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ABSTRACT

Point cloud data is ubiquitous in scientific fields. Recently, geometric deep learn-
ing (GDL) has been widely applied to solve prediction tasks with point cloud data.
However, GDL models are often complicated and hardly interpretable, which
poses concerns to scientists when deploying these models in scientific analysis
and experiments. This work proposes a general mechanism based on learnable
randomness injection (LRI) that allows building inherently interpretable models
with general GDL backbones. Once being trained, LRI-induced models may de-
tect the points within the point cloud data, which carry information indicative to
the prediction labels. Such indicative information may be reflected by either the
existence of these points in the data or the geometric locations of these points.
We also propose four scientific datasets in the domains of high energy physics
and biochemistry to evaluate LRI. Compared with previous post-hoc interpreta-
tion methods, the points detected by LRI align much better and stabler with the
ground-truth patterns that have actual scientific meanings. LRI-induced models
are also more robust to the distribution shifts between training and test scenarios.

1 INTRODUCTION

The measurement of many scientific research objects can be represented as a point cloud, i.e., a set of
featured points in some geometric space. For example, in high energy physics (HEP), particles gen-
erated from collision experiments leave spacial signals on the detectors that they pass through (Guest
et al., 2018); In biology, a protein is often measured and represented as a collection of amino acids
with spacial locations (Wang et al., 2004; 2005). Geometric quantities of such point cloud data of-
ten encode important properties of the research object, analyzing which researchers may expect to
achieve new scientific discoveries (Tusnady & Simon, 1998; Aad et al., 2012).

Recently, machine learning techniques have been employed to accelerate the procedure of scientific
discovery (Butler et al., 2018; Carleo et al., 2019). For geometric data as above, geometric deep
learning (GDL) (Bronstein et al., 2017; 2021) has shown great promise and has been applied to the
fields such as HEP (Shlomi et al., 2020; Qu & Gouskos, 2020), biochemistry (Gainza et al., 2020;
Townshend et al., 2021) and so on. However, geometric data in practice is often irregular and high-
dimensional. Think about a collision event in HEP that generates hundreds to thousands of particles,
or a protein that consists of tens to hundreds of amino acids. Although each particle or each amino
acid is located in a low-dimensional space, the whole set of points eventually is extremely irregular
and high-dimensional. So, current research on GDL primarily focuses on designing neural network
(NN) architectures for GDL models to deal with the above data challenge. GDL models have to
preserve the symmetries of the system and incorporate the inductive biases reflected by geometric
principles to guarantee their prediction quality (Cohen & Welling, 2016; Bogatskiy et al., 2020), and
therefore often involve dedicated-designed complex NN architectures.

Albeit with outstanding prediction performance, the complication behind GDL models makes
them hardly interpretable. However, in many scientific applications, interpretable models are in
need (Roscher et al., 2020): For example, in drug discovery, compared to just predict the binding
affinity of a protein-ligand pair, it is more useful to know which groups of amino acids determine
the affinity and where can be the binding site, as the obtained knowledge may guide future research
directions (Gao et al., 2018; Karimi et al., 2019; 2020). Moreover, scientists tend to only trust inter-
pretable models in many scenarios, e.g., most applications in HEP, where real-experiment data lack
labels and a model has to be trained on simulation data (Nachman & Shimmin, 2019). Here, model
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Figure 1: Illustrations of the four scientific datasets in this work to study interpretable GDL models.

interpretation is used to verify whether the model indeed captures the patterns that match scientific
principles instead of some spurious correlation between the simulation environment and labels. Un-
fortunately, to the best of our knowledge, there have been no studies on interpretable GDL models
let alone their applications in scientific problems. Some previous post-hoc methods may be extended
to interpret a pre-trained GDL model while they suffer from some limitations as to be reviewed in
Sec. 2. Moreover, recent works (Rudin, 2019; Laugel et al., 2019; Bordt et al., 2022; Miao et al.,
2022) have shown that the data patterns detected by post-hoc methods are often inconsistent across
interpretation methods and pre-trained models, and may hardly offer reliable scientific insights.

To fill the gap, this work proposes to study interpretable GDL models. Inspired by the recent
work (Miao et al., 2022), we first propose a general mechanism, named Learnable Randomness
Injection (LRI) that allows building inherently interpretable GDL models based on a broad range of
GDL backbones. We also propose four real-world scientific applications with datasets in HEP and
biochemistry and provide an extensive comparison between LRI-induced GDL models and previous
post-doc interpretation approaches (after being adapted to GDL models) over these datasets.

Our LRI mechanism provides model interpretation by detecting a subset of points from the point
cloud that are most likely to determine the label of interest. The idea of LRI is to inject learn-
able randomness to each point, where, along with training the model for label prediction, injected
randomness on the points that are important to prediction gets reduced. The convergent amounts
of randomness on points essentially reveal the importance of the corresponding points for predic-
tion. Specifically in GDL, as the importance of a point may be indicated by either the existence
of this point in the system or its geometric location, we propose to inject two types of random-
ness, Bernoulli randomness, with the framework name LRI-Bernoulli to test existence importance
of points and Gaussian randomness on geometric features, with the framework name LRI-Gaussian
to test location importance of points. Moreover, by properly parameterized such Gaussian random-
ness, we may tell for a point, how in different directions perturbing its location affects the prediction
result more. With such fine-grained geometric information, we may estimate the direction of the
particle velocity when analyzing particle collision data in HEP. LRI is theoretically sound as it es-
sentially uses a variational objective derived from the information bottleneck principle (Tishby et al.,
2000). LRI-induced models also show better robustness to the distribution shifts between training
and testing scenarios, which gives scientists more confidence in applying them in practice.

We note that one obstacle to studying interpretable GDL models is the lack of valid datasets that
consist of both classification labels and scientifically meaningful patterns to verify the quality of
interpretation. Therefore, another significant contribution of this work is to prepare four bench-
mark datasets grounded on real-world scientific applications to facilitate interpretable GDL research.
These datasets cover important applications of HEP and biochemistry. Below we briefly introduce
these four datasets and also briefly illustrate them in Fig. 1.

• ActsTrack is a particle tracking dataset in HEP that is used to reconstruct the properties, such
as the kinematics of a charged particle given a set of position measurements from a tracking
detector. Tracking is an indispensable step in analyzing HEP experimental data as well as particle
tracking used in medical applications such as proton therapy (Schulte et al., 2004; Thomson,
2013; Ai et al., 2022). Our task is formulated differently from traditional track reconstruction
tasks: We predict the existence of a z → µµ decay and use the set of points from the µ’s to verify
model interpretation, which can be used to reconstruct µ tracks. ActsTrack also provides a
controllable environment (e.g., magnetic field strength) to study fine-grained geometric patterns.

• Tau3Mu, another application in HEP, is to detect a challenging signature of charged lepton
flavor violating decays, i.e., the τ → µµµ decay, given simulated muon detector hits in proton-
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proton collisions. Such decays are greatly suppressed in the Standard Model (SM) of particle
physics (Oerter, 2006; Blackstone et al., 2020), therefore, any detection of them is a clear signal
of new physics beyond the Standard Model (Calibbi & Signorelli, 2018; Collaboration et al.,
2020). Unfortunately, τ → µµµ contains particles of extremely low momentum, thus tech-
nologically impossible to trigger with traditional human-engineered algorithms. Hence, online
detection with advanced models that explores the correlations between signal hits on top of back-
ground hits is required to capture such decays at the Large Hadron Collider. Our task is to predict
the existence of τ → µµµ and use the detector hits left by the µ’s to verify model interpretation.

