
Only Train Once: A One-Shot Neural Network
Training And Pruning Framework

Tianyi Chen∗
Microsoft

tiachen@microsoft.com

Bo Ji
National University of Singapore
jibo@comp.nus.edu.sg

Tianyu Ding
Johns Hopkins University
tding1@jhu.edu

Biyi Fang
Microsoft

bif@microsoft.com

Guanyi Wang
Georgia Institute of Technology
gwang93@gatech.edu

Zhihui Zhu
University of Denver

zhihui.zhu@du.edu

Luming Liang
Microsoft

lulian@microsoft.com

Yixin Shi
Microsoft

yixshi@microsoft.com

Sheng Yi
Microsoft

shengyi@microsoft.com

Xiao Tu
Microsoft

xiaotu@microsoft.com

Abstract

Structured pruning is a commonly used technique in deploying deep neural net-
works (DNNs) onto resource-constrained devices. However, the existing pruning
methods are usually heuristic, task-specified, and require an extra fine-tuning pro-
cedure. To overcome these limitations, we propose a framework that compresses
DNNs into slimmer architectures with competitive performances and significant
FLOPs reductions by Only-Train-Once (OTO). OTO contains two keys: (i) we
partition the parameters of DNNs into zero-invariant groups, enabling us to prune
zero groups without affecting the output; and (ii) to promote zero groups, we then
formulate a structured-sparsity optimization problem and propose a novel opti-
mization algorithm, Half-Space Stochastic Projected Gradient (HSPG), to solve
it, which outperforms the standard proximal methods on group sparsity explo-
ration and maintains comparable convergence. To demonstrate the effectiveness of
OTO, we train and compress full models simultaneously from scratch without fine-
tuning for inference speedup and parameter reduction, and achieve state-of-the-art
results on VGG16 for CIFAR10, ResNet50 for CIFAR10 and Bert for SQuAD
and competitive result on ResNet50 for ImageNet. The source code is available
at https://github.com/tianyic/only_train_once.

1 Introduction

Deep neural networks (DNNs) have been shown to be effective in various real applications (51; 28).
It is widely acknowledged that large-scale DNN models not only learn faster but also outperform
their slimmer counterparts. However, such heavy models pose a great challenge to the deployment
stage due to their resource-consuming nature. In addressing this issue, many model compression

∗Corresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://github.com/tianyic/only_train_once

ZIG1ZIG1

ZIGm ZIGm

ZIG1

Structured-
Sparsity
Inducing

Optimization
(HSPG)

Zero Group
Pruning
Without
Retrain

La
ye

r i

Filter1
bias1

Filterm biasm

Partition Full
Model into

Zero-
Invariant

Groups (ZIGs)
Compressed

Model

Figure 1: Overview of OTO. Without loss of generality, we illustrate OTO on a model with only
vanilla convolutional layers, and for simplicity we only show Layeri with m 3D filters and their
biases. The key to its success is twofold: (i) identify and partition the parameters of the model into
zero-invariant groups (ZIGs); and (ii) solve the structured-sparsity regularization problem using
HSPG. Finally, we obtain the compressed model by directly pruning the zero groups, i.e., ZIGm.

techniques (5; 11) are proposed in the past decade that aim at compressing those large and complex
models into slimmer and simpler ones while suffering negligible loss in performance.

Pruning methods as one of the main categories of model compression, focus on identifying and
pruning redundant structures via various mechanisms to achieve a slimmer architecture, and thus
improve the interpretability of a DNN model (26; 11; 65). For example, (32; 33) adopt fine-grained
pruning via `1 or `2 regularization, which prune the small-weight connections based on some hard
threshold. (36; 57; 60) measure the importance of filters to accelerate the networks by removing
insignificant feature maps. (37; 7) utilize reinforcement learning agent to predict compression action.

Nevertheless, many of the existing pruning methods (i) often rely on criteria based on heuristics or
empirical cues, e.g., magnitude of a connection weight and importance score of a filter, to identify
redundant parameters, which may cause divergence during optimization; (ii) thus require complex
multi-stage pipelines that involve either a retraining or fine-tuning procedure to regain the accuracy
during constructing a slimmer model, which is time-consuming; and (iii) are specific to certain
architectures or applications, and are consequently less applicable to various downstream scenarios.
Recently, there have been a few efforts (14; 58; 8) to directly train the network with sparsity inducing
regularizers, which provide generality and convergence guarantee. However, these approaches focus
on either merely the individual sparsity of the parameters or the group sparsity of the filters, and
thus cannot directly remove those zero components (still require subsequent fine-tuning) since the
zeros are entangled with other commonly used components, e.g., bias, batch normalization or skip
connection. Furthermore, the optimization algorithms used in (14; 58) lack sufficient capability to
explore (group) sparsity in DNNs effectively and require a post-processing step to yield exact zeros.

In this paper, we overcome the above limitations of existing pruning methods by proposing a one-shot
neural network pruning framework, with which we are able to train a full heavy model from scratch
only once, and obtain a slim architecture without fine-tuning while maintain high performance. As
shown in Figure 1, the key to its success is twofold: (i) we identify and partition the parameters of
DNNs into zero-invariant groups (ZIGs), enabling us to prune redundant structures according to zero
groups without affecting the output of the network; and (ii) to promote zero groups, we formulate
the pruning task as a structured-sparsity optimization problem and propose a novel optimization
method, Half-Space Stochastic Projected Gradient (HSPG), to solve it, which outperforms the
standard proximal methods on sparsity exploration and maintains comparable convergence. We
highlight that both zero-invariant group partition and the novel optimization algorithm in promoting
zero group lead to achieve one-shot neural network training and pruning regardless of its architecture.

Our main contributions are summarized as follows.

• One-Shot Training and Pruning. We propose OTO, a training and pruning framework that
compresses a full neural network with competitive performance by Only-Train-Once, thereby
one-shot. OTO dramatically simplifies the complex multi-stage training pipelines of the existing
pruning approaches, fits various architectures and applications, and hence is generic and efficient.

• Zero-Invariant Group. We define zero-invariant groups for neural networks. If a network is
partitioned into ZIGs, it allows us to prune the zero groups without affecting the output, which
results in one-shot pruning. Such property is applicable to various popular structures from plain
fully connected layers to sophisticated ones such as residual blocks and multi-head attention.

• Novel Structured-Sparsity Optimization Algorithm. We propose Half-Space Stochastic Pro-
jected Gradient (HSPG), a method that solves structured-sparsity inducing regularization problem.
We show and analyze the superiority of HSPG in promoting zero groups of networks than the

2

standard proximal methods and the competitive objective convergence in practice. The fact that
ZIG and HSPG are designed agnostic to networks makes OTO generic to various applications.

• Experimental Results. We train and compress full models simultaneously from scratch without
fine-tuning for inference speedup and parameter reduction, and achieve state-of-the-art results on
compression benchmark VGG for CIFAR10, ResNet50 for CIFAR10/ImageNet, Bert for SQuAD.

2 Related Work

Structured pruning focuses on identifying and pruning the redundant structures in a full model
to achieve slimmer architectures for efficient model inference and storage (26; 32), where there
have been numerous efforts dedicated. For CNN compression, the general procedure can be largely
summarized as: (i) train a full model; (ii) identify and prune the redundant structures to build a slimmer
model based on various criteria, including (structured) sparsity (58; 85; 14; 56; 102; 27; 102; 62; 91),
Bayesian pruning (101; 65; 59; 81), ranking importance (54; 60; 41; 36; 57; 100), reinforcement
learning (37; 7), adversarial robustness (76), scientific control (79), lottery ticket (23; 24; 72), joint
quantization learning (80; 90), etc.; (iii) retrain or iteratively fine-tune the slimmer model to regain
the accuracy regression during pruning. These methods cannot avoid the extra and usually time-
consuming fine-tuning step because the identified redundant structures, even parametrized with zeros,
actually contribute to the model output, thereby additional fine-tuning step is an absolute necessity.

For pruning Bert (82), knowledge distillation (40) and LayerDropout (21) shorten Bert by reducing
the number of layers directly. Other methods (29; 75; 30) build slimmer Berts in the manner of
individual sparsity, but require specially designed data structure for storage and computing library to
take advantage of sparse data (31; 10), and typically cannot achieve inference speedup against the
highly optimized library (16) for dense model due to the discontiguous memory allocation (9).

The structured sparsity for weight pruning is the most relevant to the algorithm described in this
paper. The existing structure learning works (58; 85; 14; 56; 102) have the respective disadvantages:
(i) multiple trainings during the whole procedure since their group partition cannot isolate the impact
of pruned structures to the model output; and (ii) heuristic post-processing to generate zero groups as
the standard proximal methods (19; 87; 88; 12) and ADMM (100; 58; 4) defective on the sparsity
exploration for deep learning (8), which may deteriorate the performance of the model significantly.

Avoiding fine-tuning step during the whole pruning procedure is receiving more and more attentions
because of its efficiency. In particular, SNIP (52) and GraSP (83) identify redundancy via salience
scores at the initialization stage to construct pruned structures, then train the pruned models by
the standard optimizers. SCP (48) isolates the impact of batch normalization, while lacks the
consideration of more general DNN architectures.

3 OTO

In essence, OTO frames the network training and pruning as a structure learning problem. Given a
full modelM, OTO trains and compresses it simultaneously from scratch without fine-tuning, and
achieves significant reduction in both FLOPs and parameters. Particularly, as stated in Algorithm 1,
the trainable parameters ofM are firstly partitioned into a ZIG set G (Section 3.1). We then construct
and solve a structured-sparsity inducing optimization problem (Section 3.2) by proposed stochastic
optimizer (HSPG) to seek a highly group-sparse solution x∗HSPG (Section 3.3). Lastly, we obtain a
compressed modelM∗ by directly pruning these zero groups (Section 3.4).

Algorithm 1 Outline of OTO.

1: Input: Full modelM (no need to be pretrained).
2: Construct G: Partition the trainable parameters ofM into a ZIG set G.
3: Train: Train the modelM using HSPG (Algorithm. 2) to obtain a group-sparse solution x∗HSPG.
4: Prune: Construct a slimmer model architectureM∗ by directly pruning zero groups of x∗HSPG.
5: Output: Compressed modelM∗.

3

3.1 Zero-Invariant Group

The root cause of the existing methods having multi-stage training pipeline is that despite the pruned
structure (e.g., 3D filter) being zeros, its associated structures (e.g., non-zero bias) still contribute
to its corresponding output to the next layer (e.g., feature map). As a result, the model accuracy
regresses, hence an extra step of fine-tuning is necessary. OTO avoids the necessity by partitioning
the parameters of DNNs into a set of so-called zero-invariant groups (ZIGs) G defined as follows.
Definition 1 (Zero-Invariant Groups (ZIGs)). For a layer-wise DNN, we partition its entire trainable
parameters into disjoint groups G = {g}. Then we call G zero-invariant groups (ZIGs) if each
group g ∈ G is zero-invariant in the sense that all of the parameters in g being zeros results in its
corresponding output to the next layer to be zeros as well.
In effect, if and only if a DNN model is partitioned into a ZIG set G and one or more of its element g
are parameterized by zeros, the entire corresponding structures contribute none to the model outputs
and hence can be pruned directly. Such partition is applicable to various structures of DNN models.
Without loss of generality, we define and describe ZIG partition for three most popular structures: (i)
Conv-BN, (ii) Residual Block, and (iii) Fully Connected and Multi-Head Attention Layer.

(a) Conv-BN. m denotes the number of channels in Ol.

(b) Residual block. m denotes the number of output channels of the residual block.

(c) Fully connected layer (Left). Multi-head attention layer (Right). m denotes the length of output vector.

Figure 2: Zero-invariant group partition for three popular structures.

ZIG of Conv-BN. Convolutional layer (Conv) followed by batch-normalization layer (BN) is exten-
sively used in DNN models. Figure 2a shows the ZIG partition for Conv-BN. The 4D filter tensor Kl

is flattened into a filter matrix K̂l. During the forward pass, the input tensor I l is transformed into the
output tensor Ol of Conv and then into the input tensor of the (l + 1)th layer I l+1 by

Ol ← I l ⊗ K̂
l
+ bl, I l+1 ← a(Ol)− µl

σl
� γl + βl, (1)

where denoted by ⊗ the convolutional operation, � the element-wise multiplication and a(·) the
activation function. BN is parameterized by mean µl, standard deviation σl, weight γl and bias βl
respectively. The activation function needs to be zero-invariant, i.e., a(0) = 0, where most instances
satisfy, e.g., ReLU (25), PReLU (34), GELU (39) and LeakyReLU (89). Hence, each row of the
flattened filter matrix K̂l and its bias bl belong to one ZIG because they being zeros results in their
corresponding channel of Ol (i.e., feature map) to be zeros as well. Subsequently, γl and βl of
this corresponding channel in BN are also included into this ZIG to avoid the value shift (zero to

4

non-zero) during normalization. Note that grouping these four sets of parameters channel-wisely
makes Conv-BN zero-invariant regardless of the value of µl and σl, and hence they are excluded
from the ZIG. For illustration, each ZIG is highlighted in the same color (e.g., gl1 in blue).

ZIG of Residual Block. The residual block adds another layer of challenge because its output tensor
is the summation of the outputs of two Conv-BNs. Figure 2b shows the ZIG partition for the residual
block. As illustrated, before propagated to Conv3, the outputs of Conv1-BN1 and Conv2-BN2 are
summarized and hence share the same dimension. As such, to make residual block zero-invariant, we
group the four sets of parameters channel-wisely of both Conv1-BN1 and Conv2-BN2 into ZIGs,
i.e., each row of K̂1, b1, γ1, β1 of Conv1-BN1 and each row of K̂2, b2, γ2, β2 of Conv2-BN2. In
Appendix A.1, we describe the zero-invariant group partition of ResNet50 in greater detail.

ZIG of Fully Connected and Multi-Head Attention Layer. Figure 2c shows the ZIG partition for
fully connected and multi-head attention layer. Particularly, we partition each row of weight matrix
and its associated bias into a ZIG, and therefore any input element is turned to zero if that ZIG is
parameterized with zeros, making the fully connected layer zero-invariant. Multi-head attention layer
is the key building block of the transformer architectures (82). Its trainable parameters contain a
weight matrix and bias vector, consisting of the sub-matrix and sub-vector of each head (we use two
heads as an example). We form ZIG by grouping each row of every sub-matrix and sub-vector, i.e.,
each row of Wh1 , bh1 , Wh2 and bh2 of h1 and h2, respectively.

Automatic ZIG Partition. Based on the above illustrating examples, we provide prescribed ZIG
partition for the tested DNNs in Section 4. Furthermore, given an arbitrary DNN architecture, the
procedure of partitioning variables into ZIGs could be automatically proceeded, wherein the key
would be identifying the connections among various layers. We will leave the automatic ZIG partition
for arbitrary DNNs as future work.

