorld (Shridhar et al., 2020b)

Voxel-Based Simulators

– Malmo (Johnson et al., 2016)
– MineRL (Guss et al., 2019)

Gridworld Simulators

– Rogue-in-a-box (Asperti et al., 2017)
D BABYAI (Chevalier-Boisvert et al., 2018)
I Nethack LE (Küttler et al., 2020)
I VisualHints (Carta et al., 2020)
– Griddly (Bamford, 2021)

Text-based Simulators

I Z-Machine (Infocom, 1989)
I Inform7 (Nelson, 2006)
I Ceptre (Martens, 2015)
I TextWorld (Côté et al., 2018)
I LIGHT (Urbanek et al., 2019)
I Jericho (Hausknecht et al., 2020)

Table 3: Example embodied simulation environments bro-
ken down by environment rendering fidelity. D specifies that
environments supply natural language directives to the agent,
I specifies that environments are interacted with (at least in
part) using natural language input and/or output, and no rating
represents environments that do not have a significant text
component.

an object). Because of this, action spaces tend to be1254

small, and limited to movement, and one (or a small1255

number of) interaction commands. Some simula-1256

tors and environments include text directives for1257

an agent to perform, such as an agent being asked1258

Environment # Actions Examples

3D Environment Simulators

ALFRED 7 Command pickup, put, heat, cool
5 Movement move forward

Gridworld

BABYAI 4 Command pickup, drop, toggle
3 Movement turn left, move forward

NETHACK 77 Command eat, open, kick, read
16 Movement move north, move east

Text-based

ALFWorld 11 Command goto, take, heat, clean
LIGHT 11 Command get, drop, give, wear

22 Emotive applaud, wave, wink
PEG (Biomedical) 35 Command incubate, mix, spin

Zork 56 Command open, read, drop, drink

Table 4: Action space complexity for a selection of 3D,
gridworld, and text-based environments.

to “slice an apple then cool it” in the ALFRED 1259

environment (Shridhar et al., 2020a). Other hybrid 1260

environments such as ALFWorld (Shridhar et al., 1261

2020b) simultaneously render an environment both 1262

in 3D as well as in text, allowing agents to learn 1263

high-level task knowledge through text interactions, 1264

then ground these in environment-specific percep- 1265

tual input though transfer learning. 1266

Voxel-based Simulators: Voxel-based simulators 1267

create worlds from (typically) large 3D blocks, low- 1268

ering rendering fidelity while greatly reducing the 1269

time and skill required to add new objects. Sim- 1270

ilarly, creating new agent-object or object-object 1271

interactions can be easier because they can gener- 1272

ally be implemented in a coarser manner – though 1273

some kinds of basic spatial actions (like rotating an 1274

object in increments smaller than 90 degrees) are 1275

generally not easily implemented. Malmo (John- 1276

son et al., 2016) and MineRL (Guss et al., 2019) 1277

offer wrappers and training data to build agents 1278

in the popular Minecraft environment. While the 1279

agent’s action space is limited in Minecraft (see 1280

Table 4), the crafting nature of the game (that al- 1281

lows collecting, creating, destroying, or combining 1282

objects using one or more voxels) affords exploring 1283

a variety of compositional reasoning tasks with a 1284

low barrier to entry, while still using a 3D envi- 1285

ronment. Text directives, like those in CraftAssist 1286

(Gray et al., 2019), allow agents to learn to perform 1287

compositional crafting actions in this 3D environ- 1288

ment from natural language dialog. 1289

GridWorld Simulators: 2D gridworlds are com- 1290

paratively easier to construct than 3D environments, 1291
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and as such more options are available. GridWorlds1292

share the commonality that they exist on a dis-1293

cretized 2D plane, typically containing a maximum1294

of a few dozen cells on either dimension. Cells are1295

discrete locations that (in the simplest case) contain1296

up to a single agent or object, while more complex1297

simulators allow cells to contain more than one1298

object, including containers. Agents move on the1299

plane through simplified spatial dynamics, at a min-1300

imum rotate left, rotate right, and move forward,1301

allowing the entire world to be explored through a1302

small action space.1303

Where gridworlds tend to differ is in their render-1304

ing fidelity, and their non-movement action spaces.1305

In terms of rendering, some (such as BABYAI,1306

Chevalier-Boisvert et al., 2018) render a world1307

graphically, using pixels, with simplified shapes1308

for improving rendering throughput and reducing1309

RL agent training time. Others such as NetHack1310

(Küttler et al., 2020) are rendered purely as textual1311

characters, owing to their original nature as early1312

terminal-only games. Some simulators (e.g. Grid-1313

dly, Bamford, 2021) support a range of rendering1314

fidelities, from sprites (slowest) to shapes to text1315

characters (fastest), depending on how critical ren-1316

dering fidelity is for experimentation. As with 3D1317

simulators, hybrid environments (like VisualHints,1318

Carta et al., 2020) exist, where environments are1319

simultaneously rendered as a Text World and ac-1320

companying GridWorld that provides an explicit1321

spatial map.1322

Action spaces vary considerably in GridWorld1323

simulators (see Table 4), owing to the different1324

scripting environments that each affords. Some1325

environments have a small set of hardcoded envi-1326

ronment rules (e.g. BABYAI), while others (e.g.1327

NetHack) offer nearly 100 agent actions, rich craft-1328

ing, and complex agent-object interactions. Text1329

can occur in the form of task directives (e.g. “put1330

a ball next to the blue door” in BABYAI), partial1331

natural language descriptions of changes in the en-1332

vironmental state (e.g. “You are being attacked by1333

an orc” in NetHack), or as full Text World descrip-1334

tions in hybrid environments.1335
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