• SynMol is a molecular property prediction task. Although some works have studied model
interpretability in such tasks (McCloskey et al., 2019; Sanchez-Lengeling et al., 2020), they limit
their focus on the chemical-bond-graph representations of molecules, and largely ignore their
geometric features. In this work, we put focus on 3D molecular representations. Our task is to
predict the property given by two functional groups carbonyl and unbranched alkane (McCloskey
et al., 2019) and use atoms in these functional groups to verify model interpretation.

• PLBind is to predict protein-ligand binding affinities given the 3D structures of proteins and
ligands, which is a crucial step in drug discovery, because a high affinity is one of the major drug
selecting criteria (Wang & Zhang, 2017; Karimi et al., 2019). Accurately predicting their affini-
ties with interpretable models is useful for rational drug design and may help the understanding
of the underlying biophysical mechanism that enables protein-ligand binding (Held et al., 2011;
Du et al., 2016; Cang & Wei, 2018). Our task is to predict whether the affinity is above a given
threshold and use amino acids in the binding site of the test protein to verify model interpretation.

We evaluate LRI with three popular GDL backbone models over the above datasets. We also extend
five baseline interpretation methods to GDL for comparison. We find that interpretation results given
by LRI align much better with the scientific facts than those of the baselines. Also, we observe over
some datasets, LRI-Gaussian outperforms LRI-Bernoulli while on others vice versa. This implies
different GDL applications may have different interpretation requirements. Information indicative
to the labels may vary regarding how it depends on geometric features of the points. Interestingly,
we find LRI-Gaussian can discover some fine-grained geometric patterns, such as providing high-
quality estimations of the directions of particle velocities in ActsTrack, and a high-quality esti-
mation of the strength of the used magnetic field. Moreover, neither of LRI mechanisms degrades
the prediction performance of the used backbone models. LRI mechanisms even improve model
generalization when there exist some distribution shifts between the training and test scenarios.

2 RELATED WORK

We review two categories of methods that can provide interpretability in the following.

Post-hoc Interpretation Methods. Interpretation methods falling into this category assume a pre-
trained model is given and attempts to further analyze it to provide post-hoc interpretation. Among
them, gradient-based methods (Zhou et al., 2016; Selvaraju et al., 2017; Sundararajan et al., 2017;
Shrikumar et al., 2017; Chattopadhay et al., 2018) may be extended to interpret geometric data by
checking the gradients w.r.t. the input features or intermediate embeddings of each point. Some
methods to interpret graph neural networks can be applied to geometric data (Ying et al., 2019; Luo
et al., 2020; Schlichtkrull et al., 2020; Yuan et al., 2021). However, these methods need to mask
graph structures pre-constructed by geometric features and cannot fully evaluate the effectiveness
of geometric features. Among other methods, Chen et al. (2018a); Yoon et al. (2018) study pattern
selection for regular data, Ribeiro et al. (2016); Lundberg & Lee (2017); Huang et al. (2022) utilize
a local surrogate model, and Lundberg & Lee (2017); Chen et al. (2018b); Ancona et al. (2019);
Lundberg et al. (2020) leverage the shapley value to evaluate feature importance. These methods
either cannot utilize geometric features or cannot be easily applied to irregular geometric data.

Inherently Interpretable Models. Although vanilla attention mechanisms (Bahdanau et al., 2014;
Vaswani et al., 2017) were widely used for inherent interpretability, multiple recent studies show
that they cannot provide reliable interpretation, especially for data with irregular structures (Serrano
& Smith, 2019; Jain & Wallace, 2019; Ying et al., 2019; Luo et al., 2020). So, some works focusing
on improving the attention mechanism for better interpretability (Bai et al., 2021; Miao et al., 2022),
some propose to identify representative prototypes during training (Li et al., 2018; Chen et al., 2019),
and some methods (Taghanaki et al., 2020; Yu et al., 2020; Sun et al., 2022) adopt the information
bottleneck principle (Tishby et al., 2000). However, all these methods cannot analyze geometric
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Figure 2: The architectures of LRI-Bernoulli (top) and LRI-Gaussian (bottom).

features in GDL. Along another line, although invariant learning methods (Arjovsky et al., 2019;
Chang et al., 2020; Krueger et al., 2021; Wu et al., 2022) based on causality analysis may also
provide some interpretability, these methods are typically of great complexity and seem to provide
subpar interpretability even on graph-structured data without geometric features (Miao et al., 2022).

3 PRELIMINARIES AND PROBLEM FORMULATION

In this section, we define some useful concepts and notations.

GDL Tasks. We consider a data sample is a point cloud C = (V,X, r), where V = {v1, v2, ..., vn}
is a set of n points, X ∈ Rn×d includes d-dimensional features for all points, and r ∈ Rn×3 denotes
3D spacial coordinates of points. In this work, we introduce our notations by assuming the points are
in 3D euclidean space while our method can be generalized. We focus on building a classification
model ŷ = f(C) to predict the class label y of C. Regression tasks are left for future studies.

GDL Models. The first class of DGL models view each sample of points as an unordered set. It
learns a dense representation zv for each v ∈ V , and then applies a permutation invariant func-
tion, e.g., sum/mean/max pooling, to aggregate all point representations so that they can handle data
irregularity (Zaheer et al., 2017; Qi et al., 2017). The second class of methods can better utilize geo-
metric features and local information. These methods first construct a k-nn graph G over the points
in each sample based on their distances, e.g., ∥rv − ru∥, and iteratively update the representation
of point v via aggregation AGG({zu | u ∈ N (v)}), where N (v) is the neighbours of point v in
graph G and AGG is a permutation invariant function. Then, another function is used to aggregate all
point representations and make predictions. Compared with graph neural networks (GNNs) (Kipf
& Welling, 2016; Xu et al., 2018; Veličković et al., 2017) that encode graph-structured data without
geometric features, GDL models often process geometric features carefully: Typically, these fea-
tures are transformed into some scalars such as distances, angles and used as features so that some
group (e.g., E(3), SO(3)) invariances of the prediction can be kept (Fuchs et al., 2020; Klicpera
et al., 2020; Beaini et al., 2021; Satorras et al., 2021; Schütt et al., 2021). Some models that perform
3D convolution over 3D data also belong to the second class because the convolution kernels can
be viewed as one way to define the distance scalars for graph construction and neighborhood aggre-
gation (Schütt et al., 2017; Thomas et al., 2018; Wu et al., 2019). The third class will dynamically
construct the k-nn graphs based on the hidden representations of points (Wang et al., 2019; Qu &
Gouskos, 2020; Zhao et al., 2021). In this work, we focus on using the second class of models’
architectures as the backbones because most scientific applications adopt this class of models.

Interpretable Patterns in GDL. Given a sample C = (V,X, r), our goal of building an inherently
interpretable model is that the model by itself can identify a subset of points Cs = (Vs,Xs, rs)
that best indicates the label y. Mostly, Cs will have a scientific meaning. For example, in the task
to detect τ → µµµ decay, our model should identify the detector hits left by the three µ’s but not
the hits from other particles. We consider two types of indications given by a point to the label:
existence importance, i.e., whether the point exists in the cloud is important to determine the label,
and location importance, i.e. whether the geometric location of the point is important to determine
the label. In the above example, the existence of the detector hits left by the three µ’s is of course
important. Actually, the locations of these hits are also crucial because location features reflect
the momentum of these particles when they pass through detectors, which should satisfy equations
regarding certain invariant mass if they are indeed generated from a τ → µµµ decay.

4 METHODOLOGY

In this section, we introduce our method Learnable Randomness Injection (LRI). In the high-level
framework of LRI, we have an interpreter g and a classifier f . g is used to encode the original data
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and generate randomness to perturb the data. f is used to encode the perturbed data to make predic-
tions. g and f are trained together to make accurate prediction. LRI can be applied to a large class of
GDL models to make them interpretable. We may choose a GDL model architecture as the backbone
to build the data encoders in g and f . These encoders could share or not share parameters. Next, we
will introduce specifics about this procedure. We first describe LRI-Bernoulli, where Bernoulli ran-
domness is injected to measure the existence important of points. Then, we introduce LRI-Gaussian,
which injects Gaussian randomness into geometric features to test the location importance of points.
Finally, we connect our objectives to the information bottleneck principle (Tishby et al., 2000).