3.2 Structured-Sparsity Regularization

We now formulate a structured-sparsity regularization problem over the ZIG set G for the trainable
parameters of the full modelM as follows

minimize
x∈Rn

ψ(x) := f(x) + λr(x), r(x) :=
∑
g∈G
‖[x]g‖ , (2)

where λ > 0 is a weighting coefficient, f(x) is a task-specific loss function, and r(x) is an augmented
structured-sparsity inducing regularization term encoding the topological structure ofM over G.
A larger λ typically results in a higher group sparsity while sacrifices more on the bias of model
estimation. We aim at computing a local optimum to achieve both low loss and high group sparsity.

To induce group sparsity onto the solution of (2), there exist several candidates for r(x), including
mixed `1/`p norm (p > 1) (1; 20) and group Minmax Concave Penalty (MCP) (96). Among these
candidates, the mixed `1/`2 norm as defined in (2) is arguably the most popular choice in classical
machine learning applications (1; 92), where ‖·‖ is the `2-norm, and each component g ∈ G indexes
a group of variables. In this paper, we will demonstrate the effectiveness of OTO by selecting r(x) as
the mixed `1/`2 norm. We highlight OTO is applicable for other group sparsity regularizers as well.

3.3 Half-Space Stochastic Projected Gradient (HSPG)

To solve the non-smooth regularization problem as (2) in deep learning applications, the standard
proximal method and the ADMM lack capability to effectively identify group sparsity; see the
discussions later in this Section. Therefore, we propose a novel stochastic optimization algorithm
so-called Half-Space Stochastic Projected Gradient (HSPG) to enhance the group sparsity exploration
more effectively than the classical methods while maintain a similar convergence property.

Outline. We state the outline of HSPG in Algorithm 2. It contains two stages: Initialization
Stage and Group-Sparsity Stage. The first Initialization Stage employs Stochastic Gradient Descent
(SGD) step to search for a good but usually non-sparse solution estimate. Then the second stage
proceeds Half-Space step started with the non-sparse iterate to effectively exploit the group sparsity
within a sequence of reduced spaces and converges to the group-sparse solutions. Half-Space step
performs SGD update along with a novel projection operator so-called Half-Space Projection, which
significantly outperforms the standard proximal operators on sparsity exploration.

5

Initialization Stage. The Initialization Stage performs the vanilla SGD to find a good initial point
for the subsequent Group-Sparsity Stage. At kth iteration, a stochastic gradient of f , e.g., based on a
mini-batch, is generated denoted as ∇f̃ . Since the group sparsity inducing regularizer r(x) in the
form as (2) is non-smooth, we select a subgradient ζ(xk) from its subdifferential ∂r(xk) to form a
stochastic subgradient of ψ(xk) as ν(xk) := ∇f̃(xk) + λζ(xk). We then compute the next iterate
as xk+1 := xk − αkν(xk) by subgradient descent update.

xk+1O

Sk

[x]1

[x]2

xk

ǫxk
x̃k+1

x̂E

−α
k
∇ψBk

(xk
)

ǫ > 0

θ < 90◦

(a) Half-Space Projection

O

[x]2

[x]1αkλ

−αkλ

λ

−λ

[x]2

ǫ = 0 ǫ ≈ 1

xk

Prox-SG
Prox-SVRG
Prox-Spider
SAGA

RDA

ǫ = 0

O

HSPG

HSPG ǫ ∈ (0, 1)

(b) Projection Region For Mixed `1/`2 Regularization

Figure 3: Illustration of Half-Space Step with projection in (6), where G = {{1, 2}}.
Group-Sparsity Stage. The Group-Sparsity Stage is designed to effectively determine the groups of
zero variables and capitalize convergence characteristic, which is in sharp contrast to other heuristic
aggressive weight pruning methods that typically lack theoretical guarantees (55; 60). The intuition
of Half-Space Step is to project [xk]g to zero only if −[xk]g serves as a descent step to ψ(xk), i.e.,
−[xk]>g [∇ψ(xk))]g < 0, hence updating [xk+1]g ← [xk]g − [xk]g = 0 still results in some progress
to the optimality. In particular, we first define the following index sets for any x ∈ Rn:

I0(x) := {g : g ∈ G, [x]g = 0} and I 6=0(x) := {g : g ∈ G, [x]g 6= 0}, (3)

where I0(x) represents the indices of groups of zero variables at x, and I 6=0(x) indexes the groups
of nonzero variables at x. To proceed, we further define an artificial set that x lies in:

S(x) := {0}
⋃
{z ∈ Rn : [z]g = 0 if g ∈ I0(x), and [z]>g [x]g ≥ ε ‖[x]g‖2 if g ∈ I 6=0(x)}, (4)

which consists of half-spaces and the origin. Here the parameter ε ≥ 0 controls how aggressively we
promote group sparsity, and is typically fixed as zero in practice. Hence, x ∈ Sk := S(xk) only if:
(i) [x]g lies in the upper half-space for all g ∈ I 6=0(xk) for some prescribed ε ∈ [0, 1) as shown in
Figure 3a; and (ii) [x]g equals to zero for all g ∈ I0(xk). Intuitively, Sk establishes the region where
important structures inhabit, thereby redundant structures vanish if falling outside.

Algorithm 2 Outline of HSPG for solving (2).

1: Input: x0 ∈ Rn, α0 > 0, ε ∈ [0, 1), and N ∈ Z+.
2: Output: a group-sparse solution x∗HSPG from {xk}.
3: for k = 0, 1, 2, . . . do
4: Compute a stochastic subgradient ν(xk) of ψ(xk).
5: if k < N then
6: Subgradient Descent Update:
7: Set xk+1 ← xk − αkν(xk).
8: else
9: Half-Space Update:

10: Set a trial iterate x̃k+1 as

[x̃k+1]I 6=0(xk) ← [xk − αkν(xk)]I 6=0(xk)

[x̃k+1]I0(xk) ← 0.

11: for each group g in G do
12: [xk+1]g ← [ProjHSSk (x̃k+1)]g.

13: Update αk+1.

Ideally, the Initialization Stage has
produced reasonably well but typi-
cally non-sparse iterate xk nearby
a group-sparse solution x∗ of prob-
lem (2), , i.e., the optimal distance
‖xk − x∗‖ is sufficiently small. As
seen in Appendix B, it further indi-
cates that the group-sparse optimal
solution x∗ inhabits Sk, and Sk has
already covered the group-support of
x∗, i.e., I 6=0(x∗) ⊆ I 6=0(xk). Our
goal now becomes minimizing ψ(x)
over Sk to identify the remaining zero
groups, i.e., I0(x∗)/I0(xk), which is
formulated as the following problem:

minimize
x∈Sk

ψ(x) = f(x) + λr(x). (5)

The next iterate xk+1 is computed as
an solution estimate of problem (5).

6

Particularly, in Algorithm 2, [xk+1]I0(xk) ≡ 0 will not be updated, and only the entries in I 6=0(xk)
are free to move. Hence ψ(x) is smooth on Sk, and (5) is a reduced space optimization problem. A
standard way to solve problem (5) would be the stochastic gradient descent equipped with Euclidean
projection (68). However, such a projected method rarely produces zero (group) variables, as the
dense Euclidean projected point x̂E 6= 0 illustrated in Figure 3a. To address, we introduce a novel
half-space projection operator to effectively project an entire group of variables to zeros.

As line 4 and 9-12 in Algorithm 2, we first approximate the (sub)gradient of ψ on the free variables
by [ν(xk)]I 6=0(xk), then employ gradient descent over I 6=0(xk) to compute a trial point x̃k+1 which
is passed into a fresh half-space projection operator ProjHSSk (·) defined as[

ProjHSSk (z)
]
g

:=

{
0 if [z]>g [xk]g < ε ‖[xk]g‖2 ,
[z]g otherwise.

(6)

The above projector of form (6) is not the standard one in Euclidean sense2, and it has two advantages:
(i) the actual search direction dk := (ProjHSSk (x̃k+1)− xk)/αk performs as a descent direction to
ψ(xk), i.e., [dk]>g [ν(xk))]g < 0 as θ < 90◦ in Figure 3a, hence the progress to the optimum is made
via the sufficient decrease property drawn as Lemma 1 in Appendix B; then (ii) it effectively projects
entire groups of variables to zero if the inner product of corresponding entries is sufficiently small. In
contrast, the Euclidean projection operator is far away effective to promote group sparsity.

Superiority of HSPG on Group Sparsity Identification. We now intuitively illustrate the strength
of HSPG on group sparsity exploration. In fact, the half-space projection (6) is a more effective
sparsity promotion mechanism compared to the standard proximal methods. Particularly, it benefits
from a much larger projection region to map a reference point x̂k+1 := xk − αk∇f̃(xk) or its
variants to zero. As the 2D case described in Figure 3b, the projection regions of the state-of-the-art
Prox-SG (19), Prox-SVRG (88), Prox-Spider (97) and SAGA (12) for (2) are `2-balls with radius
as αkλ. In deep learning applications, the step size αk is usually selected around 10−3 to 10−4 or
even smaller for convergence. Together with the common setting of λ� 1, their projection regions
would vanish rapidly, resulting in the difficulties to produce group sparsity. As a sharp contrast, even
though αkλ is near zero, the projection region of HSPG {x : x>k x < (αkλ+ ε ‖xk‖) ‖xk‖} (seen
in Appendix B) is still an open half-space which contains those `2 balls as well as RDA (87)’s if ε is
large enough. Conversely, vanilla ADMM alone lacks the mechanism to project a group of variables
to zero, unless equips with extra post-processing step (100; 58). In Appendix B, we further reveal
that HSPG still maintains the convergence to the optimality as drawn in Theorem 1. Moreover, we
numerically demonstrate the superiority of HSPG in the sense of optimization in Appendix C.

3.4 Pruning Without Fine-Tuning

The group-sparse solution x∗HSPG over ZIGs to the full modelM is leveraged to construct the slimmer
modelM∗. Particularly, we prune the redundant structures identified as zero groups I0 and retain
non-zero groups I 6=0 in x∗HSPG. Because the parameters of full model are partitioned into ZIGs, the
pruned structures contribute none to the model output. Therefore, given the same input, the slimmer
modelM∗ computes the identical output as the full modelM parameterized with x∗HSPG.

4 Experiment

In this section, we numerically demonstrate the effectiveness of OTO by one-shot training and
pruning without fine-tuning on several benchmark compression tasks for CNNs, i.e., VGG16 (77)
for CIFAR10 (49) and ResNet50 (35) for CIFAR10 (49) and ImagetNet (ILSVRC2012) (15). We
also verify the scalibility of OTO onto Bert (82) evaluated on SQuAD (69). All datasets are free to
academic usage and do not contain personally identifiable information or offensive content. CIFAR10
is under the MIT license, consisting of 50,000 training and 10,000 test images from 10 classes.
ImagetNet is a large-scale dataset without license and contains about 1.2 million and 50,000 images
in training and validation sets from 1,000 classes. SQuAD is under the CC BY-SA 4.0 license with
about 100,000 question/answer pairs splitted into train/dev/test sets as (80/10/10%). We conduct all
experiments on a Nvidia RTX8000 GPU and provide implementation details in Appendix A.

2Note that when r(x) = ‖x‖1 where each g ∈ G is singleton, then Sk becomes an orthant face (8).

7

Table 1: VGG16 and VGG16-BN for CIFAR10. Convolutional layers are in bold.
Method BN Architecture FLOPs # of Params Top-1 Acc.
Baseline 7 64-64-128-128-256-256-256-512-512-512-512-512-512-512-512 100% 100% 91.6%
SBP (65) 7 47-50-91-115-227-160-50-72-51-12-34-39-20-20-272 31.1% 5.9% 91.0%
BC (59) 7 51-62-125-128-228-129-38-13-9-6-5-6-6-6-20 38.5% 5.4% 91.0%

RBC (101) 7 43-62-120-120-182-113-40-12-20-11-6-9-10-10-22 32.3% 3.9% 90.5%
RBP (101) 7 50-63-123-108-104-57-23-14-9-8-6-7-11-11-12 28.6% 2.6% 91.0%

OTO 7 21-45-82-110-109-68-37-13-9-7-3-5-8-170-344 16.3% 2.5% 91.0%
Baseline X 64-64-128-128-256-256-256-512-512-512-512-512-512-512-512 100% 100% 93.2%
EC (55) X 32-64-128-128-256-256-256-256-256-256-256-256-256-512-512 65.8% 37.0% 93.1%

Hinge (56) X – 60.9% 20.0% 93.6%
SCP (48) X – 33.8% 7.0% 93.8%

OTO X 22-56-93-123-182-125-95-45-27-21-10-13-19-244-392 26.8% 5.5% 93.3%

4.1 Deep Convolutional Neural Network

The results on CNN experiments are summarized in Table 1, 2 and 4. In particular, we compare OTO
to its state-of-the-art counterparts by Top-1/5 accuracy, remaining FLOPs and parameters against
the corresponding baseline (full model). We report the numbers of other methods based on the
corresponding literature and leave as ‘-’ if not reported. The best pruning results are marked as bold.

VGG16 for CIFAR10. We consider the standard VGG16 and the version with batch normalization
layer after each convolutional layer, referred to as VGG16-BN. OTO partitions the parameters into
ZIGs following Section 3.1, then trains and prunes the model via HSPG, and finally constructs the
slimmer model without fine-tuning. For VGG16, as shown in Table 1, the pruned architecture of OTO
indicates that OTO identifies similar redundancy of the intermediate and late convolutional layers
compared to other methods, but significantly more of the early convolutional layers. As a result, OTO
achieves 83.7% (1− 16.3%) FLOPs reduction and 97.5% (1− 2.5%) parameter reduction with the
best Top-1 accuracy, which outperforms other state-of-the-arts significantly. For VGG16-BN, among
all, OTO reduces FLOPs and parameters to the lowest 26.8% and 5.5%, respectively. EC (55) and
Hinge (56) achieve the same level of Top-1 accuracy as OTO, but are substantially outperformed
when it comes to FLOPs and parameter reduction. In Table 8 of Appendix A.4, we further present
the FLOPs reductions per layer of OTO.

Table 2: ResNet50 for CIFAR10.