4.1 LRI-BERNOULLI TO TEST EXISTENCE IMPORTANCE

Pipeline. Given a sample C = (V,X, r), we first construct a k-nn graph G based on the euclidean
distance ∥rv−ru∥ between every point-pair v, u ∈ V . As shown in the top of Figure 2, the interpreter
g encodes C, generates a representation zv for each point v and uses the last component h to map
zv to pv ∈ [0, 1]. Here, h consists of an MLP plus a sigmoid layer, and samples a Bernoulli mask
for each point via mv ∼ Bern(pv). The sampling is based on a reparameterization trick (Jang et al.,
2016; Maddison et al., 2016) to make dmv

dpv
computable. The perturbed data C̃ is yielded by removing

the points with mv = 0 in C. The edges in G connected to these points are also masked and removed,
which gives a graph G̃. Finally, the classifier f takes as inputs C̃ and G̃ to make predictions.

Objective. Eq. 1 shows our objective for each sample C, where the first term is a cross-entropy
loss for classification and the second term is a KL divergence regularizer. β is the regularization
coefficient and Bern(α) is a predefined Bernoulli distribution with hyperparameter α < 1.

minLCE(f(C̃, G̃), y) + β
∑
v∈V

DKL(Bern(pv)∥Bern(α)). (1)

Here, f is optimized via the first term. The interpreter g is optimized via gradients that pass through
the masks {mv}v∈V contained in C̃ and G̃ in the first term, and {pv}v∈V in the second term.

Interpretation Rationale. The interpretation is given by the competition between the two terms in
Eq. 1. The first term is to achieve good classification performance so it tends to denoise the data C̃
by reducing the randomness generated by g, i.e., pv → 1. The second term, on the other hand, tends
to keep the level of randomness, i.e., pv → α. After the training, pv will converge to some value. If
the existence of a point v is important to the label y, then pv should be close to 1. Otherwise, pv is
close to α. We use pv’s to rank the points v ∈ V according to their existence importance.

4.2 LRI-GAUSSIAN TO TEST LOCATION IMPORTANCE

Pipeline. We start from the same graph G as LRI-Bernoulli. As shown in the bottom of Figure 2,
here, the interpreter g will encode the data and map it to a covariance matrix Σv ∈ R3×3 for each
point v. Gaussian randomness ϵv ∼ N (0,Σv) is then sampled to perturb the geometric features
r̃v = rv + ϵv of v. Note that here, to test location importance, a new k-nn graph G̃ is constructed
based on perturbed distances ∥r̃v − r̃u∥. Reconstructing G̃ is necessary because using the original
graph G will leak information from the original geometric features r. Finally, the classifier f takes
as inputs the location-perturbed data C̃ = (V,X, r̃) and G̃ to make prediction.

Objective. Eq. 2 shows the objective of LRI-Gaussian for each sample C. Different from Eq. 1, here
the regularization is given by a predefined Gaussian distribution N (0, σI), where I is an identity
matrix and σ is a hyperparameter.

minLCE(f(C̃, G̃), y) + β
∑
v∈V

DKL(N (0,Σv)∥N (0, σI)). (2)

Again, the classifier f will be optimized via the first term. The interpreter g will be optimized via
gradients that pass through the perturbation {ϵv}v∈V implicitly contained in C̃ and G̃ in the first term,
and {Σv}v∈V in the second term. However, there are two technical difficulties to be addressed.

First, how to parameterize Σv as it should be positive definite, and how to make dϵv
dΣv

computable?
Our solution is to let the last component h in g map representation zv not to Σv directly but to a
dense matrix Uv ∈ R3×3 via an MLP and two scalars a1, a2 ∈ R+ via a softplus layer. Then,
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Table 1: Statistics of the four datasets.
# Classes # Features in X # Dimensions in r # Samples Avg. # Points/Sample Avg. # Important Points/Sample Class Ratio Split Scheme Split Ratio

ActsTrack 2 0 3 3241 109.1 22.8 39/61 Random 70/15/15
Tau3Mu 2 1 2 129687 16.9 5.5 24/76 Random 70/15/15
SynMol 2 1 3 8663 21.9 6.6 18/82 Patterns 78/11/11
PLBind 2 3 3 10891 339.8 132.2 29/71 Time 92/6/2

the covariance matrix is computed by Σv = a1UvU
T
v + a2I. Moreover, we find using Σv and

the reparameterization trick for multivariate Gaussian implemented by PyTorch is numerically un-
stable as it includes Cholesky decomposition. So, instead, we use the reparameterization trick
ϵv =

√
a1Uvs1 +

√
a2Is2, where s1, s2 ∼ N (0, I). It is not hard to show that E[ϵvϵTv ] = Σv .

Second, the construction of k-nn graph G̃ based on r̃v is not differentiable, which makes the gradients
of {ϵv}v∈V that pass through the structure of G̃ not computable. We address this issue by associating
each edge v, u in G̃ with a weight wvu ∈ (0, 1) that monotonically decreases w.r.t. the distance,
wvu = ϕ(∥r̃v − r̃u∥). These weights are used in the neighborhood aggregation procedure in f .
Specifically, for the central point v, f adopts aggregation AGG({wvuzu | u ∈ N (v)}), where zu
is the representation of the neighbor point u in the current layer. This design makes the structure
of G̃ differentiable. Moreover, because we set wuv < 1, the number of used nearest neighbors to
construct G̃ is “conceptually” smaller than k. So, in practice, we choose a slightly larger number
(say 1.5k) of nearest neighbors to construct G̃ and adopt the above weight strategy.

Interpretation Rationale. The interpretation rationale is similar to that of LRI-Bernoulli, i.e., given
by the competition between the two terms in Eq. 1. The first term is to achieve good classification
performance by reducing the randomness generated by g. The second term, on the other hand, tends
to keep the level of randomness, i.e., Σv → σI. After training, the convergent determinant |Σv|
which characterizes the entropy of injected Gaussian randomness, indicates the location importance
of point v. We use |Σv|’s to rank the points v ∈ V according to their location importance.

A
B

Fine-grained Interpretation on Location Importance. Interestingly, the con-
vergent Σv implies more fine-grained geometric information, i.e., how different
directions of perturbations on point v affect the prediction. This can be analyzed
by checking the eigenvectors of Σv . As illustrated in the figure on the right, Σv of point v at A
is represented by the ellipses {x : xTΣvx < θ} for different θ’s. It tells perturbing v towards
the direction B affects the prediction less than perturbing v towards the orthogonal direction. As a
showcase, later, we use such fine-grained information to conduct in-depth analysis of HEP data.

4.3 CONNECTING LRI AND THE INFORMATION BOTTLENECK PRINCIPLE.

Our objectives Eq. 1 and Eq.2 are essentially variational upper bounds of the information bottleneck
(IB) (Tishby et al., 2000; Alemi et al., 2017) whose goal is to reduce the mutual information between
C and C̃ while keeping the mutual information between C̃ and the label i.e., min−I(C̃; y)+βI(C̃; C).
We provide the derivations in Appendix A. Grounded on the IB principle, LRI tends to extract
minimal sufficient information to make predictions. Also benefiting from IB, LRI-induced models
tend to be more robust to distribution shifts between training and test datasets (Achille & Soatto,
2018; Wu et al., 2020; Miao et al., 2022).

5 BENCHMARKING INTERPRETABLE GDL FOR SCIENCE

In this section, we will evaluate LRI-Bernoulli, LRI-Gaussian and some baseline methods extended
to GDL over the proposed four datasets. Here, we briefly describe our setup and put more details
(including details on the datasets, baseline hyperparameter tuning) in Appendix B and C. A summary
of dataset statistics is shown in Table 1.

Backbone Models include DGCNN (Wang et al., 2019), Point Transformer (Zhao et al., 2021), and
EGNN (Satorras et al., 2021) which have been widely used for scientific GDL (Qu & Gouskos,
2020; Atz et al., 2021; Gagliardi et al., 2022).

Baseline interpretation methods include three masking-based methods BernMask, BernMask-P
and PointMask, and two gradient-based methods GradGeo and GradGAM. Masking-based methods
attempt to learn a mask ∈ [0, 1] for each point and may help with testing existence importance of
points. Among them, BernMask and BernMask-P are post-hoc methods extended from two pre-
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Table 2: Interpretation performance on the four datasets. The Bold†, Bold, and Underline highlight
the first, second, and third best results, respectively. All results are reported with mean ± std.

ActsTrack
DGCNN Point Transformer EGNN

ROC AUC Prec@12 Prec@24 ROC AUC Prec@12 Prec@24 ROC AUC Prec@12 Prec@24

Random 50 21 21 50 21 21 50 21 21
GradGeo 65.92± 1.55 30.71± 1.46 30.20± 1.07 65.92± 1.61 31.76± 1.04 30.06± 1.32 67.57± 0.65 31.09± 1.37 30.87± 1.24
BernMask 68.85± 4.72 45.90± 7.14 42.72± 7.91 76.94± 1.99 71.17± 1.66 57.10± 3.22 50.94± 3.86 18.67± 2.06 20.00± 3.13
BernMask-P 88.16± 3.22 76.94± 11.30 66.71± 6.99 84.36± 2.64 73.24± 6.60 60.41± 5.44 30.81± 27.63 17.38± 32.08 13.92± 21.22
PointMask 49.85± 6.11 21.05± 4.67 21.54± 4.16 50.66± 0.91 22.43± 5.78 20.63± 3.63 49.55± 1.40 20.35± 1.14 20.06± 1.01
GradGAM 82.96± 2.42 84.29± 2.25 66.34± 2.56 83.07± 2.28 82.13± 0.92 64.64± 1.89 79.44± 2.62 78.38± 1.96 52.55± 3.38

LRI-Bernoulli 90.29± 1.39 89.36± 1.20 74.59± 1.28 87.06± 2.49 85.71± 0.99 67.65± 1.22 78.57± 3.34 81.56± 1.13 55.29± 1.99
LRI-Gaussian 95.49† ± 0.34 92.40† ± 0.64 79.87† ± 0.72 93.11† ± 1.50 88.39† ± 4.36 74.71† ± 1.99 94.34† ± 0.70 91.54† ± 1.49 76.78† ± 0.81

Tau3Mu
DGCNN Point Transformer EGNN

ROC AUC Prec@3 Prec@7 ROC AUC Prec@3 Prec@7 ROC AUC Prec@3 Prec@7

Random 50 35 35 50 35 35 50 35 35
GradGeo 80.76± 0.31 68.86± 0.37 56.05± 0.34 79.62± 0.33 67.96± 0.49 55.13± 0.24 78.05± 1.13 64.75± 2.09 54.28± 0.78
BernMask 54.28± 1.15 50.88± 1.64 42.21± 0.94 30.00± 0.40 12.48± 0.58 18.81± 0.27 72.27± 2.66 61.27± 3.68 51.91± 1.63
BernMask-P 54.99± 14.06 43.56± 13.59 39.23± 9.49 76.46± 4.05 59.39± 4.78 53.41± 3.30 70.99± 5.59 56.36± 6.04 50.06± 4.44
PointMask 52.92± 2.56 39.55± 2.27 36.71± 1.48 57.33± 2.28 44.00± 1.91 38.53± 2.41 55.90± 5.39 39.92± 8.20 37.05± 4.74
GradGAM 68.42± 4.04 51.82± 6.02 45.78± 3.60 80.91† ± 0.35 61.14± 1.46 54.36± 0.67 75.84± 1.45 62.03± 2.41 53.19± 1.32

LRI-Bernoulli 77.88± 1.03 70.66± 0.90 55.94± 0.77 77.72± 1.52 67.73± 2.59 55.74± 1.15 78.71± 0.66 65.99± 0.84 55.98± 0.57
LRI-Gaussian 81.38† ± 0.62 73.13† ± 1.10 58.28† ± 0.59 79.58± 0.66 70.32† ± 0.76 57.05† ± 0.53 80.02† ± 0.39 71.20† ± 0.93 57.07± 0.41

SynMol
DGCNN Point Transformer EGNN

ROC AUC Prec@5 Prec@8 ROC AUC Prec@5 Prec@8 ROC AUC Prec@5 Prec@8

Random 50 31 31 50 31 31 50 31 31
GradGeo 72.10± 9.66 59.59± 11.05 50.30± 8.70 76.94± 1.43 62.30± 0.78 55.29± 0.87 73.49± 5.23 61.85± 5.26 50.46± 3.95
BernMask 49.69± 9.22 34.37± 9.32 32.15± 7.64 25.28± 3.52 6.85± 1.57 8.65± 1.14 59.76± 9.09 49.96± 7.56 40.72± 7.25
BernMask-P 70.51± 39.52 63.02± 36.13 52.93± 30.14 87.23± 6.07 75.39± 9.74 63.00± 7.31 90.00± 7.85 85.52± 5.75 68.94± 6.37
PointMask 74.22± 3.31 71.54± 4.27 55.18± 2.86 72.03± 2.10 60.13± 2.57 51.11± 1.43 65.43± 6.63 53.89± 2.25 48.11± 3.05
GradGAM 81.98± 5.54 78.80± 6.67 59.86± 5.86 85.54± 1.19 80.24± 1.98 64.38± 1.49 57.00± 5.52 48.07± 8.56 41.30± 5.08

LRI-Bernoulli 96.03± 1.54 87.11± 4.51 74.57± 1.57 91.69± 1.52 82.72± 2.20 68.37± 1.11 90.64± 3.30 71.96± 5.97 68.08± 4.18
LRI-Gaussian 99.02† ± 0.36 97.72† ± 0.94 77.04† ± 0.43 95.35† ± 1.02 87.09† ± 1.97 72.26† ± 1.40 97.28† ± 0.65 91.52† ± 1.28 74.05† ± 1.18

PLBind
DGCNN Point Transformer EGNN

ROC AUC Prec@20 Prec@40 ROC AUC Prec@20 Prec@40 ROC AUC Prec@20 Prec@40

Random 50 45 45 50 45 45 50 45 45
GradGeo 52.83± 4.63 55.68± 2.47 53.79± 1.83 58.68± 2.83 59.30± 3.13 57.85± 3.57 57.78† ± 2.61 61.00± 2.24 60.11± 1.76
BernMask 48.18± 4.14 48.36± 3.32 48.00± 3.40 59.73† ± 2.33 59.30± 3.09 58.73± 2.90 49.83± 2.17 40.34± 3.96 41.99± 2.32
BernMask-P 48.88± 5.66 42.70± 8.37 42.46± 7.88 56.47± 2.77 56.86± 3.79 54.53± 4.64 51.96± 6.80 60.68± 7.95 57.69± 6.41
PointMask 51.38± 3.12 45.36± 1.91 45.22± 1.52 52.92± 3.83 44.34± 3.50 44.50± 4.52 50.00± 0.00 45.10± 0.00 45.00± 0.00
GradGAM 53.76± 3.38 55.50± 4.83 54.23± 4.42 56.51± 3.32 56.54± 6.59 54.46± 5.65 49.73± 2.18 56.92± 6.63 53.96± 3.53