Method FLOPs # of Params Top-1 Acc.
Baseline 100% 100% 93.5%

AMC (37) – 60.0% 93.6%
ANNC (90) – 50.0% 95.0%

PruneTrain (61) 30.0% – 93.1%
N2NSkip (78) – 10.0% 94.4%

OTO 12.8% 8.8% 94.4%

ResNet50 for CIFAR10. Since OTO is able to au-
tomatically learn a slimmer model of high perfor-
mance, we compare it with two state-of-the-art au-
tomatic neural network compression frameworks,
i.e., AMC (37) and ANNC (90). AMC trains a re-
inforcement learning agent to predict compression
action for each layer environment. ANNC jointly
proceeds pruning and quantization within energy
constraint. We conduct OTO on their shared experiment, i.e., ResNet50 on CIFAR10. ResNet50
includes both the standard convolutional layers and the layers with residual connections, which are
partitioned into ZIGs following Section 3.1. We report the results in Table 2 along with other competi-
tors from (61; 78). Based on the results, all methods achieve competitive validation accuracies, where
most of them are even higher than the baseline reported in (37). OTO outperforms AMC, ANNC
without quantization, PruneTrain and N2NSkip by using only 12.8% FLOPs and 8.8% parameters.
Note that no FLOPs reduction is reported in (37) and (90). Finally, we highlight that OTO is flexible
to incorporate quantization as the two techniques are complementary and will leave to future work.

Table 3: OTO Under Different Switchings (N = T, 2T.3T)
for VGG16, VGG16-BN and ResNet50 on CIFAR10

Backend FLOPs # of Params Top-1 Acc.
VGG16 15.8% ± 2.4% 2.5% ± 0.3% 90.8% ± 0.2%

VGG16-BN 25.3% ± 1.9% 4.8% ± 1.1% 93.1% ± 0.5%
ResNet50 11.7% ± 3.5% 8.1% ± 1.2% 93.8% ± 0.6%

Ablation Study of Switching Pa-
rameter N . We provide ablation
study regarding the impact the switch
(parameterized as N) between initial-
ization stage and projection stage in
Algorithm 1. In theory, as shown in
Theorem 1 of Appendix B.4, the pro-
jection stage should start when the iterate falls nearby a group sparse local minimizer. In practice,
we relaxed it to start projection stage once the iterate falling into some stationary status regarding
the validation accuracy. As described in Appendix A.2, throughout all experiments, we periodically
decay the learning rate per fixed number of epochs parameterized as T . At the end of each T epochs,

8

we then proceed a statistical test similar to (98) but on the validation accuracy and found that the
validation accuracy fell into stationarity on the late epochs of each period. Therefore, in our pruning
experiments, we switch to the group-sparsity stage from initialization stage right after the first T
epochs. Table 3 describes the performance of OTO under varying switching parameters, from which
we observe that OTO is not largely sensitive to the switching parameter if the group sparsity stage
starts after some stationary condition has been numerically satisfied.

Table 4: ResNet50 for ImageNet.

Method FLOPs # of Params Top-1 Acc. Top-5 Acc.
Baseline 100% 100% 76.1% 92.9%

DDS-26 (43) 57.0% 61.2% 71.8% 91.9%
CP (38) 66.7% – 72.3% 90.8%

ThiNet-50 (45) 44.2% 48.3% 71.0% 90.0%
RBP (101) 43.5% 48.0% 71.1% 90.0%

RRBP (101) 45.4% – 73.0% 91.0%
SFP (36) 41.8% – 74.6% 92.1%

Hinge (56) 46.6% – 74.7% –
GBN-50 (94) 44.9% 46.6% 75.2% 92.4%
GBN-60 (94) 59.5% 68.2% 76.2% 92.8%

Group-HS (2e-5) (91) 32.4% - 75.2% 92.5%
Group-HS (1e-5) (91) 52.9% - 76.4% 93.1%

ResRep (18) 45.5% - 76.2% 92.9%
SCP (48) 45.7% - 74.2% 92.0%

OTO 34.5% 35.5% 74.7% 92.1%
OTO∗ 34.5% 35.5% 75.1% 92.5%

ResNet50 for ImageNet. We
now evaluate OTO on ResNet50
for ImageNet. As shown in Ta-
ble 4, OTO prunes 64.5%(1 −
35.5%) parameters to achieve
65.5%(1−34.5%) FLOPs reduc-
tion with only 1.4%/0.8% Top-
1/5 accuracy regression com-
pared to the baseline. OTO con-
sistently outperforms the major-
ity of counterparts especially on
the FLOPs reduction and the
parameter reduction. We note
that Hinge (56) prunes CNNs via
structured-sparsity optimization
by employing standard stochas-
tic proximal gradient method. It
requires several trainings including fine-tuning the pruned model, because it partitions the parameters
into non-ZIGs and relies on an empirical truncation mechanism to generate zero groups due to the
weakness of proximal operator in deep learning applications (8). In contrast, OTO only trains and
prunes the full model from scratch once and obtains better pruning results. The comparison between
OTO and Hinge stand as evidence of the superiority of OTO due to ZIGs and HSPG. Furthermore, if
conducting more training efforts, OTO reaches higher Top-1/5 accuracy, marked as ∗ in Table 4 and
becomes more competitive to other competitors, such as GBN, Group-HS and ResRep.

Representation of Deep Features of ImageNet. It is widely acknowledged that deep neural ar-
chitectures could be treated as non-linear feature representation extractors. Therefore, we further
study the feature representation extracted by OTO to demonstrate its generalizability to other visual
applications besides image classification. Figure 4 shows the clustering results of ImageNet validation
images using the deep feature extracted by both the baseline ResNet50 and the pruned ResNet50 by
OTO. Specifically, we extract the deep features over the validation samples in ImageNet, i.e., the
tensors fed into the fully connected layer, and project them onto a 2-dimensional space via PCA (47).
For illustration, following the hierarchy of ImageNet (3), two sets of five classes are randomly
selected3. We observe that the deep features of the pruned ResNet50 by OTO remain structured in the
sense that distinct classes are well separated from each other. Over all 1000-class ImageNet validation
images, OTO achieves 48.2% clustering accuracy compared to 42.5% of the baseline ResNet50 using
k-means. Both observations indicate that with only 35.5% parameters and 34.5% FLOPs, the pruned
ResNet50 is still able to extract highly discriminative deep features. We argue that during model
compression, OTO not only achieves parameter and FLOPs reduction, but also preserves the ability
of capturing perceptual properties (99). This is especially important in training and compressing
models for many vision tasks, e.g., object detection (70; 71), frame interpolation (2; 17; 67) and
video synthesis (84; 50). We leave the application of OTO to broader tasks to future work.

4.2 Large-Scale Transformer

We show the scalability of OTO by pruning the large-scale transformer Bert (82), evaluated on
SQuAD, a question-answering benchmark (69). Bert mainly includes embedding layers, fully
connected layers and multi-head attention layers. The fully connected layers and the multi-head
attention layers are partitioned into ZIGs following Section 3.1. For fair comparisons, we follow the
prior Bert compression works (14; 75) and do not prune the embedding layers.

3Each selected class belongs to a disjoint upper category.

9

(a) (b)

Figure 4: Clustering results of ImageNet validation images using deep features extracted by full
ResNet50 (left of a and b) and pruned ResetNet50 by OTO (right of a and b). The points are visualized
by projecting deep features onto a two-dimensional space via PCA.

Table 5: Pruning Bert on SQuAD

Method # of Params Exact F1-score SpeedUp
Baseline 100% 81.0% 88.3% 1×
MaP (75) 10.0% 67.7% 78.5% 1×*
MvP (75) 10.0% 71.9% 81.7% 1×*

ProxSSI (14) 83.4%† 72.3% 82.0% 1×
OTO 91.0% 75.0% 84.1% 1.1×
OTO 76.2% 72.3% 82.1% 1.2×
OTO 66.7% 71.9% 82.0% 1.3×
OTO 53.3% 71.4% 81.5% 1.5×
OTO 40.0% 70.9% 81.1% 1.8×

* Based on the statement in the official git repository of (75).
† Approximate value based on the group sparsity reported in (14).

To the best of our knowledge, OTO
is the first work that compresses
Bert by exploring group sparsity on
individual layers and achieves sig-
nificant parameter reduction and in-
ference speedup4. In contrast, the
existing works (29; 75; 30) prune
individual parameters instead, i.e.,
the generated sparsity is not struc-
tured. Hence, the computed mod-
els typically do not have inference
speedup (75), unless are executed
by specialized hardware and sparse
computing library (31; 10). As
shown in Table 5, under different group sparsity upper bound constraints, OTO reduces 9% to
60% parameters and achieves up to 1.8× inference speedup based on the average model execution
time 5. In comparison, despite that the pruned model contains 10% parameters, MaP and MvP (75)
do not have any inference speedup. On the other hand, the structured sparsity on Bert is studied
in (14) (referred to as ProxSSI), where an adaptive proximal method is proposed to yield group-sparse
solution. Nonetheless, ProxSSI optimizes over non-ZIGs and relies on proximal operator to identify
group sparsity. Therefore, the groups even parameterized with zeros have to be retained in the model
rather than pruned. As a consequence, ProxSSI is not competitive to OTO on parameter reduction,
and there is no reported inference speedup. Note that all the pruning methods achieve comparable
exact match rate and F1-score.

5 Conclusion And Future Work

We propose OTO, a one-shot deep neural networks (DNNs) training and pruning framework, that
compresses full DNNs into slimmer architectures with competitive performances and significant
FLOPs and parameter reduction without fine-tuning. OTO contains two fundamentals: (i) partitions
the trainable parameters of DNNs into zero-invariant groups (ZIGs), thereby pruning zero groups
does not affect the model output, and (ii) trains by a novel optimizer, Half-Space Stochastic Projected
Gradient (HSPG), which outperforms proximal methods on group sparsity exploration and maintains
comparable convergence. We numerically demonstrate OTO on benchmark experiments, i.e., VGG16
for CIFAR10, ResNet50 for CIFAR10/ImageNet and Bert for SQuAD, and achieve state-of-the-
art pruning results. We leave automatically generating ZIGs for arbitrary DNNs, incorporating
quantization and applying OTO to other tasks to future work.

4Knowledge distillation (40) and LayerDropout (21) compresses Bert by pruning layers in their entirety.
5Run by OnnxRuntime (16)

10

References

[1] Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al. Structured
sparsity through convex optimization. Statistical Science, 27(4):450–468, 2012.

[2] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang.
Depth-aware video frame interpolation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3703–3712, 2019.

[3] Mike Bostock. Imagenet hierarchy. https://observablehq.com/@mbostock/
imagenet-hierarchy.

[4] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Now Publishers Inc, 2011.

[5] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 535–541, 2006.

[6] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

[7] Jianda Chen, Shangyu Chen, and Sinno Jialin Pan. Storage efficient and dynamic flexible
runtime channel pruning via deep reinforcement learning. 2019.

[8] Tianyi Chen, Tianyu Ding, Bo Ji, Guanyi Wang, Yixin Shi, Sheng Yi, Xiao Tu, and Zhihui
Zhu. Orthant based proximal stochastic gradient method for ell_1-regularized optimization.
arXiv preprint arXiv:2004.03639, 2020.

[9] Tianyi Chen, Yixin Shi, and Sheng Yi. Spatially sparse convolutional neural networks for
inking applications, Sept. 17 2020. US Patent App. 16/355,702.

[10] Xuhao Chen. Escoin: Efficient sparse convolutional neural network inference on gpus. arXiv
preprint arXiv:1802.10280, 2018.

[11] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and
acceleration for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

[12] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in neural
information processing systems, pages 1646–1654, 2014.

[13] Aaron Defazio and Léon Bottou. On the ineffectiveness of variance reduced optimization for
deep learning. In Advances in Neural Information Processing Systems, 2019.

[14] Tristan Deleu and Yoshua Bengio. Structured sparsity inducing adaptive optimizers for deep
learning. arXiv preprint arXiv:2102.03869, 2021.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[16] ONNX Runtime developers. Onnx runtime. https://onnxruntime.ai/, 2021.
[17] Tianyu Ding, Luming Liang, Zhihui Zhu, and Ilya Zharkov. Cdfi: Compression-driven network

design for frame interpolation. arXiv preprint arXiv:2103.10559, 2021.
[18] Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang

Ding. Lossless cnn channel pruning via decoupling remembering and forgetting. Proceedings
of the IEEE International Conference on Computer Vision, 2021.

[19] John Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. Journal of Machine Learning Research, 10(Dec):2899–2934, 2009.

[20] Marwa El Halabi, Francis Bach, and Volkan Cevher. Combinatorial penalties: Which structures
are preserved by convex relaxations? In International Conference on Artificial Intelligence
and Statistics, pages 1551–1560. PMLR, 2018.

[21] Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

[22] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. In Advances in Neural
Information Processing Systems, pages 689–699, 2018.

[23] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

[24] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing
the lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

[25] Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog threshold
elements. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333, 1969.

[26] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks.
arXiv preprint arXiv:1902.09574, 2019.

11

https://observablehq.com/@mbostock/imagenet-hierarchy
https://observablehq.com/@mbostock/imagenet-hierarchy
https://onnxruntime.ai/

[27] Shang-Hua Gao, Yong-Qiang Tan, Ming-Ming Cheng, Chengze Lu, Yunpeng Chen, and
Shuicheng Yan. Highly efficient salient object detection with 100k parameters. In European
Conference on Computer Vision, pages 702–721. Springer, 2020.

[28] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[29] Mitchell A Gordon, Kevin Duh, and Nicholas Andrews. Compressing bert: Studying the
effects of weight pruning on transfer learning. arXiv preprint arXiv:2002.08307, 2020.

[30] Fu-Ming Guo, Sijia Liu, Finlay S Mungall, Xue Lin, and Yanzhi Wang. Reweighted proximal
pruning for large-scale language representation. arXiv preprint arXiv:1909.12486, 2019.

[31] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: Efficient inference engine on compressed deep neural network. ACM SIGARCH
Computer Architecture News, 44(3):243–254, 2016.

[32] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[33] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections
for efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
2016.

[36] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for
accelerating deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018.

[37] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 784–800, 2018.

[38] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In The IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[39] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[40] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[41] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A
data-driven neuron pruning approach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250, 2016.

[42] Junzhou Huang, Tong Zhang, and Dimitris Metaxas. Learning with structured sparsity. Journal
of Machine Learning Research, 12(Nov):3371–3412, 2011.

[43] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural
networks. In Proceedings of the European conference on computer vision (ECCV), pages
304–320, 2018.

[44] Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach. Structured sparse principal
component analysis. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pages 366–373, 2010.

[45] Jianxin Wu Jian-Hao Luo and Weiyao Lin. Thinet: A filter level pruning method for deep
neural network compression. In ICCV, pages 5058–5066, 2017.

[46] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in neural information processing systems, pages 315–323,
2013.

[47] Ian Jolliffe. Principal Component Analysis, pages 1094–1096. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[48] Minsoo Kang and Bohyung Han. Operation-aware soft channel pruning using differentiable
masks. In International Conference on Machine Learning, pages 5122–5131. PMLR, 2020.

[49] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

[50] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick. Graphcut textures:
Image and video synthesis using graph cuts. Acm transactions on graphics (tog), 22(3):277–
286, 2003.

[51] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

12

[52] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network
pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

[53] Sangkyun Lee and Stephen J Wright. Manifold identification in dual averaging for regularized
stochastic online learning. The Journal of Machine Learning Research, 13(1):1705–1744,
2012.

[54] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Eagleeye: Fast sub-net evaluation for
efficient neural network pruning. In European Conference on Computer Vision, pages 639–654.
Springer, 2020.

[55] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[56] Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and Radu Timofte. Group sparsity:
The hinge between filter pruning and decomposition for network compression. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8018–8027,
2020.

[57] Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David Doermann, Yongjian Wu,
Feiyue Huang, and Rongrong Ji. Exploiting kernel sparsity and entropy for interpretable
cnn compression. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2800–2809, 2019.

[58] Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng, and Xuelong Li. Toward compact convnets
via structure-sparsity regularized filter pruning. IEEE transactions on neural networks and
learning systems, 31(2):574–588, 2019.

[59] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning.
In Advances in neural information processing systems, pages 3288–3298, 2017.

[60] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep
neural network compression. In Proceedings of the IEEE international conference on computer
vision, pages 5058–5066, 2017.

[61] Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen, Sujay Sanghavi, and Mattan
Erez. Prunetrain: fast neural network training by dynamic sparse model reconfiguration. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–13, 2019.

[62] Fanxu Meng, Hao Cheng, Ke Li, Huixiang Luo, Xiaowei Guo, Guangming Lu, and Xing Sun.
Pruning filter in filter. arXiv preprint arXiv:2009.14410, 2020.

[63] Michael Mitzenmacher. Probability and computing-randomized algorithms and probabilistic
analysis. JOURNAL-OPERATIONAL RESEARCH SOCIETY, 56(12):1454, 2005.

[64] Eugene Ndiaye, Olivier Fercoq, Alexandre Gramfort, and Joseph Salmon. Gap safe screening
rules for sparsity enforcing penalties. The Journal of Machine Learning Research, 18(1):4671–
4703, 2017.

[65] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Structured
bayesian pruning via log-normal multiplicative noise. In Advances in Neural Information
Processing Systems, pages 6775–6784, 2017.

[66] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical pro-
gramming, 2009.

[67] Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive separable
convolution. In Proceedings of the IEEE International Conference on Computer Vision, pages
261–270, 2017.

[68] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

[69] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[70] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 779–788, 2016.

[71] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

[72] Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in
neural network pruning. arXiv preprint arXiv:2003.02389, 2020.

[73] Volker Roth and Bernd Fischer. The group-lasso for generalized linear models: uniqueness
of solutions and efficient algorithms. In Proceedings of the 25th international conference on
Machine learning, pages 848–855, 2008.

13

[74] Nicolas L Roux, Mark Schmidt, and Francis R Bach. A stochastic gradient method with
an exponential convergence _rate for finite training sets. In Advances in neural information
processing systems, pages 2663–2671, 2012.

[75] Victor Sanh, Thomas Wolf, and Alexander M Rush. Movement pruning: Adaptive sparsity by
fine-tuning. arXiv preprint arXiv:2005.07683, 2020.

[76] Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Hydra: Pruning adversarially
robust neural networks. Advances in Neural Information Processing Systems (NeurIPS), 7,
2020.

[77] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[78] Arvind Subramaniam and Avinash Sharma. N2nskip: Learning highly sparse networks using
neuron-to-neuron skip connections. In BMVC, 2020.

[79] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, and Chang Xu.
Scop: Scientific control for reliable neural network pruning. arXiv preprint arXiv:2010.10732,
2020.

[80] Frederick Tung and Greg Mori. Clip-q: Deep network compression learning by in-parallel
pruning-quantization. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[81] Mart van Baalen, Christos Louizos, Markus Nagel, Rana Ali Amjad, Ying Wang, Tijmen
Blankevoort, and Max Welling. Bayesian bits: Unifying quantization and pruning. arXiv
preprint arXiv:2005.07093, 2020.

[82] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[83] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

[84] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. Video-to-video synthesis. arXiv preprint arXiv:1808.06601, 2018.

[85] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity
in deep neural networks. arXiv preprint arXiv:1608.03665, 2016.

[86] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

[87] Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 11(Oct):2543–2596, 2010.

[88] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

[89] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations
in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

[90] Haichuan Yang, Shupeng Gui, Yuhao Zhu, and Ji Liu. Automatic neural network compression
by sparsity-quantization joint learning: A constrained optimization-based approach. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2178–2188, 2020.

[91] Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with
differentiable scale-invariant sparsity measures. arXiv preprint arXiv:1908.09979, 2019.

[92] Haiqin Yang, Zenglin Xu, Irwin King, and Michael R Lyu. Online learning for group lasso.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages
1191–1198, 2010.

[93] Minghan Yang, Andre Milzarek, Zaiwen Wen, and Tong Zhang. A stochastic extra-step quasi-
newton method for nonsmooth nonconvex optimization. arXiv preprint arXiv:1910.09373,
2019.

[94] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global
filter pruning method for accelerating deep convolutional neural networks. arXiv preprint
arXiv:1909.08174, 2019.

[95] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

[96] Cun-Hui Zhang et al. Nearly unbiased variable selection under minimax concave penalty. The
Annals of statistics, 38(2):894–942, 2010.

[97] Junyu Zhang and Lin Xiao. Multi-level composite stochastic optimization via nested variance
reduction. arXiv preprint arXiv:1908.11468, 2019.

14

[98] Pengchuan Zhang, Hunter Lang, Qiang Liu, and Lin Xiao. Statistical adaptive stochastic
gradient methods. arXiv preprint arXiv:2002.10597, 2020.

[99] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[100] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi
Wang. A systematic dnn weight pruning framework using alternating direction method of
multipliers. In Proceedings of the European Conference on Computer Vision (ECCV), pages
184–199, 2018.

[101] Yuefu Zhou, Ya Zhang, Yanfeng Wang, and Qi Tian. Accelerate cnn via recursive bayesian
pruning. In Proceedings of the IEEE International Conference on Computer Vision, pages
3306–3315, 2019.

[102] Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-
level structured pruning using polarization regularizer. Advances in Neural Information
Processing Systems, 33, 2020.

15

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] In the abstract and introduction, we highlighted the
scope of this work and summarized the main contributions: (i) OTO, (ii) ZIG, (iii)
HSPG, and (iv) CNN and Bert experiments.

(b) Did you describe the limitations of your work? [Yes] See Section 5. OTO does not
proceed quantization jointly yet.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This
work focuses on a general neural network training and pruning framework. We did not
expect any negative societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] As the

supplementary materials to the proposed HSPG, we described and discussed the main
theorems with the full set of assumptions in Appendix B.

(b) Did you include complete proofs of all theoretical results? [Yes] In Appendix B, we
included the complete proofs to the main theorems.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We provided
our source code, detailed data information, and instructions in supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We included the training details in Appendix A.2.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] In Appendix A.3, we reported the error bars for all the
main results shown in Section 4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.
(b) Did you mention the license of the assets? [Yes] See Section 4.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

For the extensible experiments shown in Appendix B, we used several datasets from
LIBSVM and the Fashion-MNIST with proper citation and description.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We have mentioned that all used datasets are publicly available
to academic usage in Section 4.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] We described the used datasets in Section 4 and
concluded that they do not include personally identifiable information and offensive
content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

16

A Implementation Details of OTO

A.1 ZIG for ResNet50

𝑔 = {𝑔1
𝑙 , 𝑔2

𝑙 , … , 𝑔
𝐶𝑙+1
𝑙 }

𝑔1
𝑙

𝑔2
𝑙

𝑔
𝐶𝑙+1
𝑙

𝑏𝑙 𝛾𝑙 𝛽𝑙

𝒦1
𝑙 𝒦2

𝑙 𝒦
𝐶𝑙+1
𝑙

𝑏1
𝑙 𝑏2

𝑙 𝑏
𝐶𝑙+1
𝑙

𝒦𝑙

𝒪𝑙ℐ𝑙

Group Block

In
p

u
t

Te
n

so
r

C
o

n
v

B
N

R
e

sC
o

n
v1

B
N

1

R
es

C
o

n
v2

B
N

2

O
u

tp
u

t
Te

n
so

r

Conv Block

×
2

In
p

u
t

Te
n

so
r

C
o

n
v

B
N

R
e

sC
o

n
v3

B
N

3 O
u

tp
u

t
Te

n
so

r

Identity Block

×
2

× 𝑵

Conv

Batch Norm

Max Pooling

Conv Block

Identity Block

Average Pooling

Group
Block

×𝑵 ×𝑴

(a) ResNet50.

𝑔 = {𝑔1
𝑙 , 𝑔2

𝑙 , … , 𝑔
𝐶𝑙+1
𝑙 }

𝑔1
𝑙

𝑔2
𝑙

𝑔
𝐶𝑙+1
𝑙

𝑏𝑙 𝛾𝑙 𝛽𝑙

𝒦1
𝑙 𝒦2

𝑙 𝒦
𝐶𝑙+1
𝑙

𝑏1
𝑙 𝑏2

𝑙 𝑏
𝐶𝑙+1
𝑙

𝒦𝑙

𝒪𝑙ℐ𝑙

Group Block

In
p

u
t

Te
n

so
r

C
o

n
v

B
N

R
e

sC
o

n
v1

B
N

1

R
es

C
o

n
v2

B
N

2

O
u

tp
u

t
Te

n
so

r

Conv Block

×
2

In
p

u
t

Te
n

so
r

C
o

n
v

B
N

R
e

sC
o

n
v3

B
N

3 O
u

tp
u

t
Te

n
so

r

Identity Block

×
2

× 𝑵

Conv 7x7

Batch Norm

Max Pooling

Conv Block

Identity Block

Average Pooling

Group
Block

×𝑵 ×𝑴

(b) Group block.

Figure 5: ResNet50 Architecture.

Without loss of generality, we illustrate ZIGs for the general ResNet class with ResNet50. As shown
in Figure 5a, ResNet50 begins with a Conv-BN, a pooling layer, and extracts features by M Group
Blocks that each contains one Conv Block andN Identity Block. The extracted features are ultimately
fed into an average pooling layer for different downstream computations. There exist two types
of convolution structures inside ResNet50: (i) the regular Conv-BN (see Section 3.1), marked as
gray and green blocks in Figure 5b, and (ii) the ResConv-BN of which the output shares the same
dimension with another ResConv-BN, marked as yellow and brown in Figure 5b.

For ResNet50, we partition regular Conv-BN following Section 3.1. For ResConv-BN, within
each Group Block, the intermediate input/output tensors in Conv/Indentity Blocks share the same
dimension, and hence all the ResConv-BNs in one Group block share the same number of 3D filters.
Consequently, their flattened filter matrices has the same number of rows. Figure 5b breaks down
the architecture of a Group Block. The output tensors of ResConv-BN1 and ResConv-BN2 in Conv
Block, denoted asO1 andO2, are computed by (7) and (8) respectively. They are then summed up
as the input tensor of the subsequent identify block II1 , indicating thatO1 andO2 have the same
shape and their flattened filter matrices K̂1 and K̂2 has the same number of rows. As (11), II1 later
sums the output tensor of ResConv-BN3O3 to yield the input tensor to the next Identity Block II2 ,
implying the filter matrix of ResConv-BN3 K̂3 has the same number of rows as K̂1 and K̂2.

O1 ← a(I1 ⊗ K̂
1

+ b1)− µ1

σ1
� γ1 + β1 (7)

O2 ← a(I2 ⊗ K̂
2

+ b2)− µ2

σ2
� γ2 + β2 (8)

II1 ← O1 +O2 (9)

O3 ← a(I3 ⊗ K̂
3

+ b3)− µ3

σ3
� γ3 + β3 (10)

II2 ← II1 +O3 (11)

Therefore, based on (7) to (11), to make the entire Group Block zero-invariant, we group each ith
row of the filter matrix for all the Res-Conv-BNs of same group block. In doing so, any one row of
parameters being zeros results in the output, i.e., the corresponding channel of feature map, being
zeros. Figure 6 shows ZIG for the three ResConv-BN of a Group Block. Regardless of the input,
the ith channel-wise matrix of II1 are zeros if and only if both ith channel-wise matrices ofO1 and
O2 are equal to zero. This is equivalent to both ith rows of K̂1 and K̂2 being zeros. Similarly, ith

channel-wise matrix of II2 being zeros regardless of the input further requires the ith row of K̂3 to
be grouped in the ZIG.

17

g1

g2

gm

̂
K

1 ̂
K

2

b
1

b
2 γ1 γ2

G = {g1, g2, · · · , gm}

β1 β2 β3γ3
b
3̂

K
3

Figure 6: Zero Invariant Groups for the three ResConv-BN of a Group Block.

A.2 Training Details

We implement OTO in PyTorch. The key ingredient HSPG is packaged as an optimizer class which is
flexible to various applications. During the experiment, the trainable parameters of the full modelM
are firstly partitioned into a ZIG set G wherein each group is tagged as its corresponding atomic layer
category, e.g., fully-connected layer or convolutional layer. The ZIG set G is treated as an argument
to the HSPG constructor. ThenM is trained from scratch by HSPG where the group-wise variables
are updated based on their tagged layer category. In our repository, we provide the prescribed
ZIG partitions for the DNNs used in this paper, i.e., VGG16, VGG16-BN, ResNet50 and Bert. For
other models, one can easily follow Section 3.1 and Appendix A.1 to construct a ZIG partition and
feed it as an argument to the HSPG optimizer. After training, a full group-sparse model with high
performance is achieved. Finally, a slimmer pruned modelM∗ is constructed following Section 3.4
without fine-tuning and has the identical performance as the full group-sparse model. We provide the
implementation in https://github.com/tianyic/only_train_once and the pruned
models associated with the corresponding full group sparse models in https://tinyurl.com/
nips20212271.

Parameter Settings. We conduct all experiments on an Nvidia RTX8000 graphics card with 48
GB memory. For all experiments, the step size (learning rate) αk is initialized as 10−1, and decayed
by a factor 0.1 periodically T epochs till the minimum value 10−4. The selection of T depends on the
max number of epochs K. We follow various benchmark online resources to select K. Particularly,
for all CIFAR10 experiments, we follow the model pre-training settings in (56) and set K as 300.
Note that by using the same number of epochs, OTO achieves both slimmer model and competitive
performance simultaneously. For the ImageNet experiment, following (35), we set T as 30 and K as
120. For all Bert experiments, we set K as 8 and T as 2.