LRI-Bernoulli 55.47† ± 2.06 67.56† ± 5.38 61.02† ± 5.68 59.53± 1.94 72.98† ± 3.85 67.33† ± 2.08 57.07± 3.09 73.22† ± 2.32 66.89± 2.07
LRI-Gaussian 51.81± 3.24 63.88± 3.18 60.37± 3.09 54.05± 2.94 62.76± 5.93 60.44± 5.62 50.32± 3.80 72.64± 2.04 69.40† ± 1.44

vious methods on graph-structured data (Ying et al., 2019) and (Luo et al., 2020), respectively.
BernMask and BernMask-P differ in the way they generate the masks, where BernMask-P utilizes
a parameterized mask generator while BernMask optimizes a randomly initialized mask with no
other parameterization. PointMask is an inherently interpretable model adopted from Taghanaki
et al. (2020). Thus, they are the baselines of LRI-Bernoulli. GradGeo is extended from Shrikumar
et al. (2017) and checks the gradients w.r.t. geometric features, which may help with testing location
importance, and thus is a baseline of LRI-Gaussian. GradGAM is extended from Selvaraju et al.
(2017) and leverages the gradients w.r.t. the learned representations of points, which also reflects
importance of the points to the prediction.

Metrics. On each dataset, the model is trained based on the prediction (binary classification) task.
Then, we compare interpretation labels (∈ {0, 1}) of points with the learned point importance
scores to measure interpretation performance. We report two metrics: interpretation ROC AUC
and precision@m. Beyond interpretation, the model prediction performance is also measured in
ROC AUC and reported in Sec. 5.5, which is to make sure that all models are pre-trained well for
those post-hoc baselines and to verify that LRI-induced models also have good prediction accuracy.

Hyperparameter Tuning. Gradient-based methods have no hyperparameters to tune, while all
other methods are tuned based on the validation prediction performance for fair comparison, because
tuning on interpretation performance is impossible in a real-world setting. For LRI-Bernoulli, α is
tuned in {0.5, 0.7}; for LRI-Gaussian, as the geometric features r in our datasets are all centered at
the origin, σ is tuned based on the 5th and 10th percentiles of entries of abs(r). And, β is tuned in
{1.0, 0.1, 0.01} for both methods after normalization based on the total number of points.

5.1 ACTSTRACK: END-TO-END PATTERN RECOGNITION AND TRACK RECONSTRUCTION

Here, we are to predict whether a collision event contains a z → µµ decay. Each point in a point
cloud sample is a detector hit where a particle passes through. We use the hits from the decay to
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Table 3: The angle (◦, mean±std) between the velocity and the first principal component of Σv v.s.
between the velocity and the gradient of rv in x-y space under different magnetic field strengths (T).

2T 4T 6T 8T 10T 12T 14T 16T 18T 20T

Random 45 45 45 45 45 45 45 45 45 45
GradGeo 67.11± 2.45 71.15± 1.29 55.21± 2.12 59.43± 2.82 59.73± 2.54 52.78± 3.18 51.99± 3.24 50.77± 1.60 51.99± 3.89 53.74± 5.34
LRI-Gaussian 5.09± 0.97 5.17± 0.42 5.65± 1.05 6.67± 1.17 5.99± 1.71 6.66± 1.25 7.50± 2.37 7.19± 1.00 7.57± 1.20 7.89± 1.03

test interpretation performance. We evaluate all methods on the data generated with a magnetic
field B = 2T parallel to the z axis (See Fig. 1a). Table 2 shows the results, LRI-Gaussian works
consistently the best on all backbones and metrics, and LRI-Bernoulli achieves the second best
performance. This indicates that both the existence and location of those detector hits left by the µ’s
are important to predictions. GradGAM is also a competitive baseline, which even outperforms both
BernMask and BernMask-P. While BernMask-P performs decently on two backbones, it fails to
provide interpretability for EGNN, and its results have high variances, probably due to the unstable
issue of post-hoc interpretations, as described in Miao et al. (2022). BernMask, PointMask, and
GradGeo seem unable to provide valid interpretability for ActsTrack.
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Figure 3: Eigen-ratio of Σv v.s.
magnetic field strength B (T).

Fine-grained Geometric Patterns. We find LRI-Gaussian can
discover fine-grained geometric patterns. Intuitively, slight per-
turbation of each point along the underlying track direction will
affects the model prediction less than the same level of perturba-
tion orthogonal to the track. Therefore, the principal component
of Σv in x-y space, i.e., the space orthogonal to the direction
of the background magnetic field, can give an estimation of the
track direction at v. Table 3 provides the evaluation of track di-
rection (velocity direction) estimation based on analyzing Σv .
Here, we test the background magnetic field changing from 2T
to 20T. LRI-Gaussian is far more accurate than GradGeo. The
later uses gradients of different coordinates to compute the most
sensitive direction. Moreover, the ratio between the lengths of
two principal components of Σv in x-y space gives an estimation of the curvature of the track at v,
which is proportion to the strength of the magnetic field B up to a constant multiplier (due to the
Lorentz force F ∝ B). Therefore, we can estimate B by analyzing Σv . Fig. 3 shows this approach
provides an almost accurate estimation of B up to a constant multiplier.

5.2 TAU3MU: τ → µµµ DECAY DETECTION IN PROTON-PROTON COLLISIONS

This task is to predict whether a proton-proton collision event contains a τ → µµµ decay, which is
similar to ActsTrack, while in Tau3Mu the µ’s are a lot softer, and only the hits from the first
layer of detectors are used. Each point in a point cloud sample is a detector hit associated with a
local bending angle and a 2D coordinate in the pseudorapidity-azimuth (η-ϕ) space. We use the hits
generated from this decay to test interpretation performance. As shown in Table 2, LRI-Gaussian
still works the best. LRI-Bernoulli and GradGeo are close, and both are the second best. While
GradGAM still works well on some backbones, all masking-based methods do not perform well.

5.3 SYNMOL: MOLECULAR PROPERTY PREDICTION WITH SYNTHETIC PROPERTIES

This task is to predict whether a molecule contains both functional groups branched alkanes and car-
bonyl, which together give certain synthetic properties (McCloskey et al., 2019; Sanchez-Lengeling
et al., 2020). Each point in a point cloud is an atom associated with a 3D coordinate and a categorical
feature indicating the atom type. We use the atoms in these two functional groups to test interpre-
tation performance. As shown in Table 2, LRI-Gaussian performs consistently the best by only
perturbing geometric features in molecules, and LRI-Bernoulli works the second best and achieves
comparable performance with LRI-Gaussian on Point Transformer. This shows that both the exis-
tence and locations of atoms are critical and further validates the benefit of using 3D representations
of molecules in the tasks like molecular property prediction. Among other methods, GradGAM,
BernMask-P and PointMask are unstable and can only provide some interpretability for one or two
backbones, while GradGeo and BernMask seem to fail to perform well on SynMol.
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Table 4: Generalization performance of LRI. Classification AUC on test sets are reported with
mean±std for all backbones on the four datasets.