We set the mini-batch size as the commonly used 64 for CIFAR10, 256 for ImageNet and 32
for SQuAD experiments. For all experiments, we initialize the regularization coefficient λ as 10−3 to
balance between model performance and group sparsity. In particular, λ as 10−3 is the maximum
value from the candidate set {10−2, 10−3, 10−4} which returns competitive evaluation results to the
majority of the tested models trained without regularization. In addition, to favor more on the model
performance, if group sparsity becomes stationary, we decay λ by a factor 0.1 periodically after
stepping into Group-Sparsity Stage. The control parameter ε ∈ [0, 1) in the half-space projection (6)
controls the aggressiveness level of group sparsity promotion, which is typically fixed as 0 since for
most of experiments, ε ≡ 0 has resulted in sufficiently good experiment results. In case if group
sparsity is not sufficiently yielded, we provide an adaptive mechanism to increase ε by 0.1 till the
upper bound 0.999. For the setting of NP which controls when switching to the Group-Sparsity
Stage, we proceed a test on objective value stationarity similarly to (98, Section 2.1) and empirically
set NP ≡ T since the objective function values become stationary at the late epochs till T . Hence,
the Group-Sparsity Stage starts after T epochs and is accompanied with the αk decaying.

Additional Remarks. For the ZIG partition of ResNet50 on CIFAR10, we include all trainable
variables of ResNet50 and apply the ZIG partition described in Appendix A.1 for ResConv-BN and
the ZIG partition described in Section 3.1 for standard Conv-BN. For the ZIG partition of ResNet50
on ImageNet, we construct ZIGs for standard Conv-BN only. This is because we observe that ZIG
partition for ResConv-BN lead to accuracy regression in spite of more FLOPs reduction, (15% FLOPs
with up to 71% Top-1 Accuracy). The cause is that it decreases the number of features maps generated
by the entire Group Block. Additionally, for Bert experiments, to study the accuracy evolution against
different compression rates, we set extra constraints to bound the maximum group sparsity ratio, e.g.,

18

https://github.com/tianyic/only_train_once
https://tinyurl.com/nips20212271
https://tinyurl.com/nips20212271

30%, 50%, 70%, and do not yield new zero groups if the upper bound has been exceeded. Note that
without any constraint, OTO reaches about 95% group sparsity ratio with 80% F1-score.

A.3 Error Bar Analysis

In this section, we report the overall statistics of the experiments and analyze the error bar. We note
that for fair comparison with others, in the main body of paper, we report the best results in terms of
remaining FLOPs/parameters and Top-1/5 accuracy. We conduct all experiments three times with
different random seeds.

Table 6: OTO for CNN Experiments (mean ± std)
Model Dataset FLOPs # of Params Top-1 Acc.

VGG16 CIFAR10 16.9%± 1.5% 2.7%± 0.2% 90.7%± 0.3%
VGG16-BN CIFAR10 26.9%± 0.1% 5.5%± 0.1% 93.2%± 0.1%
ResNet50 CIFAR10 11.9%± 1.7% 8.8%± 0.4% 93.9%± 0.5%
ResNet50 ImageNet 34.8%± 1.8% 35.9%± 1.7% 73.3%± 1.4%

Training neural networks is equivalent to solving a non-convex optimization problem which has
numerous local minimizers, thereby training from scratch like OTO may generate solutions close
to stationary points with different attributes. As shown in Table 6, we can see that for the CNN
experiments, OTO performs reliably to achieve significant FLOPs and parameters reduction and
competitive Top-1 accuracy with small fluctuations. As shown in Table 7, we observe that for the Bert
on SQuAD experiments, OTO achieves reliable exact match rates and f1-scores under different upper
bounds of group sparsity ratios.

Table 7: OTO for Bert on SQuAD (mean ± std)
of Params Exact F1-score

91.0% 74.6%± 0.4% 83.5%± 0.5%
76.2% 71.9%± 0.4% 81.8%± 0.3%
66.7% 71.7%± 0.2% 81.7%± 0.3%
53.3% 71.1%± 0.3% 81.4%± 0.1%
40.0% 70.8%± 0.1% 80.9%± 0.2%

A.4 FLOPs Reduction Breakdown

We provide the layer-wise FLOPs reduction for VGG16 on CIFAR10. As shown in Table 8, the
majority of the FLOPs reduction via OTO comes from a few middle ConvLayers (over 10% to the
overall FLOPs reductions) instead of the first ConvLayer (0.45% to the overall FLOPs reduction). In
general, the distribution of FLOPs reduction per Layer of OTO is similar to other pruning baselines.

Table 8: FLOPs Reduction Breakdown for the ConvLayers of VGG16 on CIFAR10

ConvLayer Index # of Output Channels FLOPs Reduction
Original Pruned Quantity (Million) Percentage (%)

1 64 21 1.19M 0.45%
2 64 45 29.04M 11.07%
3 128 82 10.47M 3.99%
4 128 110 17.22M 6.57%
5 256 109 11.97M 4.56%
6 256 68 33.48M 12.77%
7 256 37 36.30M 13.84%
8 512 13 18.81M 7.17%
9 512 9 37.73M 14.38%

10 512 7 37.74M 14.39%
11 512 3 9.44M 3.60%
12 512 5 9.44M 3.60%
13 512 8 9.44M 3.60%

19

B Convergence Analysis of HSPG

In this section, we provide theoretical analysis of HSPG. We focus on the most popular setting of
optimization problem (2) as follows

minimize
x∈Rn

ψ(x) := f(x) + λr(x), f(x) :=
1

N

N∑
i=1

fi(x), (12)

Here f(x) is defined as the average of N task-specific loss functions fi : Rn 7→ R, ∀ i = 1, . . . , N .
The stochastic gradient∇f̃ proposed in Section 3.3 can be obtained via a uniformly chosen mini-batch
B ⊆ [N] as follows: for any x ∈ Rn, given B, we have

∇f̃(x) = ∇
(

1

|B|
∑
i∈B

fi(x)︸ ︷︷ ︸
=:fB(x)

)
, (13)

in short, we denote above term as∇fB(x) where fB(x) is the average of loss functions with repsect
to mini-batch B. Similarly, let ψB(x) := fB(x) + λr(x) for all x ∈ Rn.

Organization. The Section B is organized as follows: From Section B.1 to Section ??, we present
the convergence result and the sparse recovery guarantee for Half-Space Step. More specifically,

• In Section B.1, we first presented the existing related work of solving the problem (12).
• In Section B.2, we show the sufficient decrease of Half-Space Step under Assumption 1.
• In Section B.3, we derive the projection region of Half-Space Step and compare this projec-

tion region with existing methods.
• In Section B.4, we give the convergence result of Half-Space Step as stated in Theorem 1

under the Assumption (2, 3).

To complete the story, in Section B.5, we show that the “close enough” condition required in
Theorem ?? can be achieved by the Sub-gradient Descent Step under the Assumption 5. Moreover,
we further point out that: (1) the Sub-gradient Descent Step we used to achieve a “close enough”
solution can be replaced by other methods, and (2) the Assumption 4 is only a sufficient condition
that we could use to show the “close enough” condition.

B.1 Related Work

Problem (12) has been well studied in deterministic optimization with various algorithms that are
capable of returning solutions with both low objective value and high group sparsity under proper
λ (95; 73; 42; 64). Proximal methods are classical approaches to solve the structured non-smooth
optimization (12), including the popular proximal gradient method (Prox-FG) which only uses the
first-order derivative information. When N is huge, stochastic methods become ubiquitous to operate
on a small subset to avoid the costly evaluation over all instances in deterministic methods for
large-scale problems. Proximal stochastic gradient method (Prox-SG) (19) is the natural stochastic
extension of Prox-FG. Regularized dual-averaging method (RDA) (87; 92) is proposed by extending
the dual averaging scheme in (66). To improve the convergence rate, there exists a set of incremental
gradient methods inspired by SAG (74) to utilizes the average of accumulated past gradients. For
example, proximal stochastic variance-reduced gradient method (Prox-SVRG) (88) and proximal
spider (Prox-Spider) (97) are developed to adopt multi-stage schemes based on the well-known
variance reduction technique SVRG proposed in (46) and Spider developed in (22) respectively.
SAGA (12) stands as the midpoint between SAG and Prox-SVRG.

Compared to deterministic methods, the studies of structured sparsity regularization (12) in stochastic
field become somewhat rare and limited. Prox-SG, RDA, Prox-SVRG, Prox-Spider and SAGA are
valuable state-of-the-art stochastic algorithms for solving problem (12) but with apparent weakness.
Particularly, these existing stochastic algorithms typically meet difficulties to achieve both decent
convergence and effective group sparsity identification simultaneously (e.g., small function values but
merely dense solutions), because of the randomness and the limited sparsity-promotion mechanisms.
In depth, Prox-SG, RDA, Prox-SVRG, Prox-Spider and SAGA derive from proximal gradient method

20

to utilize the proximal operator to produce group of zero variables. Such operator is generic to
extensive non-smooth problems, consequently perhaps not sufficiently insightful if the target problems
possess certain properties, e.g., the group sparsity structure as problem (12). In fact, in convex setting,
the proximal operator suffers from variance of gradient estimate; and in non-convex setting, especially
deep learning, the discreet step size (learning rate) further deteriorates its effectiveness on the group
sparsity promotion, as shown in Section 3.3 of the main body that the projection region vanishes
rapidly except RDA. RDA has superiority on finding manifold structure to others (53), but inferiority
on the objective convergence. Besides, the variance reduction techniques are typically required to
measure over a huge mini-batch data points in both theory and practice which is probably prohibitive
for large-scale problems, and have been observed as sometimes noneffective for deep learning
applications (13). On the other hand, to introduce sparsity, there exist heuristic weight pruning
methods (55; 60), whereas they commonly do not equip with theoretical guarantee, so that easily
diverge and hurt generalization accuracy.

B.2 Sufficient Decrease of Half-Space Step

Before we present the convergence result of Half-Space Step to the global group-sparsity solution,
in this part, we first show that the sufficient decrease property holds for Half-Space Step under the
following Assumption 1.

Assumption 1. Assume the following assumptions hold.

• (A1-1). f : Rn 7→ R is differentiable and L smooth.

• (A1-2). r : Rn 7→ R is sub-differentiable and convex.

• (A1-3). ψ = f + λr : Rn 7→ R is sub-differentiable over all points x ∈ Rn.

For any k > NP (in Half-Space Step of Algorithm 2), recall the next iterate xk+1 and the search
direction

dk :=
xk+1 − xk

αk
=

ProjHS
Sk(xk − αk∇ψBk

(xk))− xk
αk

. (14)

Define

Ĝk := I 6=0(xk) ∩ I0(xk+1) (15)

G̃k := I 6=0(xk) ∩ I 6=0(xk+1) (16)

be the sets of groups which projects or not onto zero. We claim that the following Lemma 1 holds.

Lemma 1. Under Assumption 1, the search direction dk is a descent direction for ψBk
(xk), i.e.,

d>k∇ψBk
(xk) < 0. Moreover, we have the following sufficient decrease property holds,

ψBk (xk+1) ≤ψBk (xk)−
(
αk −

α2
kL

2

) ∑
g∈G̃k

‖[∇ψBk (xk)]g‖2 −
(
1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 . (17)

Proof. Proof of Descent Direction. It follows the Half-Space Step in Algorithm 2 and the definition
of G̃k and Ĝk as (16) and (15) that xk+1 = xk + αkdk where dk is

[dk]g =

−[∇ψBk

(xk)]g if g ∈ G̃k = I 6=0(xk)
⋂
I 6=0(xk+1),

−[xk]g/αk if g ∈ Ĝk = I 6=0(xk)
⋂
I0(xk+1),

0 otherwise.
(18)

We also notice that for any g ∈ Ĝk, the following holds

[xk − αk∇ψBk
(xk)]>g [xk]g < ε ‖[xk]g‖2 ,

(1− ε) ‖[xk]g‖2 < αk[∇ψBk
(xk)]>g [xk]g.

(19)

21

For simplicity, let I 6=0
k := I 6=0(xk). Since [dk]g = 0 for any g ∈ I0(xk), then by (18) and (19), we

have

d>k∇ψBk
(xk) = [dk]>I 6=0

k

[∇ψBk
(xk)]I 6=0

k

= −
∑
g∈G̃k

‖[∇ψBk
(xk)]g‖2 −

∑
g∈Ĝk

1

αk
[xk]>g [∇ψBk

(xk)]g

≤ −
∑
g∈G̃k

‖[∇ψBk
(xk)]g‖2 −

∑
g∈Ĝk

1

α2
k

(1− ε) ‖[xk]g‖2 < 0,

(20)

holds for any ε ∈ [0, 1), which implies that dk is a descent direction for ψBk
(xk).

Proof of Sufficient Decrease. Now, we start to prove the suffcient decrease of Half-Space Step. By
assumption, f : Rn 7→ R is L smooth and r : Rn 7→ R is convex. Therefore

ψBk
(xk + αkdk) (21)

= fBk
(xk + αkdk) + λr(xk + αkdk) (22)

≤ fBk
(xk) + αkd

>
k∇fB(xk) +

α2
kL

2
‖dk‖2 by Assumption 1 (23)

+ λr(xk) + αkλd
>
k ζ(xk) (24)

= ψBk
(xk) + αkd

>
k∇ψBk

(xk) +
α2
kL

2
‖dk‖2 (25)

≤ ψBk
(xk)−

(
αk −

α2
kL

2

) ∑
g∈G̃k

‖[∇ψBk
(xk)]g‖2 by inequality (20) & dk definition (26)

−
(

1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 , (27)

which completes the proof.

According to Lemma 1, the objective value ψB(x) with E[ψB(x)|x] = ψ(x) achieves a sufficient
decrease in Half-Space Step given αk is small enough. Taking the expectation over mini-batch B on
both sides, it is straight-forward to obtain the expectation version of the sufficient decrease property.

Corollary 1. Similarly, under Assumption 1, for all k > NP , we have

ψ(xk+1) ≤ ψ(xk)−
∑
g∈G̃k

(
αk −

α2
kL

2

)
E
[
‖[∇ψBk

(xk)]g‖2
]
−
(

1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 .

(28)

B.3 Projection Region of Half-Space Step

In this part, we derive the projection region of Half-Space Step, and reveal that is a superset of the
projection region of existing methods, e.g. Prox-SG, Prox-SVRG and Prox-Spider, under the same
αk and λ.

Proposition 1. For any k > NP , given xk, the next iterate xk+1 obtained by the Half-Space Step
satisfies that: for any group g ∈ I 6=0(xk),

[xk+1]g =

{
[x̂k+1]g − αkλ [xk]g

‖[xk]g‖ if [x̂k+1]>g [xk]g > (αkλ+ ε) ‖[xk]g‖ ,
0 otherwise,

(29)

where x̂k+1 := xk − αk∇fBk
(xk). Moreover, we claim that if ‖[x̂k+1]g‖ ≤ αkλ, then [xk+1]g = 0

for any ε ≥ 0.

22

Proof. For g ∈ I 6=0(xk)
⋂
I 6=0(xk+1), by line 11-12 in Algorithm 2, it is equivalent to[

xk − αk∇fBk
(xk)− αkλ

[xk]g
‖[xk]g‖

]>
g

[xk]g > ε ‖[xk]g‖2 ,

[x̂k+1]>g [xk]g − αkλ ‖[xk]g‖ > ε ‖[xk]g‖2 ,
[x̂k+1]>g [xk]g > (αkλ+ ε ‖[xk]g‖) ‖[xk]g‖ .

(30)

Similarly, g ∈ I 6=0(xk)
⋂
I0(xk+1) is equivalent to[

xk − αk∇fBk
(xk)− αkλ

[xk]g
‖[xk]g‖

]>
g

[xk]g ≤ ε ‖[xk]g‖2 ,

[x̂k+1]>g [xk]g − αkλ ‖[xk]g‖ ≤ ε ‖[xk]g‖2 ,
[x̂k+1]>g [xk]g ≤ (αkλ+ ε ‖[xk]g‖) ‖[xk]g‖ .

(31)

If ‖[x̂k+1]g‖ ≤ αkλ, then

[x̂k+1]>g [xk]g ≤ ‖[x̂k+1]g‖ ‖[xk]g‖ ≤ αkλ ‖[xk]g‖ . (32)

Hence [xk+1]g = 0 holds for any ε ≥ 0 by (31), which implies that the projection region
of Prox-SG and its variance reduction variants, e.g., Prox-SVRG, Prox-Spider and SAGA are the
subsets of HSPG’s.

B.4 Convergence Analysis of Half-Space Step

In this section, we give the convergence result of Half-Space Step under the following Assumptions
for the properties of the objective function and the global optimal solution x∗ of (2).
Assumption 2. Assume the following assumptions hold.

• (A2-1). For i = 1, 2, · · · , N , each fi : Rn → R is differentiable and bounded below.

• (A2-2). For i = 1, 2, · · · , N , each fi : Rn → R is Li smooth.

• (A2-3). ψB = fB + λr : Rn 7→ R has bounded sub-gradient (i.e., E[‖∇ψB(x)‖2] ≤ M2

for some universal constant M) over all points x ∈ Rn with respect to any mini-batch
B ⊆ [N].

• (A2-4). The stochastic gradient ∇fB(x) satisfies EB[∇fB(x)|x] = ∇f(x) for all x ∈ Rn.

• (A2-5). The stochastic gradient ∇fB(x) satisfies VarB[∇fB(x)|x] ≤ σ2 for all x ∈ Rn,
where σ2 > 0 is a universal constant.

Notice that this Assumption 2 is a variant of the Assumption 1, to be concise, we set L proposed in
Assumption 1 as L := maxNi=1{Li}.
Assumption 3. Assume the following assumptions hold.

• (A3-1).
∑
k≥NP αk =∞.

• (A3-2).
∑
k≥NP α

2
k <∞.

Assumption 4. Assume the following assumptions hold.

• (A4-1). The least and the largest `2-norm of non-zero groups in x∗ are lower and upper
bounded by some constants,

0 < 2δ1 := min
g∈I 6=0(x∗)

‖[x∗]g‖ ≤ max
g∈I 6=0(x∗)

‖[x∗]g‖ =: 2δ2. (33)

• (A4-2). The regularizer parameter λ satisfies that: for any mini-batch B ⊆ [N], there exists
a constant δ3 such that

0 < 2δ3 := min
g∈I0(x∗)

(λ− ‖[∇fB(x∗)]g‖) . (34)

23

Theorem 1. Under Assumptions (1, 2, 3, 4), set

R ∈
(

0, min

{
1

ε
·
[
−(δ1 + 2εδ2) +

√
(δ1 + 2εδ2)2 − 4ε2δ2 + 4εδ21

]
, δ1

})
, (35)

ε ∈
[
0, min

{
δ21
δ2
,

2δ1 −R
2δ2 +R

})
, (36)

αk ∈
(

0, min

{
2(1− ε)

L
,

1

L
,

2δ1 −R− ε(2δ2 +R)

M

})
, ∀k ≥ NP . (37)

If there exists a K ≥ NP such that

‖xK − x∗‖ ≤
R

2
. (38)

Given any τ ∈ (0, 1), there exists some αk = O(1/(1 +
√
τ)(k−K)) and |Bk| = O(k−K) for all

k ≥ K such that the sequence {xk}k≥K obtained from the Algorithm 2 converges to some stationary
point with probability at least 1− τ , i.e.,

lim inf
k

E [‖∇ψBk
(xk)‖] = 0 with probability 1− τ. (39)

Proof. Proof Sketch. We split the proof of showing the convergence to some stationary points into
two parts. In the first part, we show the convergence holds for all groups in G̃k; and in the second
part, we show the convergence also holds in Ĝk.

Convergence in G̃k part. For any t ∈ N+, applying Corollary 1 yields

ψ(xNP)− ψ(xNP+t) (40)

=

NP+t−1∑
k=NP

ψ(xk)− ψ(xk+1) (41)

≥
NP+t−1∑
k=NP

∑
g∈G̃k

(
αk −

α2
kL

2

)
E
[
‖[∇ψBk

(xk)]g‖2
]

+

NP+t−1∑
k=NP

(
1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 .

(42)

Combining the assumption that ψ is bounded below and letting t→∞ yield

∞∑
k=NP

∑
g∈G̃k

(
αk −

α2
kL

2

)
E
[
‖[∇ψBk

(xk)]g‖2
]

︸ ︷︷ ︸
=:T1

+

∞∑
k=NP

(
1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2

︸ ︷︷ ︸
=:T2

<∞.

(43)

Given αk ∈ (0, 2(1− ε)/L), we have T1 > 0, T2 > 0, combining with T1 + T2 <∞ implies

∞∑
k=NP

∑
g∈G̃k

(
αk −

α2
kL

2

)
E
[
‖[∇ψBk

(xk)]g‖2
]

(44)

=

∞∑
k=NP

∑
g∈G̃k

αkE
[
‖[∇ψBk

(xk)]g‖2
]
−

∞∑
k=NP

∑
g∈G̃k

α2
kL

2
E
[
‖[∇ψBk

(xk)]g‖2
]
. (45)

Based on the boundness of sub-gradient in Assumptions 2 and the choice of stepsize in 3, we have

∞∑
k=NP

∑
g∈G̃k

α2
kL

2
E
[
‖[∇ψBk

(xk)]g‖2
]
<∞, (46)

24

which yields
∞∑

k=NP

∑
g∈G̃k

αkE
[
‖[∇ψBk

(xk)]g‖2
]
<∞ (47)

⇒ lim inf
k≥NP

∑
g∈G̃k

E
[
‖[∇ψBk

(xk)]g‖2
]

= 0 (48)

⇒ lim
k≥K

∑
g∈G̃k

E
[
‖[∇ψBk

(xk)]g‖2
]

= 0, ∃ K ⊆ {NP , . . .} (49)

Convergence in Ĝk part. Under Assumption 4, Lemma (2, 3, 4) show that if there exists a K ≥ NP
such that

‖xK − x∗‖ ≤ R, (50)

then we have the following results hold

I 6=0(x∗) ⊆ I 6=0(xK), non-zero group coverage, (51)
x∗ ∈ SK , correct optimal inclusion SK , (52)

I 6=0(xK) ∩ I=0(xK+1) ⊆ I=0(x∗), correct zero group projection. (53)

Under Assumption (2, 3, 4), Lemma (5, 6, 7) and Corollary 2 show that: given any τ ∈ (0, 1), with
probability at least 1 − τ , for any k ≥ K, x∗ inhabits Sk. Therefore, for any k ≥ K, any group
g ∈ Ĝk = I 6=0(xk) ∩ I=0(xk+1) will be projected to zero group correctly with probability at least
1− τ .

Convergence over the whole space. Based on the discussion in Ĝk part, it is sufficient to focus on
the subspace of G̃k. Hence, (49) naturally implies that the sequence {xk}k∈K converges to some
stationary point with high probability. By the above, we conclude that

P
(

lim inf
k

E [‖∇ψBk
(xk)‖] = 0

)
≥ 1− τ. (54)

B.4.1 Support Lemma in the Proof of Theorem 1

The Lemma 2 shows that if the optimal distance from the current iterate xk to any local minimizer
x∗ is sufficiently small, then HSPG already covers the supports of x∗, i.e., I 6=0(x∗) ⊆ I 6=0(xk).
Lemma 2. Under Assumption 4, given any R ≤ δ1, for any k ≥ NP , if ‖xk − x∗‖ ≤ R, then we
have I 6=0(x∗) ⊆ I 6=0(xk).

Proof. For any g ∈ I 6=0(x∗), we have that

‖[x∗]g‖ − ‖[xk]g‖ ≤ ‖[xk − x∗]g‖ ≤ ‖xk − x∗‖ ≤ R ≤ δ1
‖[xk]g‖ ≥ ‖[x∗]g‖ − δ1 ≥ 2δ1 − δ1 = δ1 > 0

(55)

Hence ‖[xk]g‖ 6= 0, i.e., g ∈ I 6=0(xk). Therefore, I 6=0(x∗) ⊆ I 6=0(xk).

The Lemma 3 shows that if the distance between the current iterate xk and x∗, i.e., ‖xk − x∗‖ is
sufficiently small, then x∗ inhabits the reduced space Sk := S(xk).
Lemma 3. Under Assumption 4, for any k ≥ NP , given ε ∈ [0, δ21/δ2) and

R ≤ R∗ :=
1

ε
·
[
−(δ1 + 2εδ2) +

√
(δ1 + 2εδ2)2 − 4ε2δ2 + 4εδ21

]
, (56)

if ‖xk − x∗‖ ≤ R, we have

[xk]>g [x∗]g ≥ ε ‖[xk]g‖2 , g ∈ I 6=0(x∗). (57)

Consequently, it implies x∗ ∈ Sk by the definition as (4).

25

Proof. For any g ∈ I 6=0(x∗),

‖[xk]g‖ ≤ ‖[x∗]g‖+R ≤ 2δ2 +R, (58)

and the R∗ defined in (56) is one of the roots of the quadratic εz2 + (4εδ2 + 2δ1)z+ 4εδ22 − 4δ21 = 0
regarding z ∈ R. Thus

[xk]>g [x∗]g =[xk − x∗ + x∗]>g [x∗]g

=[xk − x∗]>g [x∗]g + ‖[x∗]g‖2

≥‖[x∗]g‖2 − ‖[xk − x∗]g‖ ‖[x∗]g‖
= ‖[x∗]g‖ (‖[x∗]g‖ − ‖[xk − x∗]g‖)
≥2δ1(2δ1 −R) ≥ ε(2δ2 +R)2

≥ε ‖[xk]g‖2

(59)

holds for any g ∈ I 6=0(x∗), where the second last inequality holds because that 2δ1(2δ1 − R) =
ε(2δ2 + R)2 as R = R∗. Now combing with the definition of Sk as (4), we have x∗ inhabits Sk,
which completes the proof.

The Lemma 4 shows that if ‖xk − x∗‖ is small enough and the step size is selected properly, every
recovery of group sparsity by Half-Space Step can be guaranteed as successful as stated in the
following lemma.

Lemma 4. Under Assumption 4, for any k ≥ NP , given ε ∈
[
0, 2δ1−R2δ2+R

)
, αk ∈(

0, 2δ1−R−ε(2δ2+R)
M

)
and R ∈ (0,min{R∗, δ1}), if ‖xk − x∗‖ ≤ R, then for any g ∈ Ĝk =

I 6=0(xk)
⋂
I0(xk+1), we have g ∈ I0(x∗).

Proof. To prove it by contradiction, suppose there exists some g ∈ Ĝk such that g ∈ I 6=0(x∗). Since
g ∈ Ĝk = I 6=0(xk)

⋂
I0(xk+1), then the group projection (6) is trigerred at g such that

[x̃k+1]>g [xk]g = [xk − α∇ψBk
(xk)]>g [xk]g

= ‖[xk]g‖2 − αk[∇ψBk
(xk)]>g [xk]g < ε ‖[xk]g‖2 .

(60)

On the other hand, it follows the assumption of this lemma and g ∈ I 6=0(x∗) that
‖[xk − x∗]g‖ ≤ ‖xk − x∗‖ ≤ R (61)

Combining the definition of δ1 and δ2 in Assumption 4, we have that
‖[xk]g‖ ≥ ‖[x∗]g‖ −R ≥ 2δ1 −R
‖[xk]g‖ ≤ ‖[x∗]g‖+R ≤ 2δ2 +R

(62)

It then follows 0 < αk ≤ 2δ1−R−ε(2δ2+R)
M , where note 2δ1 − R − ε(2δ2 + R) > 0 as R ≤ δ1 and

ε < 2δ1−R
2δ2+R

, that

[x̃k+1]>g [xk]g = ‖[xk]g‖2 − αk[∇ψBk
(xk)]>g [xk]g

≥ ‖[xk]g‖2 − αk ‖[∇ψBk
(xk)]g‖ ‖[xk]g‖

= ‖[xk]g‖ (‖[xk]g‖ − αk ‖[∇ψBk
(xk)]g‖)

≥ ‖[xk]g‖ (‖[xk]g‖ − αkM)

≥ ‖[xk]g‖ [(2δ1 −R)− αkM]

≥ ‖[xk]g‖
[
(2δ1 −R)− 2δ1 −R− ε(2δ2 +R)

M
M

]
≥ ‖[xk]g‖ [(2δ1 −R)− 2δ1 +R+ ε(2δ2 +R)]

≥ ε ‖[xk]g‖ (2δ2 +R)

≥ ε ‖[xk]g‖2

(63)

which contradicts with (60). Hence, we conclude that any g of variables projected to zero, i.e.,
g ∈ Ĝk = I 6=0(xk)

⋂
I0(xk+1) are exactly also the zeros on the optimal solution x∗, i.e., g ∈

I0(x∗).

26

We next present that if the iterate of Half-Space Step is close enough to the optimal solution x∗, then
x∗ inhabits all reduced spaces constructed by the subsequent iterates of Half-Space Step with high
probability.

To establish this results, we require the following two lemmas (Lemma 5 and Lemma 6). The
Lemma 5 bounds the accumulated error because of random sampling. Here we introduce the error of
gradient estimator on I 6=0(x) for ψ on mini-batch B as

eB(x) := [∇ψB(x)−∇ψ(x)]I 6=0(x), (64)

where by the definition of r in problem (12), we have eB(x) also equals to the error of estimation for
∇f , i.e., eB(x) = [∇fB(x)−∇f(x)]I 6=0(x).