ActsTrack Tau3Mu SynMol PLBind

DGCNN Point Transformer EGNN DGCNN Point Transformer EGNN DGCNN Point Transformer EGNN DGCNN Point Transformer EGNN

ERM 97.99± 0.38 96.75± 0.21 97.45± 0.52 87.38± 0.08 86.20± 0.13 86.45± 0.09 99.95± 0.03 98.14± 0.42 99.87± 0.05 80.17± 5.23 83.13± 1.19 86.80± 3.52
LRI-Bernoulli 98.11± 0.09 97.39± 0.27 98.52± 0.35 87.45± 0.06 86.44± 0.08 86.56± 0.11 99.82± 0.15 97.93± 0.46 99.81± 0.05 81.25± 2.01 86.83± 2.06 86.93± 3.91
LRI-Gaussian 98.17± 0.24 98.04± 0.54 98.85± 0.14 87.74± 0.15 86.03± 0.37 86.67± 0.08 99.98± 0.01 98.80± 0.31 99.88± 0.05 84.34± 5.32 86.71± 0.64 87.53± 0.95

Table 5: Generalization performance of LRI with distribution shifts. The column name d1-d2 de-
notes the models are validated and tested on samples with d1 and d2 tracks, respectively.

ActsTrack 10-10 15-20 20-30 25-40 30-50 35-60 40-70

ERM 96.33± 0.65 93.83± 0.34 91.14± 1.07 87.85± 1.12 85.96± 1.74 84.19± 1.54 82.87± 0.74
LRI-Bernoulli 97.05± 0.71 94.66± 0.75 93.08± 0.94 90.93± 0.76 89.95± 1.31 86.11± 1.43 86.95± 1.46
LRI-Gaussian 97.51± 0.76 95.69± 0.80 93.64± 1.39 91.42± 2.97 89.89± 1.15 87.45± 1.47 88.13± 0.63

5.4 PLBIND: PROTEIN-LIGAND BINDING AFFINITY PREDICTION

This task is to predict whether a protein-ligand pair is of affinity KD < 10 nM. Each point in a
protein is a amino acid associated with a 3D coordinate, a categorical feature indicating the amino
acid type, and two scalar features. Each point in a ligand is an atom associated with a 3D coordinate,
a categorical feature indicating the atom type, and a scalar feature. Different from other datasets,
each sample in PLBind contains two sets of points. So, for each sample, two encoders will be
used to encode the ligand and the protein separately, and the obtained two embeddings will be added
to make a prediction. As shown in Table 2, LRI-Bernoulli outperforms all other methods, while
LRI-Gaussian achieves comparable performance on EGNN. This might indicate that to make good
predictions on PLBind, the existence of certain groups of amino acids is more important than their
exact locations. Interestingly, all other methods do not seem to perform well on PLBind. Moreover,
all methods have low ROC AUC, which we guess is because only a part of but not the entire binding
site is important to decide the binding affinity.

5.5 GENERALIZATION PERFORMANCE AND ABLATION STUDIES OF LRI

LRI-induced models can generalize better while being interpretable. As shown in Table 4, both
LRI-induced models never degrade prediction performance and sometimes may even boost it com-
pared with models trained without LRI, i.e., using empirical risk minimization (ERM). Moreover,
LRI-induced models are more robust to distribution shifts as LRI is grounded by the IB principle.
Table 5 shows a study with shifts on the numbers of particle tracks, where all models are trained
on samples with 10 particle tracks, and tested on samples with a different number of (from 10 to
70) particle tracks. We observe LRI-induced models work consistently better than models naively
trained without LRI. We also conduct ablation studies on the differentiable graph reconstruction
module proposed specifically for geometric data in LRI-Gaussian, we find that without this module
the interpretation performance of LRI-Gaussian may be reduced up to 49% on ActsTrack and up
to 23% on SynMol, which shows the significance of this module. More details of the ablation study
can be found in Appendix E.1.

6 CONCLUSION

This work systematically studies interpretable GDL models by proposing a framework Learnable
Randomness Injection (LRI) and four datasets with ground-truth interpretation labels from real-
world scientific applications. We have studied interpretability in GDL from the perspectives of
existence importance and location importance of points, and instantiated LRI with LRI-Bernoulli
and LRI-Gaussian to test the two types of importance, respectively. We observe LRI-induced models
provide interpretation best aligning with scientific facts, especially LRI-Gaussian that tests location
importance. Grounded by the IB principle, LRI never degrades model performance, and may often
improve the performance when there exist distribution shifts between the training and test scenarios.
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A VARIATIONAL BOUNDS OF THE IB PRINCIPLE

Let’s assume the sample C ∼ PC. We ignore the G̃ in our objectives to keep the notation simple,
then, the IB objective is:

min−I(C̃; y) + βI(C̃; C), (3)
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where y is the label, C̃ is the perturbed sample, and I(.; .) denotes the mutual information between
two random variables.

For the first term −I(C̃; y), by definition we have:

−I(C̃; y) = −EC̃,y

[
log

P(y | C̃)
P(y)

]
. (4)

We introduce a variational approximation Pθ(y | C̃) for P(y | C̃) as it is intractable. Then, we yield
a variational upper bound:

−I(C̃; y) = −EC̃,y

[
log

Pθ(y | C̃)
P(y)

]
− EC̃

[
DKL(P(y | C̃)∥Pθ(y | C̃))

]
≤ −EC̃,y

[
log

Pθ(y | C̃)
P(y)

]
= −EC̃,y

[
logPθ(y | C̃)

]
−H(y), (5)

where H(y) is a constant, therefore, minimizing the cross-entropy loss LCE(fθ(C̃), y) is equivalent
to minimizing a variational upper bound of −I(C̃; y).

For the second term I(C̃; C), because C̃ = gϕ(C), i.e., C̃ is given by a model parameterized by ϕ, by
definition, we have:

I(C̃; C) = EC̃,C

[
log

Pϕ(C̃ | C)
P(C̃)

]
. (6)

As P(C̃) is intractable, we introduce a variational approximation Q(C̃). Then, we yield a variational
upper bound:

I(C̃; C) = EC̃,C

[
log

Pϕ(C̃ | C)
Q(C̃)

]
−DKL

(
P(C̃)∥Q(C̃)

)
≤ EC

[
DKL

(
Pϕ(C̃ | C)∥Q(C̃)

)]
. (7)

For LRI-Bernoulli, because gϕ takes as input C = (V,X, r) and first outputs pv ∈ [0, 1] for each
point v ∈ V . Then, it samples mv ∼ Bern(pv) and yields C̃ by removing all points with mv = 0 in
C. This procedure gives Pϕ(C̃ | C) =

∏
v∈V P(mv|pv). In this case, we define Q(C̃) as follows. For

every point cloud C ∼ PC, we sample m′
v ∼ Bern(α), where α ∈ [0, 1] is a hyperparameter. We

remove all points in C and add points when their m′
v = 1. This procedure gives Q(C̃) =

∑
C P(m′ |

C)PC(C). As m′ is independent from C given its size n, Q(C̃) =
∑

n P(m′|n)PC(C = n) =
P(n)

∏n
v=1 P(m′

v), where P(n) is a constant. Then, we yield:

DKL

(
Pϕ(C̃ | C)∥Q(C̃)

)
=

∑
v∈V

DKL(Bern(pv)∥Bern(α)) + c(n, α), (8)

where c(n, α) is a constant, therefore, minimizing the second term of LRI-Bernoulli is equivalent
to minimizing a variational upper bound of I(C̃; C). Now, we can conclude that the objective of
LRI-Bernoulli is a variational upper bound of the IB principle.

For LRI-Gaussian, gϕ now takes as input C = (V,X, r) and first outputs a covariance matrix Σv ∈
R3×3 for each point v ∈ V . Then, it samples ϵv ∼ N (0,Σv) and yields C̃ = (V,X, r+ ϵ), where ϵ

is a vector containing ϵv for each point. This procedure gives Pϕ(C̃ | C) =
∏

v∈V P(ϵv|Σv). In this
case, we define Q(C̃) as follows. For every point cloud C ∼ PC, we sample ϵ′v ∼ N (0, σI) and yield
C̃ = (V,X, r + ϵ′), where σ is a hyperparameter. Similarly, we obtain Q(C̃) = P(n)

∏n
v=1 P(ϵ′v),

where P(n) is a constant. Finally, for this case, we have:

DKL

(
Pϕ(C̃ | C)∥Q(C̃)

)
=

∑
v∈V

DKL(N (0,Σv)∥N (0, σI) + c(n, α), (9)
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where c(n, α) is a constant, therefore, minimizing the second term of LRI-Gaussian is equivalent
to minimizing a variational upper bound of I(C̃; C). Hence, the objective of LRI-Gaussian is also a
variational upper bound of the IB principle.

B DATASET COLLECTION

We describe how we collect the four datasets in this section.

Basic Settings. 1) All coordinates in the four datasets are centered at the origin. 2) Only positive
samples in our datasets have ground-truth interpretation labels, so we only evaluate interpretation
performance on the positive samples. 3) For any pair of points v and u in the four datasets, they
have an edge feature of (∥rv − ru∥, rv−ru

∥rv−ru∥ ) if they are connected in the constructed k-nn graph.

ActsTrack. z → µµ events are simulated with Pythia8 generator (Sjöstrand et al., 2015) overlaid
with soft QCD pileup events, and particle tracks are simulated using Acts Common Tracking Soft-
ware (Ai et al., 2022). For all samples, ten pileup interactions are generated with a center-of-mass
energy of 14TeV, and the additional hard scatter interaction is only generated for positive samples.
Particle tracks are simulated with a magnetic field parallel to the z axis, and the default ActsTrack
is simulated with B = 2T . To make sure both µ’s from the decay are properly measured, we cal-
culate the invariant mass mij for every pair of µ’s in the generated data using Eq. 10 so that every
positive sample in our dataset has at least a pair of µ’ with an invariant mass close to 91.19 GeV,
i.e., the mass of the z bosons.

1

2
m2

ij = m2 +
(√

m2 + p2x,i + p2y,i + p2z,i ·
√
m2 + p2x,j + p2y,j + p2z,j

)
− (px,i · px,j + py,i · py,j + pz,i · pz,j) . (10)

Then, those detector hits left by the µ’s from the z → µµ decay is labeled as ground-truth inter-
pretation. As our focus is on model interpretation performance, we only keep 10 tracks in each
sample to train and test models to reduce classification difficulty, while raw files with all tracks are
also provided. Each point in a sample is a detector hit left by some particle, and it is associated
with a 3D coordinate. As points in ActsTrack do not have any features in X, we use a dummy
X with all ones when training models. Momentum of particles measured by the detectors is also
provided, which can help evaluate fine-grained geometric patterns in the data, but it is not used for
model training. Because each particle on average leaves 12 hits and a model may classify samples
well if it captures the track of any one of the µ’s from the decay, we report both precision@12 and
precision@24. Finally, we randomly split the dataset into training/validation/test sets with a ratio of
70 : 15 : 15.

Tau3Mu. The tau leptons produced in decays of D and B mesons simulated by the PYTHIA gen-
erator are used to generate the signal samples. The background events are generated with multiple
soft QCD interactions modeled by the PYTHIA generator with a setting that resembles the collider
environment at the High Luminosity LHC. The generated muons’ interactions with the material in
the endcap muon chambers are simulated including multiple scattering effects that resemble the
CMS detector. The signal sample is mixed with the background samples at per-event level (per
point cloud), with the ground-truth labels preserved for the interpretation studies. The hits left by
the µ’s from the τ → µµµ decay are labeled as ground-truth interpretation. We only use hits on
the first layer of detectors to train models and make sure every sample in the dataset has at least
three detector hits. Each point in the sample contains measurements of a local bending angle and a
2D coordinate in the pseudorapidity-azimuth (η-ϕ) space. Because in the best case the model only
needs to capture hits from each µ, we report precision@3. And because 80% of positive samples
have less than 7 hits labeled as ground-truth interpretation, we also report precision@7. Finally, we
randomly split the dataset into training/validation/test sets with a ratio of 70 : 15 : 15.

SynMol. We utilize the molecules in ZINC (Irwin et al., 2012), and follow McCloskey et al. (2019);
Sanchez-Lengeling et al. (2020) to create synthetic properties based on the existence of certain func-
tional groups. Specifically, if a molecule contains both the unbranched alkane and carbonyl, then
we label it as a positive sample; otherwise it is labeled as a negative sample. So, the atoms of
branched alkanes and carbonyl are labeled as ground-truth interpretation. Instead of 2D represen-
tations of molecules, we associate each atom a 3D coordinate by generating a conformer for each
molecule. To do this, we first add hydrogens to the molecule and apply the ETKDG method (Riniker
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& Landrum, 2015). After that, the generated structures are cleaned up using the MMFF94 force
field (Halgren, 1999) with a maximum iteration of 1000, and the added hydrogens are removed once
it is finished. Both ETKDG and MMFF94 are implemented using RDKit. Besides a 3D coordinate,
each point in a sample also has a categorical feature indicating the atom type. Even though the two
functional groups may only have five atoms in total, some molecules may contain multiple such
functional groups. So, we report both precision@5 and precision@8 (80% of positive samples have
less than 8 atoms labeled as ground-truth interpretation). Finally, we split the dataset in a way that
the number of molecules with or without either of these functional groups is uniformly distributed
following (McCloskey et al., 2019) so that the dataset bias is minimized.

PLBind. We utilize protein-ligand complexes from PDBBind (Liu et al., 2017), which annotates
binding affinities for a subset of complexes in the Protein Data Bank (PDB) (Berman et al., 2000).
In PDBBind, each protein-ligand pair is annotated with a dissociation constant Kd, which measures
the binding affinity between a pair of protein and ligand. We use a threshold of 10 nM on Kd to
obtain a binary classification task, and the model interpretability is studied on the protein-ligand
pairs with high affinities. To augment negative data, during training, there is a 10% change of
switching the ligand of a complex to a random ligand, and the new protein-ligand pair will be
labeled as a negative sample, i.e., low affinity. The ground-truth interpretation labels consist of two
parts. First, as shown in previous studies (Liu et al., 2022), using the part of the protein that is
within 15Å of the ligand is enough to even learn to generate ligands that bind to a certain protein,
so, we define the amino acids that are within 15Å of the ligand to be the binding site and label
them as ground-truth interpretation. Second, we retrieve all atomic contacts (hydrogen bond and
hydrophobic contact) for every protein-ligand pair from PDBsum (Laskowski et al., 2018) and label
the corresponding amino acids in the protein as the ground-truth interpretation. Each amino acid in
a protein is associated with a 3D coordinate, the amono acid type, solvent accessible surface area
(SASA), and the B-factor. Each atom in a ligand is associated with a 3D coordinate, the atom type,
and Gasteiger charges. Finally, we split the dataset into training/validation/test sets according to the
year the complexes are discovered following (Stärk et al., 2022).

C DETAILS ON HYPERPARAMETER TUNING

All hyperparameters are tuned based on validation classification AUC for fair comparison. All
settings are trained with 5 different seeds and the average performance on the 5 seeds are reported.

Basic Settings. We use a batch size of 128 on all datasets, except on Tau3Mu we use a batch size
of 256 due to its large dataset size. Adam (Kingma & Ba, 2014) optimizer with a learning rate
of 1.0 × 10−3 and a weight decay of 1.0 × 10−5 are used. ActsTrack, SynMol, and PLBind
construct k-nn graphs with k being 5; Tau3Mu constructs the graph by drawing edges for any pair
of points with a distance less than 1. For fair comparison, all models will be trained with 300 epochs
on ActsTrack and SynMol and will be trained with 100 epochs on Tau3Mu and PLBind. For
post-hoc methods, a classifier will be first pretrained with the epochs mentioned above, and those
methods will further work on the model from the epoch with the best validation classification AUC
during pretraining.