Lemma 5. Under Assumption 2, given any θ > 1, K ≥ NP , let k := K+ t with t ∈ Z≥0, then there
exists a sequence of stepsize αk = O(1/(1 + θ)t) and corresponding size of mini-batch |Bk| = O(t),
such that for any yt ∈ Rn,

max
{yt}∞t=0∈X∞

∞∑
t=0

αk‖eBk
(yt)‖2 ≤

3R2

8(4R+ 1)

holds with probability at least 1− 1
θ2 .

Proof. Define random variable Yt := αK+t‖eBK+t
(yt)‖2 for all t ≥ 0. Since {yt}∞t=0 are arbitrarily

chosen, then the random variables {Yt}∞t=0 are independent. Let Y :=
∑∞
t=0 Yt. Using Chebshev’s

inequality, we obtain

P
(
Y ≥ E[Y] + θ

√
Var[Y]

)
≤ P

(
|Y − E[Y]| ≥ θ

√
Var[Y]

)
≤ 1

θ2
. (65)

And based on the Assumption 2, there exists an upper bound σ2 > 0 for the variance of random noise
eB(x) generated from the one-point mini-batch, i.e., B = {i}, i = 1, . . . , N . Consequently, for each

t ≥ 0, we have E[Yt] ≤ αK+tσ√
|BK+t|

and Var[Yt] ≤
α2

K+tσ
2

|BK+t| , then combining with (65), we have

Y ≤ E[Y] + θ
√

Var[Y] (66)

≤
∞∑
t=0

αK+tσ√
|Bk+t|

+ θ ·
∞∑
t=0

α2
K+tσ

2

|BK+t|
(67)

≤
∞∑
t=0

αK+tσ√
|Bk+t|

+ θ ·
∞∑
t=0

αK+tσ√
|BK+t|

= (1 + θ)

∞∑
t=0

αK+tσ√
|BK+t|

(68)

holds with probability at least 1− 1
θ2 . Here, for the second inequality, we use the property that the

equality E[
∑∞
t=0 Yi] =

∑∞
t=0 E[Yi] holds whenever

∑∞
t=0 E[|Yi|] convergences, see Section 2.1 in

(63); and for the third inequality, we use αK+tσ√
|BK+t|

≤ 1 without loss of generality as the common

setting of large mini-batch size and small step size.

Given any θ > 1, there exists some αk = O(1/(1+θ)t) and |Bk| = O(t), the above series converges
and satisfies that

(1 + θ)

∞∑
t=0

αK+tσ√
|BK+t|

≤ 3R2

8(4R+ 1)
(69)

holds. Notice that the above proof holds for any given sequence {yt}∞t=0 ∈ X∞, thus

max
{yt}∞t=0∈X∞

∞∑
t=0

αk‖eBk
(yt)‖2 ≤

3R2

8(4R+ 1)

holds with probability at least 1− 1
θ2 .

The Lemma 6 draws if previous iterate of Half-Space Step falls into the neighbor of x∗, then under
appropriate step size and mini-batch setting, the current iterate also inhabits the neighbor with high
probability.

27

Lemma 6. Under the assumptions of Lemma 5, suppose ‖xK − x∗‖ ≤ R/2; for any ` satisfying
K ≤ ` < K + t, 0 < α` ≤ min{ 1

L ,
2δ1−R−ε(2δ2+R)

M }, |B`| ≥ N − N
2M and ‖x` − x∗‖ ≤ R holds,

then
‖xK+t − x∗‖ ≤ R. (70)

holds with probability at least 1− 1
θ2 .

Proof. It follows the assumptions of this lemma, Lemma 4, (15) and (16) that for any ` satisfying
K ≤ ` < K + t

‖[x∗]g‖ = 0, for any g ∈ Ĝ`. (71)
Hence we have that for K ≤ ` < K + t,

‖x`+1 − x∗‖2

=
∑
g∈G̃`

‖[x` − x∗ − α`∇Ψ(x`)− α`eB`
(x`)]g‖2 +

∑
g∈Ĝk

‖[x` − x∗ − x`]g‖2

=
∑
g∈G̃`

{
‖[x` − x∗]g‖2 − 2α`[x` − x∗]>g [∇Ψ(x`) + eB`

(x`)]g + α2
` ‖[∇Ψ(x`) + eB`

(x`)]g‖2
}

+
∑
g∈Ĝ`

‖[x∗]g‖2

=
∑
g∈G̃`

{
‖[x` − x∗]g‖2 − 2α`[x` − x∗]>g [∇Ψ(x`)]g − 2α`[x` − x∗]>g [eB`

(x`)]g + α2
` ‖[∇Ψ(x`) + eB`

(x`)]g‖2
}

≤
∑
g∈G̃`

‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2
(

2
α`
L
− α2

`

)
− 2α`[x` − x∗]>g [eB`

(x`)]g + α2
` ‖[eB`

(x`)]g‖2

+ 2α2
` [∇Ψ(x`)]

>
g [eB`

(x`)]g

≤
∑
g∈G̃`

‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2
(

2
α`
L
− α2

`

)
+ 2α` ‖[x` − x∗]g‖ ‖[eB`

(x`)]g‖+ α2
` ‖[eB`

(x`)]g‖2

+ 2α2
` ‖[∇Ψ(x`)]g‖ ‖[eB`

(x`)]g‖

≤
∑
g∈G̃`

‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2
(

2
α`
L
− α2

`

)
+ (2α` + 2α2

`L) ‖[xk − x∗]g‖ ‖[eB`
(x`)]g‖+ α2

` ‖[eB`
(x`)]g‖2

≤
∑
g∈G̃`

{
‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2

(
2
α`
L
− α2

`

)}
+ (2α` + 2α2

`L) ‖x` − x∗‖ ‖eB`
(x`)‖+ α2

` ‖eB`
(x`)‖2

(72)

On the other hand, by the definition of eB(x) as (64), we have that

eB(x) =[∇ΨB(x)−∇Ψ(x)]I 6=0(x) = [∇fB(x)−∇f(x)]I 6=0(x)

=
1

|B|
∑
j∈B

[∇fj(x)]I 6=0(x) −
1

N

N∑
i=1

[∇fi(x)]I 6=0(x)

=
1

N

∑
j∈B

[
N

|B|
[∇fj(x)]I 6=0(x) − [∇fj(x)]I 6=0(x)

]
− 1

N

N∑
i=1
i/∈B

[∇fi(x)]I 6=0(x)

=
1

N

∑
j∈B

[
N − |B|
|B|

[∇fj(x)]I 6=0(x)

]
− 1

N

N∑
i=1
i/∈B

[∇fi(x)]I 6=0(x)

(73)

Thus taking the norm on both side of (73) and using triangle inequality results in the following:

‖eB(x)‖ ≤ 1

N

∑
j∈B

[
N − |B|
|B|

∥∥[∇fj(x)]I 6=0(x)

∥∥]+
1

N

N∑
i=1
i/∈B

∥∥[∇fi(x)]I 6=0(x)

∥∥
≤ 1

N

N − |B|
|B|

|Bk|M +
1

N
(N − |B|)M ≤ 2(N − |B|)M

N
.

(74)

28

Since α` ≤ 1, and |B`| ≥ N − N
2M hence α` ‖eB`

(x`)‖ ≤ 1. Then combining with α` ≤ 1/L, (72)
can be further simplified as

‖x`+1 − x∗‖2

≤
∑
g∈G̃`

{
‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2

(
2
α`
L
− α2

`

)}
+ (2α` + 2α2

`L) ‖x` − x∗‖ ‖eB`
(x`)‖+ α2

` ‖eB`
(x`)‖2

≤
∑
g∈G̃`

{
‖[x` − x∗]g‖2 −

1

L2
‖[∇Ψ(x`)]g‖2

}
+ 4α` ‖x` − x∗‖ ‖eB`

(x`)‖+ α2
` ‖eB`

(x`)‖2

≤‖x` − x∗‖2 + 4α` ‖x` − x∗‖ ‖eB`
(x`)‖+ α` ‖eB`

(x`)‖
(75)

Following from the assumption that ‖x` − x∗‖ ≤ R, then (75) can be further simplified as

‖x`+1 − x∗‖2 ≤‖x` − x∗‖2 + 4α`R ‖eB`
(x`)‖+ αk ‖eB`

(x`)‖
≤‖x` − x∗‖2 + (4R+ 1)α` ‖eB`

(x`)‖
(76)

Summing the the both side of (76) from ` = K to ` = K + t− 1 results in

‖xK+t − x∗‖2 ≤ ‖xK − x∗‖2 + (4R+ 1)

K+t−1∑
`=K

α` ‖eB`
(x`)‖ (77)

It follows Lemma 5 that the followng holds with probability at least 1− 1
θ2 ,

∞∑
`=K

α`‖eB`
(x`)‖ ≤

3R2

4(4R+ 1)
. (78)

Thus we have that

‖xK+t − x∗‖2 ≤ ‖xK − x∗‖2 + (4R+ 1)

K+t−1∑
`=K

α` ‖eB`
(x`)‖

≤ ‖xK − x∗‖2 + (4R+ 1)

∞∑
`=K

α`‖eB`
(x`)‖

≤ R2

4
+ (4R+ 1)

3R2

4(4R+ 1)
≤ R2

4
+

3R2

4
≤ R2,

(79)

holds with probability at least 1− 1
θ2 , which completes the proof.

Based on the above lemmas, the Lemma 7 shows if initial iterate of Half-Space Step locates closely
enough to x∗, step size αk polynomially decreases, and mini-batch size Bk polynomially increases,
then x∗ inhabits all subsequent reduced space {Sk}∞k=K constructed in Half-Space Step with high
probability.

Lemma 7. If ‖xK − x∗‖ ≤ R
2 , K ≥ NP , k = K + t, t ∈ Z+, 0 < αk = O(1/(

√
Nt)) ≤

min{ 2(1−ε)L , 1
L ,

2δ1−R−ε(2δ2+R)
M } and |Bk| = O(t) ≥ N − N

2M . Then for any constant τ ∈ (0, 1),
‖xk − x∗‖ ≤ R with probability at least 1− τ for any k ≥ K.

Proof. It follows Lemma 3 and the assumption of this lemma that x∗ ∈ SK . Moreover, it follows
the assumptions of Lemma (5, 6, 7), the definition of finite-sum f(x) in (12), and the bound of error
as (74) that

P({xk}∞k=K ∈ {x : ‖x− x∗‖ ≤ R}∞) ≥
(

1− 1

θ2

)O(N−K)

≥ 1− τ, (80)

where the last two inequalities comes from that the error vanishing to zero as |Bk| reaches the upper
bound N , and θ is sufficiently large depending on τ and O(N −K).

Corollary 2. Lemma 7 further implies x∗ inhabits all subsequent Sk, i.e., x∗ ∈ Sk for any k ≥ K.

29

B.5 The Initialization Stage

In previous parts, we show that the Half-Space Step guarantees to converge to the optimal solution,
and ensures to recover the no-zero groups of the optimal solution under some assumptions with a
“close-enough” initialization point xNP . To complete the story, in this part, we show that the iterate
obtained from the Subgradient Descent Update in Algorithm 2 satisfies the “close-enough” condition
with high probability. Remark here that the proximal methods, such as Prox-SG, Prox-SVRG
and SAGA, may also serve in the initialization stage. However, for the general regularization r(x),
they may not have closed-form solution for the corresponding inherent subproblems, implying non-
explicit update mechanism to the next iterate. Hence, people may have to inconveniently approximate
the solutions of proximal operator by other techniques, whereas the sub-gradient method does not
have these drawbacks. Therefore, for the generality of HSPG, we select the sub-gradient method in
the Initialization Stage by default.

B.5.1 Convergence Analysis of Initialization Stage

In this part, we show that the “close enough” condition

‖xk − x∗‖ ≤
2αkδ3

1− ε+ αkL
(81)

proposed in Theorem ?? can be achieved via the Initialization Stage (Subgradient Descent Update)
in Algorithm 2 under the Assumption 5.

Assumption 5. Assume the following assumptions hold.

• (A5-1). f : Rn 7→ R is differentiable and µ-strongly convex. r : Rn 7→ R is convex.

• (A5-2). There exists an universal constant M such that the stochastic gradient ∇fB(x)
satisfies ‖∇fB(x)‖2 ≤M for all x ∈ Rd and mini-batch B.

• (A5-3). The stochastic gradient ∇fB(x) satisfies EB[∇fB(x)|x] = ∇f(x) for all x ∈ Rn.

Proposition 2. Under Assumption 5, for any R > 0, any τ ∈ (0, 1), set

NP =

⌈
log

(
τR

2‖x0 − x∗‖22

)/
log

(
1− τR

2M

)⌉
, (82)

α0 = α1 = . . . = αNP−1 =
τµR

2M2
, (83)

where

R =

(
2αkδ3

1− ε+ αkL

)2

(84)

based on the setting of Theorem ??. We have the Algorithm 1 (Subgradient Descent Update) returns
a solution xNP that satisfies ‖xNP − x∗‖22 ≤ R with probability 1− τ .

Proof. Let x∗ be the global optimal solution of (2). Let∇ψ(x) = ∇f(x) + λζ(x) and∇ψB(x) =
∇fB(x) + λζ(x) given any point x ∈ Rn and mini-batch B. Consider

‖xk+1 − x∗‖22 = ‖xk − αk∇ψBk
(xk)− x∗‖22 (85)

= ‖xk − x∗‖22 − 2αk〈∇ψBk
(xk),xk − x∗〉+ ‖αk∇ψBk

(xk)‖22. (86)

Due to (A1) in Assumption 5, the µ-strongly convexity of f and the convexity of r yields

ψ(x∗) ≥ ψ(xk) + 〈∇ψ(xk),x∗ − xk〉+
µ

2
‖xk − x∗‖22. (87)

30

Thus

‖xk+1 − x∗‖22 (88)

= ‖xk − x∗‖22 − 2αk〈∇ψBk
(xk),xk − x∗〉+ ‖αk∇ψBk

(xk)‖22 (89)

= ‖xk − x∗‖22 + 2αk〈∇ψBk
(xk),x∗ − xk〉+ ‖αk∇ψBk

(xk)‖22 (90)

= ‖xk − x∗‖22 + 2αk〈∇ψ(xk)−∇ψ(xk) +∇ψBk
(xk),x∗ − xk〉+ ‖αk∇ψBk

(xk)‖22 (91)

≤ ‖xk − x∗‖22 + 2αk

(
ψ(x∗)− ψ(xk)− µ

2
‖xk − x∗‖22

)
(92)

+ 2αk〈∇ψBk
(xk)−∇ψ(xk),x∗ − xk〉+ ‖αk∇ψBk

(xk)‖22 (93)

≤ (1− αkµ)‖xk − x∗‖22 − 2αk(ψ(xk)− ψ(x∗)) + α2
k‖∇ψ(xk)‖22 (94)

+ 2αk〈∇ψBk
(xk)−∇ψ(xk),x∗ − xk〉 (95)

≤ (1− αkµ)‖xk − x∗‖22 + α2
kM

2 + 2αk〈∇ψBk
(xk)−∇ψ(xk),x∗ − xk〉. (96)

Given xk, due to (A5-2) in Assumption 5, taking expectation over Bk yields

EBk
[‖xk+1 − x∗‖22|xk] ≤ (1− αkµ)‖xk − x∗‖22 + α2

kM
2, (97)

where the above inequality holds by (A5-3) in Assumption 5

EBk
[〈∇ψBk

(xk)−∇ψ(xk),x∗ − xk〉|xk] = 0. (98)

For any k ∈ N+, any constant c > 0, and initial point x0, setting αk = µ
cM2 , apply above inequality

recursively yields

EH
[
‖xk − x∗‖22

]
≤
(

1− 1

cM2

)k
‖x0 − x∗‖22 +

1

c
, (99)

whereH = {B0, . . . ,Bk−1} denotes the whole history until step k.