LRI-Bernoulli. β is tuned from {1.0, 0.1, 0.01} after normalizing the summation of the KL diver-
gence by the total number of points. α is tuned from {0.5, 0.7}. Note that α should not be less than
0.5, because Bern(0.5) injects the most randomness from an information-theoretic perspective. For
ActsTrack and SynMol, we either train LRI-Bernoulli 300 epochs from scratch or first pre-train
f with 200 epochs and then train both f and g with 100 epochs. For Tau3Mu and PLBind, we
either train it 100 epochs from scratch or first pre-train f by 50 epochs and then train both f and g
by 50 epochs. The temperature in the Gumbel-softmax trick is not tuned and is set to 1.

LRI-Gaussian. β and the training time is tuned in the same way as for LRI-Bernoulli. Instead of
directly tuning σ, we tune it by rescaling the magnitude of the geometric features to make sure the
KL divergence is stable for optimization, because the magnitude of r may vary significantly across
different datasets, e.g., extremely small or large. Specifically, we rescale r by multiplying a constant
c on it so that 1 would be roughly the 5th or 10th percentile of abs(c · r). In this way, c is tuned
from {200, 300} for ActsTrack, {10, 15} for SynMol, {7, 11} for Tau3Mu, and {0.9, 1.2} for
PLBind.
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Table 6: Ablation studies on the effect of the differentiable graph reconstruction module in LRI-
Gaussian on ActsTrack and SynMol.

ActsTrack
DGCNN Point Transformer EGNN

ROC AUC Prec@20 Prec@40 ROC AUC Prec@20 Prec@40 ROC AUC Prec@20 Prec@40

w/ Graph Recons. 94.74± 0.48 91.01± 1.02 78.47± 0.83 91.89± 2.07 88.05± 2.74 74.09± 3.61 94.43± 0.75 90.85± 0.69 76.42± 0.80
w/o Graph Recons. 67.03± 1.82 56.09± 2.11 41.52± 0.79 60.64± 1.93 39.16± 2.67 32.34± 1.42 82.50± 0.54 78.71± 3.84 59.02± 1.37

SynMol
DGCNN Point Transformer EGNN

ROC AUC Prec@5 Prec@8 ROC AUC Prec@5 Prec@8 ROC AUC Prec@5 Prec@8

w/ Graph Recons. 98.83± 0.63 95.91± 1.73 76.86± 0.62 95.81± 1.42 89.61± 3.30 72.84± 2.12 96.88± 1.25 89.17± 5.03 74.47± 1.05
w/o Graph Recons. 98.65± 0.39 95.98± 1.43 76.58± 0.33 90.06± 1.51 79.80± 0.80 64.25± 1.31 78.39± 36.27 66.26± 35.52 58.79± 30.07

BernMask. The size loss coefficient and the mask entropy coefficient are both tuned from
{1.0, 0.1, 0.01}. After the pretraining of the classifier, the number of mask update iterations per
sample is set to 500 and the learning rate for each iteration is tuned from {0.1, 0.001}.

BernMask-P. After the pretraining of the classifier, the explainer module in BernMask-P will be
trained with extra 100 epochs on ActsTrack and SynMol and with extra 50 epochs on Tau3Mu
and PLBind. The size loss coefficient and the mask entropy coefficient are tuned in the same way
as for BernMask. The temperature in the Gumbel-softmax trick is set to 1.

PointMask. α is tuned from {1.0, 0.1, 0.01} and t is tuned from {0.2, 0.5, 0.8}.

D IMPLEMENTATION DETAILS

Backbone Models. All backbone models have 4 layers with a hidden size of 64. Batch normal-
ization (Ioffe & Szegedy, 2015) and ReLU activation (Nair & Hinton, 2010) are used. All MLP
layers use a dropout (Srivastava et al., 2014) ratio of 0.2. SUM pooling is used to generate point
cloud embedding to make predictions. All backbone models utilize implementations available in
Pytorch-Geometric (PyG) (Fey & Lenssen, 2019).

LRI-Bernoulli. Directly removing points from C to yield C̃ makes it non-differentiable. We provide
two differentiable ways to approximate this step. The first way is to use another MLP to map the
raw point features X to a latent feature space H, and yield C̃ = (V,m1T ⊙ H, r). Here m is a
vector containing mv for each point v ∈ V , 1 is a vector of all ones, and ⊙ denotes element-wise
product. This is because masking on X or r is inappropriate as values in them have specific physical
meanings. When the backbone model is implemented using a message passing scheme, e.g., using
PyG, another possible way is to directly use m to mask the message sent by the points to be removed.
We find both ways can work well and we adopt the second way in our experiments.

LRI-Gaussian. We use a softplus layer to output a1 and a2 to parameterize the Gaussian distribu-
tion. To make it numerically stable we clip the results of the softplus layer to [1.0×10−6, 1.0×106].
For ϕ in the differentiable graph reconstruction module, we find it empirically a simple MLP can
work well enough and thus we adopt it to implement ϕ.

Baseline Methods. BernMask is extended from Ying et al. (2019) based the authors’ code and
the implementation available in PyG. BernMask-P is extended from Luo et al. (2020) based on
the authors’ code and a recent PR in PyG. PointMask is reproduced based on the authors’ code.
GradGAM and GradGeo are extended based on the code from Gildenblat & contributors (2021).

Discussions on LRI. We note that both f and g in LRI needs a permutation equivariant encoder to
learn point representations, and we find for simple tasks these two encoders can share parameters to
reduce model size without degrading interpretation performance, while for challenging tasks using
two different encoders is beneficial. In out experiments we use the same encoder for ActsTrack,
Tau3Mu, and SynMol, and use two different encoders for PLBind. If the model size is not a
concern, using two encoders is generally recommended. The other thing is that one of the key com-
ponents in LRI is the perturbation function h, as shown in Figure 2, and we have shown two ways to
design h, i.e., Bernoulli perturbation and Gaussian perturbation. Nonetheless, h can be generalized
in many different ways. For example, h is where one can incorporate domain knowledge and pro-
vide contextualized interpretation results, i.e., human understandable results. For instance, instead
of perturbing molecules in the atom level, it is possible to perturb molecules in the functional group
level, e.g., by averaging the learned perturbation in each functional group, so that the interpretation
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results can be more contextualized and more human understandable. In this work, we experiment
this feature on PLBind by replacing the learned {Σu}u∈N (v)

⋃
v in a neighbourhood with the Σ

having the maximum determinant in that neighbourhood, which encourages either aggressively per-
turbing all amino acids in a neighborhood or not perturbing any amino acids in the neighborhood,
and we find this can better help discover binding sites for PLBind.

E SUPPLEMENTARY EXPERIMENTS

E.1 ABLATION STUDIES

Table 6 shows the effect of the differentiable graph reconstruction module in LRI-Gaussian, where
c is set to 200 on ActsTrack and to 5 on SynMol so that large perturbations are encouraged to
better show the significance of this module, β is set to 0.01, and f is first trained by 200 epochs and
then f and g are trained together by 100 epochs. We observe significant drops when LRI-Gaussian
is trained without differentiable graph reconstruction, which matches our expectations and validates
the necessity of the proposed module.

E.2 FINE-GRAINED GEOMETRIC PATTERN LEARNING

To discover fine-grained geometric information in ActsTrack using LRI-Gaussian as shown in
Table 3, we conduct experiments based on DGCNN, where f is first trained with 100 epochs, and
then g is further trained with 500 epochs while f is finetuned with a learning rate of 1e-8. f and g
use two different encoders, β is set to 10, c is 100, all dropout ratio is set to 0, and rv

∥rv∥ is used as
point features. Finally, we let g directly output covariance matrix Σv ∈ R2×2, i.e., in x-y space.
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