Non-asymptotic bounds. Combine above together, given any R > 0, for any τ ∈ (0, 1), set

NP =

⌈
log

(
τR

2‖x0 − x∗‖22

)/
log

(
1− τR

2M

)⌉
(100)

α0 = α1 = . . . = αNP−1 =
τµR

2M2
, (101)

by Markov inequality, we have

‖xk − x∗‖22 ≤ R (102)

holds with probability 1− τ .

Remark & Discussion. The Assumption 4 required by the Proposition 2 is a sufficient condition to
show the “close enough” condition. Actually, for any general function f which satisfies Assumption 1
or Assumption 2, when xk is “close enough” to any group-sparse local optimal solution x∗ which
satisfies the Assumption 4, the Theorem ?? identifies the zero-group with respect to the local optimal
solution x∗.

C Extensive Numerical Experiments

In this Appendix, we include extensive numerical experiments in the view of optimization to demon-
strate the superiority of HSPG to other classical proximal methods on the sparsity exploration and
the competitiveness on objective convergence in both convex and nonconvex settings. Particularly,
in Appendix C.1, we provide convex experiments to (i) demonstrate the validness of group sparsity
identification of HSPG; (ii) present comprehensive comparison to Prox-SG, RDA and Prox-SVRG
on benchmark convex problems. In Appendix C.2, we show additional nonconvex experiments to
reveal the superiority of HSPG to competitors on group sparsity exploration.

31

C.1 Convex Experiments

Linear Regression on Synthetic Data We numerically validate the proposed HSPG on group
sparsity identification by linear regression problems with `1/`2 regularizations using synthetic data.
Consider a data matrix A ∈ RN×n consisting of N instances and the target variable y ∈ RN , we are
interested in the following problem:

minimize
x∈Rn

1

2N
‖Ax− y‖2 + λ

∑
g∈G
‖[x]g‖ . (103)

Our goal is to empirically show that HSPG is able to identify the ground truth zero groups with
synthetic data. We conduct the experiments as follows: (i) generate the data matrix A whose elements
are uniformly distributed among [−1, 1]; (ii) generate a vector x∗ working as the ground truth
solution, where the elements are uniformly distributed among [−1, 1] and the coordinates are equally
divided into 10 groups (|G| = 10); (iii) randomly set a number of groups of x∗ to be 0 according to
a pre-specified group sparsity ratio; (iv) compute the target variable y = Ax∗; (v) solve the above
problem (103) for x with A and y only, and then evaluate the Intersection over Union (IoU) with
respect to the identities of the zero groups between the computed solution estimate x̂ by HSPG and
the ground truth x∗.

We test HSPG on (103) under different problem settings. For a slim matrix A where N ≥ n, we
test with various group sparsity ratios among {0.1, 0.3, 0.5, 0.7, 0.9}, and for a fat matrix A where
N < n, we only test with a certain group sparsity value since a recovery of x∗ requires that the
number of non-zero elements in x∗ is bounded by N . Throughout the experiments, we set λ to
be 100/N , the mini-batch size |B| to be 64, step size αk to be 0.1 (constant), and fine-tune ε per
problem. Based on a similar statistical test on objective function stationarity (98), we switch to
Half-Space Step roughly after 30 epoches. Table 9 shows that under each setting, the proposed HSPG
correctly identifies the groups of zeros as indicated by IoU(x̂,x∗) = 1.0, which is a strong evidence
to show the correctness of group sparsity identification of HSPG.

Table 9: Linear regression problem settings and IoU of the recovered solutions by HSPG.
N n Group sparsity ratio of x∗ IoU(x̂, x∗)

Slim A

10000 1000 {0.1, 0.3, 0.5, 0.7, 0.9} 1.0
10000 2000 {0.1, 0.3, 0.5, 0.7, 0.9} 1.0
10000 3000 {0.1, 0.3, 0.5, 0.7, 0.9} 1.0
10000 4000 {0.1, 0.3, 0.5, 0.7, 0.9} 1.0

Fat A

200 1000 0.9 1.0
300 1000 0.8 1.0
400 1000 0.7 1.0
500 1000 0.6 1.0

Logistic Regression We then focus on the benchmark convex logistic regression problem with
the mixed `1/`2-regularization given N examples (d1, l1), · · · , (dN , lN) where di ∈ Rn and li ∈
{−1, 1} with the form

minimize
(x;b)∈Rn+1

1

N

N∑
i=1

log(1 + e−li(x
T di+b)) + λ

∑
g∈G

‖[x]g‖ , (104)

for binary classification with a bias b ∈ R. We set the regularization parameter λ as 100/N throughout
the experiments since it yields high sparse solutions and low object value f ’s, equally decompose
the variables into 10 groups to form G, and test problem (104) on 8 standard publicly available
large-scale datasets from LIBSVM repository (6) as summarized in Table 10. All convex experiments
are conducted on a 64-bit operating system with an Intel(R) Core(TM) i7-7700K CPU @ 4.20 GHz
and 32 GB random-access memory.

We run the solvers with a maximum number of epochs as 60 following (8). The mini-batch size |B|
is set to be min{256, d0.01Ne} similarly to (93). The step size αk setting follows [Section 4](88).
Particularly, we first compute a Lipschitz constant L as maxi ‖di‖2 /4, then fine tune and select
constant αk ≡ α = 1/L to Prox-SG and Prox-SVRG since it exhibits the best results. For RDA, the
step size parameter γ is fined tuned as the one with the best performance among all powers of 10.

32

a9a higgs ijcnn1 kdda

1.0

0.5

0.0

Prox-SG
RDA
Prox-SVRG
HSProx-SG

R
el
a
ti
v
e
R
u
n
ti
m
e

news20 real-sim url w8a

Figure 7: Relative runtime.

For HSPG, we set αk as the same as Prox-SG and Prox-SVRG in practice. We select two ε’s as 0
and 0.8. The final objective value ψ and group sparsity in the solutions are reported in Table 11-12,
where we mark the best values as bold to facilitate the comparison. Furthermore, Figure 7 plots the
relative runtime of these solvers for each dataset, scaled by the runtime of the most time-consuming
solver.

Table 12 shows that our HSPG is definitely the best solver on exploring the group sparsity of the
solutions. In fact, HSPG under ε = 0.8 performs all the best except ijcnn1. Prox-SVRG is the second
best solver on group sparsity exploration, which demonstrates that the variance reduction techniques
works well in convex setting to promote sparsity, but not in non-convex settings. HSPG under ε = 0
performs much better than Prox-SG which matches the better sparsity recovery property of HSPG as
stated in Theorem ?? even under ε as 0. Moreover, as shown in Table 11, we observe that all solvers
perform quite competitively in terms of final objective values (round up to 3 decimals) except RDA,
which demonstrates that HSPG reaches comparable convergence as Prox-SG and Prox-SVRG in
practice. Finally, Figure 7 indicates that Prox-SG, RDA and HSPG have similar computational cost
to proceed, except Prox-SVRG due to its periodical full gradient computation.

Table 10: Summary of datasets.
Dataset N n Attribute Dataset N n Attribute

a9a 32561 123 binary {0, 1} news20 19996 1355191 unit-length
higgs 11000000 28 real [−3, 41] real-sim 72309 20958 real [0, 1]
ijcnn1 49990 22 real [-1, 1] url_combined 2396130 3231961 real [−4, 9]
kdda 8407752 20216830 real [−1, 4] w8a 49749 300 binary {0, 1}

Table 11: Final objective values ψ for tested algorithms on convex problems.
Dataset Prox-SG RDA Prox-SVRG

HSPG
ε as 0 ε as 0.8

a9a 0.355 0.359 0.355 0.355 0.355
higgs 0.357 0.360 0.365 0.358 0.358
ijcnn1 0.248 0.278 0.248 0.248 0.248
kdda 0.103 0.124 0.103 0.103 0.103

news20 0.538 0.693 0.538 0.538 0.538
real-sim 0.242 0.666 0.244 0.242 0.242

url_combined 0.397 0.579 0.391 0.405 0.405
w8a 0.110 0.111 0.112 0.110 0.110

Table 12: Group sparsity for tested algorithms on convex problems.
Dataset Prox-SG RDA Prox-SVRG

HSPG
ε as 0 ε as 0.8

a9a 20% 30% 30% 30% 30%
higgs 0% 10% 0% 0% 30%
ijcnn1 50% 70% 60% 60% 60%
kdda 0% 0% 0% 0% 80%

news20 20% 80% 90% 80% 90%
real-sim 0% 0% 80% 0% 80%

url_combined 0% 0% 0% 0% 90%
w8a 0% 0% 0% 0% 0%

33

C.2 Nonconvex Experiments

To illustrate, among the state-of-the-art proximal stochastic optimizers, we exclude RDA because
of no acceptable results attained during our following tests with the step size parameter γ setting
throughout all powers of 10 from 10−3 to 103, and skip Prox-Spider and SAGA since Prox-SVRG has
been a superb representative to the proximal incremental gradient methods. We consider the popular
image classification tasks, with popular architectures, i.e., VGG16 and ResNet18 on benchmark
datasets CIFAR10 and Fashion-MNIST (86), where the group partition G is defined as 3D kernel
following (14; 58), which are not ZIGs.

Table 13: Final ψ/group sparsity ratio/testing accuracy on non-convex problems over non-ZIGs.

Backbone Dataset Prox-SG Prox-SVRG HSPG

VGG16 CIFAR10 0.59 / 52.58% / 90.50% 0.85 / 14.13% / 89.16% 0.58 / 76.47% / 91.93%
Fashion-MNIST 0.52 / 12.31% / 92.83% 2.66 / 0.38% / 92.72% 0.52 / 47.82% / 92.87%

ResNet18 CIFAR10 0.31 / 20.27% / 94.36% 0.37 / 4.60% / 94.11% 0.31 / 69.98% / 94.40%
Fashion-MNIST 0.14 / 0.00% / 94.94% 0.18 / 0.00% / 94.70% 0.13 / 77.08% / 94.61%

MobileNetV1 CIFAR10 0.40 / 58.05% / 91.54% 0.65 / 29.20% / 89.68% 0.40 / 71.36% / 92.04%
Fashion-MNIST 0.22 / 62.62% / 94.22% 0.40 / 41.99% / 94.19% 0.26 / 84.26% / 94.52%

Table 13 demonstrates the effectiveness and superiority of HSPG, where we mark the best values as
bold, and the group sparsity ratio is defined as the percentage of zero groups. In particular, (i) HSPG
computes remarkably higher group sparsity than other methods on all tests, of which the solutions are
typically multiple times sparser in the manner of group than those of Prox-SG, while Prox-SVRG
performs not comparably since the variance reduction techniques may not work as desired for deep
learning applications (13); (ii) HSPG performs competitively with respect to the final objective values
ψ. In addition, all the methods reach a comparable generalization performance on unseen test data.
On the other hand, sparse regularization methods may yield solutions with entries that are not exactly
zero but are very small. Sometimes all entries below certain threshold (T) are set to zero (44; 20).
However, such simple truncation mechanism is heuristic-rule based, hence may hurt convergence and
accuracy. To illustrate this, we set the groups of the solutions of Prox-SG and Prox-SVRG to zero if
the magnitudes of the group variables are less than some T , and denote the corresponding solutions
as Prox-SG* and Prox-SVRG*.

60%

70%

32%

(i) (ii)

94%

28%

17%

:HSPG

:Prox-SG*

:Prox-SVRG*

T
estin

g
A
ccu

racy

G
ro
u
p
S
p
ar
si
ty

R
at
io

(a) HSPG VS Truncation over non-ZIGs.

24%

16%

25%

(i) (ii)

2.5%

3.9%
4.0%

:HSPG

:Prox-SG*

:SGD*

#
of

P
aram

s

F
L
O
P
s

(b) HSPG VS Truncation over ZIGs.

Figure 8: HSPG versus simple truncation. (a) On ResNet18 with CIFAR10 over non-ZIGs. (b) On VGG16
with CIFAR10 over ZIGs.

As shown in Figure 8a(i), under the T with no accuracy regression, Prox-SG* and Prox-SVRG*
reach higher group sparsity ratio as 60% and 32% compared to Table 13, but still significantly lower
than the 70% of HSPG without simple truncation. Under the T to reach the same group sparsity ratio
as HSPG, the testing accuracy of Prox-SG* and Prox-SVRG* regresses drastically to 28% and 17%
in Figure 8a(ii) respectively. Remark here that although further refitting the models from Prox-SG*
and Prox-SVRG* on active (non-zero) groups of weights may recover the accuracy regression, it
requires additional engineering efforts and training cost, which is less attractive and convenient
than HSPG (with no need to refit). Similarly, as shown in Figure 8b, under the ZIG partition and the
T without accuracy regression, the FLOPs and number of parameters reductions achieved by SGD*
(subgradient descent with simple truncation) and Prox-SG* are not comparable with those achieve
by HSPG, i.e., HSPG achieves about 1.5× fewer FLOPs and number of parameters.

34

	Introduction
	Related Work
	OTO
	Zero-Invariant Group
	Structured-Sparsity Regularization
	Half-Space Stochastic Projected Gradient (HSPG)
	Pruning Without Fine-Tuning

	Experiment
	Deep Convolutional Neural Network
	Large-Scale Transformer

	Conclusion And Future Work
	Implementation Details of OTO
	ZIG for ResNet50
	Training Details
	Error Bar Analysis
	FLOPs Reduction Breakdown

	Convergence Analysis of HSPG
	Related Work
	Sufficient Decrease of Half-Space Step
	Projection Region of Half-Space Step
	Convergence Analysis of Half-Space Step
	Support Lemma in the Proof of Theorem 1

	The Initialization Stage
	Convergence Analysis of Initialization Stage

	Extensive Numerical Experiments
	Convex Experiments
	Nonconvex Experiments

